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Abstract Although it has long been known that analyses that treat stimuli as a fixed effect do

not permit generalization from the sample of stimuli to the population of stimuli, surprisingly little

attention has been paid to this issue outside of the field of psycholinguistics. The purposes of the

article are (a) to present a non-technical explanation of why it is critical to provide a statistical basis

for generalizing to both the population subjects and the population of stimuli and (b) to provide in-

structions for doing analyses that allows this generalization using four common statistical analysis

programs (JMP, R, SAS, and SPSS).
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Introduction
In a recent study on perception, Davis and Abrams

(2016) presented subjects with general knowledge ques-

tions about celebrity names and a distractor that was ei-

ther visually similar or dissimilar to the name. Questions

that contained a visually-similar distractor led tomore illu-

sions than did the questions that contained a visual dissim-

ilar distracter. One way to have analyzed these data would

have been to average over all names and do the analyses

on these averages. However, this method does not take

the variability of names or the possibility that the treat-

ment may have different effects for different names into

account. As a result, this analysis would not have provided

a statistical basis to generalize from the names used in the

study to the population of names. In order to support this

generalization, textciteda16 computed a statistic called F2

which, as we discuss later in this article, is better than the

common practice of ignoring the variability of stimuli but

is still not entirely satisfactory.

Although the importance of providing a statistical ba-

sis for generalizing to a population of stimuli has been ap-

parent for many years (Clark, 1973; Coleman, 1964), re-

searchers outside of the field of psycholinguistics, unlike

textciteda16, typically fail to do this. Clark (1973), in a

now-classic paper, showed convincingly that in the anal-

ysis of data from psycholinguistic research, it is important

to provide a statistical basis to generalize from the sample

of words to the population of words from which they were

sampled. A critical point made by Clark (1973) is that if

one does not consider the variability of the stimuli in the

statistical analysis, then the probability of a Type I error

approaches 1.0 as the number of subjects increases. Clark’s

(1973) article was very influential and the vast majority of

articles in psycholinguistics now provide a statistical basis

to generalize not only to the population of subjects but also

to the population of stimuli. However, surprisingly little

attention has been paid to this issue in other areas in psy-

chology.

One common erroneous belief is that if stimuli are

counterbalanced across conditions, then it is not necessary

to take additional steps to generalize to the population of

stimuli. One source of this error is a misinterpretation of

Raaijmakers, Schrijnemakers, and Gremen’s (1999) article

which appeared to make that point. In 2003, Raaijmak-

ers emphasized the importance of generalization from the

sample of stimuli to the population of stimuli by restating

that “the claim that counterbalanced designs don’t need
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item analyses . . . is absolutely untrue. Such a design re-
moves one problem that normally requires an item anal-

ysis (inadequate matching of materials across conditions),

but it does not eliminate the issue of generality” (p. 146).

In spite of the publication of articles exhorting re-

searchers to provide a statistical basis to generalize to

the population of stimuli in fields including industrial and

organizational psychology (Fontenelle, Phillips, & Lane,

1985), clinical psychology (Martindale, 1978), and social

psychology (Judd, Westfall, & Kenny, 2012), these articles

appear to have had a relatively limited impact. In the most

recent two issues of Journal of Experimental Psychology:
Learning, Memory, Cognition (Vol. 41, No. 5 & No. 6, 2015),
there were 34 out of 54 articles (63%) aimed to general-

ize their findings from the samples of subjects and stim-

uli to the population of subjects and stimuli, but only 12

of them (35%) used the appropriate mixed effects model

in their analyses. This article makes additional contribu-

tions to this field by illustrating the importance of using

mixed-effects model and by providing an easy instruction

for the readers to use mixed-effects model. The purposes

of this article are (a) to present a non-technical explanation

of why it is critical to provide a statistical basis for general-

izing to both the population of subjects and the population

of stimuli and (b) to provide instructions for doing an anal-

ysis that allows this generalization. The structure of the ar-

ticle is as follows: First, we use fictitious data to illustrate

how the effects of different types of systematic variation

across stimuli can lead to unjustified conclusions when the

analysis that does not consider this variation is used. The

fictitious data we use are purposely very small so that the

consequences of ignoring stimulus variability can be seen

simply by inspecting the raw data themselves. Second, we

analyze these data using mixed-effects models, and, third,

we provide detailed instructions for analyzing data with

mixed-effects models using four common statistical anal-

ysis programs (SAS, SPSS, JMP, and R). We do not attempt

to resolve theoretical disputes concerning the best ways to

conduct a mixed-effects analysis. Instead, readers are re-

ferred to technical articles that address these issues.

Before proceeding, it is important to specify how a

few terms will be used in this article. In accordance with

common usage, if a separate group of subjects is used for

each treatment condition, the design is called a “between-

subject” design whereas if the same group of subjects is

used for all treatment conditions, the design is called a

“within-subjects” design. If different stimuli are used for

each treatment condition, the design is called a “between-

stimuli” design whereas if the same stimuli are used for

all treatment conditions, the design is called a “within-

stimuli” design.

It is important to distinguish between fixed and ran-

dom effects. An effect is a fixed effect if the levels of a

variable are chosen by the experimenter. The analysis of

fixed effects does not allow a statistical basis to generalize

beyond the levels used in the experiment. An effect is a

random effect if the levels of the variable are chosen ran-

domly. The proper analysis of a random effect allows the

statistical analysis is generalizable to the population levels.

Analyzing a Between-Subjects and Between-Stimuli De-
sign
Suppose a researcher was interested in understanding

whether people prefer ice cream or cake. One experimen-

tal design would be to randomly select a set of flavors for

ice-cream and a different set of flavors for cake. In the ex-

ample that follows, three flavors are selected for each food

type (cake and ice cream) and the tastes of the foods are

rated by different groups of three subjects.

The fictitious data in Table 1a show a possible out-

come of the experiment. A typical way to analyze these

data would be to compute the mean rating across fla-

vors for each subject and conduct a one-way between-

subjects ANOVA on these means. For these data, there

is a significant effect of food type, F (l, 4) = 12.45, p =
0.024, 95%CI[−1.89,−0.22], supporting the conclusion
that the effect of food type is real. However, since differ-

ent flavors were selected for cake and for ice cream, it is

possible that, by chance, the ice-cream flavors were bet-

ter tasting than the cake flavors. An informal assessment

of the variation among flavors within food type for these

data suggests that differences among flavors are small rel-

ative to differences between food types and therefore the

inference that there is a food-type effect may be justified.

The data in Table 1b tell a different story. The mean

ratings of the subjects are the same as for the data in Table

1a and, therefore, the F values from the ANOVA are identi-
cal. However, there is much greater variability among the

flavors within each food type in Table 1b. This variabil-

ity should make a careful researcher extremely cautious

about generalizing the results to the population of flavors

for it is clear that a different choice of flavors might have

made a big difference.

One way to take variation in stimuli into account is to

compute the mean for each stimulus across subjects. For

the data in Table 1a, the scores for ice-cream are 6.33,

6.33, and 6.00 and the scores for cake are 4.00, 4.00, and

4.33. An ANOVA comparing these conditions is signifi-

cant, F (1, 4) = 180.50, p < 0.001, 95%CI[−1.27,−0.84].
In contrast, the same analysis for the data in Table 1b

results in a non-significant effect, F (1, 4) = 0.97, p =
0.380, 95%CI[−4.03, 1.92].
The F computed by averaging over stimuli is called F1,

and theF computed by averaging over subjects is called F2
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Table 1 Fictitious Data from Between-Subjects, Between-Stimuli Design.

Table 1a

Condition Subject ID F1 F2 F3 F4 F5 F6 Mean

Ice Cream S1 6 5 5 5.33

Ice Cream S2 6 7 7 6.67

Ice Cream S3 7 7 6 6.67

Cake S4 3 3 4 3.33

Cake S5 5 5 4 4.67

Cake S6 4 4 5 4.33

Mean 6.33 6.33 6.00 4.00 4.00 4.33

Table 1b

Condition Subject ID F1 F2 F3 F4 F5 F6 Mean

Ice Cream S1 8 4 4 5.33

Ice Cream S2 8 6 6 6.67

Ice Cream S3 8 6 6 6.67

Cake S4 1 1 8 3.33

Cake S5 3 4 7 4.67

Cake S6 2 2 9 4.33

Mean 8 5.33 5.33 2.00 2.33 8.00

(Clark, 1973). The former F tests whether the results for
the specific stimuli (flavors in this example) used in the ex-

periment generalize to the population of subjects. As such,

“subjects” is a random effect and “stimuli” is a fixed effect.

The latter F tests whether, for the specific subjects used
in the experiment, the results generalize to the population

of stimuli. In this analysis, “subjects” is a fixed effect and

“stimuli” is a random effect. Naturally, it is important to

use a method that allows one to generalize to the popu-

lation of stimuli in the population of subjects. Note that

it is possible for (a) the effect to be present in the popu-

lation of subjects for the stimuli used in the experiment

and (b) in the population of stimuli for the subjects used

in the experiment but not (c) for the population of stim-

uli in the population of subjects. Clark (1973) showed an

approximate method for generalizing to the population of

stimuli in the population of subjects with quasi-F tests. In
recent years, mixed model software capable of analyzing

complex combinations of random and fixed effects have

becomewidely available and these analyses are preferable

to quasi-F tests. The advantages of mixed effects models
include their ability to (a) handle missing and unbalanced

data, (2) handle continuous and categorical predictors and

responses, and (3) avoid inflated Type I errors (Baayen,

2008; Baayen, Davidson, & Bates, 2008; Judd et al., 2012).

Analyzing the data in Table 1a using a mixed

model analysis results in F (1, 4) = 12.45, p =
0.024, 95%CI[−1.89,−0.22], whereas the same analysis
for the data in Table 1b results in F (1, 4.2) = 0.94, p =
0.384, 95%CI[−4.01, 1.90] (See the Appendix for instruc-

tions for doing this and othermixedmodel analyses). Thus,

for the data in Table 1a, one can conclude that there is an

effect of food type in the population of subjects and the

population of flavors. This conclusion is not justified for

the data in Table 1b.

Analyzing a Between-Subjects and Within-Stimuli De-
sign
In between-subjects/between-stimuli designs, the between-

subjects effect is confounded with the effect of stimuli. It

might appear that if the same stimuli were used in each

condition, then there would be no need to consider the

variability of stimuli. Although this would be true if the

differences between conditions were the same for all stim-

uli, it is not true when there is a Condition (Food Type) ×
Stimulus (Flavor) interaction.

The fictitious data in Table 2a are from a between-

subjects/within-stimuli design inwhich the researcher ran-

domly selected three flavors and these flavors were paired

with both food types (cake and ice cream) so that each sub-

ject rated each of the six food type× flavor combinations.
The data in Table 2a show a possible outcome of this

experiment. A typical way of analyzing these data would

be to compute the mean rating across flavors for each sub-

ject and conduct a one-way between-subjects ANOVA on

these means. For these data, there is a significant effect of

food type, F (l, 4) = 64, p = 0.001, 95%CI[−1.80,−0.87],
which would lead to the conclusion that the effect of food

type is real. However, even though the same flavors are

used in both food types, it is possible that subjects prefer
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Table 2 Fictitious Data from Between-Subjects, Within-Stimuli Design.

Table 2a

Condition Subject ID F1 F2 F3 F1 F2 F3 Mean

Ice Cream S1 4 8 9 7

Ice Cream S2 5 7 9 7

Ice Cream S3 3 7 8 6

Cake S4 1 4 7 4

Cake S5 1 4 7 4

Cake S6 1 4 7 4

Mean 4 7.33 8.67 1 4 7

Table 2b

Condition Subject ID F1 F2 F3 F1 F2 F3 Mean

Ice Cream S1 4 8 9 7

Ice Cream S2 5 7 9 7

Ice Cream S3 3 7 8 6

Cake S4 6 5 1 4

Cake S5 5 4 3 4

Cake S6 5 4 3 4

Mean 4 7.33 8.67 5.33 4.33 2.33

cakes for some flavors and ice cream for others. Infor-

mally, this does not appear to be a serious problem for the

data in Table 2a, but does appear to be a problem for the

data in Table 2b. Since the mean ratings of the subjects are

the same in Tables 3 and 4, the F values from the ANOVA
are identical. However, there is a much greater Food Type

× Flavor interaction for the data in Table 2b, and this in-
teraction should make a careful researcher extremely cau-

tious about generalizing the results to the population of fla-

vors.

One way to take this interaction of Food Type ×
Flavor into account is to compute the mean for each

stimulus across subjects. For the data in Table 2a, an

ANOVA with repeated measures on flavors is significant,

F (1, 2) = 27.43, p = 0.035, 95%CI[−2.43,−0.24]. By
comparison, the same analysis for the data in Table 2b

results in not significant effect, F (1, 2) = 1.44, p =
0.353, 95%CI[−6.11, 3.44].
Analyzing these data using a mixed model analysis re-

sults in F (1, 3) = 21.33, p = 0.019, 95%CI[−2.25,−0.42],
for the data in Table 2a, and F (1, 4) = 2.63, p =
0.180, 95%CI[−3.62, 0.95], for the data in Table 2b (see
Section 4 in the Appendix for analysis instructions). Thus,

for the data in Table 2a, one can conclude that there is an

effect of food type in the population of subjects and the

population of flavors. This conclusion is not justified for

the data in Table 2b.

Analyzing a Within-Subjects and Between-Stimuli De-
sign
The data in Table 2a are from a within-subjects/between-

stimuli design in which the researchers randomly selected

a set of flavors for the ice-cream and a different set of fla-

vors for the cake, and each subject rated all these food fla-

vors under both two food types.

The fictitious data in Table 3a show a possible outcome

of this experiment. A typical way of analyzing these data

would be to compute the mean rating across three flavors

in each food type for each subject and conduct a one-way

within-subjects ANOVA on these means. For these data,

there is a significant effect of food type, F (l, 2) = 49, p =
0.020, 95%CI[−1.88,−0.45], which would lead to the con-
clusion that the effect of food type is real. This effect of

food types is strong, because all the subjects have higher

mean ratings for ice cream than for the cake.

For the data in Table 3b, the mean ratings of the sub-

jects are the same as in Table 3a and therefore the F val-
ues from the ANOVA are identical. However, there is much

great variability among the flavors.

As in the previous analyses, one should analyze these

data using a mixed model analysis, which results in

F (1, 16) = 12.25, p = 0.003, 95%CI[−1.87,−0.46],
for the data in Table 3a, and F (1, 4) = 3.87, p =
0.121, 95%CI[−2.81,−0.48], for the data in Table 3b (See
Section 5 in the Appendix for analysis instructions). Thus,

for the data in Table 3a, one can conclude that there is an

effect of food type in the population of subjects and the
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Table 3 Fictitious Data fromWithin-Subjects, Between-Stimuli Design.

Table 3a

Condition Ice Cream Cake Mean

Subject ID F1 F2 F3 F4 F5 F6 Ice Cream Cake

S1 5 4 6 5 3 1 5 3

S2 7 6 5 3 4 5 6 4

S3 4 7 7 1 3 5 6 3

Mean 5.33 5.67 6 3 3.33 3.67

Table 3b

Condition Ice Cream Cake Mean

Subject ID F1 F2 F3 F4 F5 F6 Ice Cream Cake

S1 9 3 3 5 3 1 5 3

S2 7 5 6 3 4 5 6 4

S3 8 6 4 1 3 5 6 3

Mean 8 4.67 4.33 3 3.33 3.67

population of flavors. This conclusion is not justified for

the data in Table 3b.

Analyzing a Within-Subjects andWithin-Stimuli Design
It might appear that in a within-subjects/within-stimuli de-

sign, both the variability of subjects and variability of stim-

uli are controlled. However, this design still requires sub-

jects and stimuli to be analyzed as random effects in order

for the results to generalize to the populations of subjects

and stimuli.

The data in Tables 7 and 8 are from a within-

subjects/within-stimuli design inwhich the researcher ran-

domly selected three flavors and these flavors were paired

with both food types (cake and ice cream) so that each sub-

ject rated all six food stimuli.

The fictitious data in Table 4a show a possible outcome

of the experiment. A typical way of analyzing these data

would be to compute the mean rating across three flavors

in each food type condition for each subject and conduct a

one-way within-subjects ANOVA on these means. For these

data, there is a significant effect of food type, F (l, 2) =
49, p = 0.020, 95%CI[−1.88,−0.45], which would lead to
the conclusion that the effect of food type is real. However,

even though the same flavors are used in both food types,

it is possible that flavor preferences differ across subjects.

In other words, there might be a Subjects× Flavor interac-
tion. For example, in Table 4b, S1 prefers F1 over the other

flavors whereas S2 prefers F3 over the other flavors. Infor-

mally, this does not appear to be a serious problem for the

data in Table 4a, but does appear to be a problem for the

data in Table 4b. Since the mean ratings of the subjects are

the same in Tables 7 and 8, the F values from the ANOVA
are identical. However, there is a much greater Subject ×
Flavor interaction for the data in Table 4b, which should

make a careful researcher extremely cautious about gen-

eralizing the results to the population of flavors.

Analyzing these data using a mixed model

analysis results in F (1, 16) = 24.50, p <
0.001, 95%CI[−1.67,−0.67]. for the data in Table 4a, and
F (1, 2.3) = 7.50, p = 0.096, 95%CI[−2.79, 0.46], for the
data in Table 4b (see Section 6 in the Appendix for anal-

ysis instructions). Thus, for the data in Table 4a, one can

conclude that there is an effect of food type in the popu-

lation of participants and the population of flavors. This

conclusion is not justified for the data in Table 4b.

Conclusion
The example data in this article highlight the danger of

not taking the variability of stimuli and possible interac-

tions between variables into account. In order to be able to

generalize the results from the samples of stimuli and sub-

jects to the populations of stimuli and subjects, both stimuli

and subjects should be treated as random effects simulta-

neously in a mixed-effects model analysis. The Appendix

in this article provides detailed instructions for analyzing

the sample data with mixed-effects models with four most

popular statistical programs currently in psychological use

(JMP, R, SAS, and SPSS).

This article does not present a technical mathemati-

cal discussion of mixed-effects models and therefore re-

searchers who are seeking either more theoretical infor-

mation or discussions of more complex designs should

consult the following sources: For further discussion of

how failure to generalize the results to the population of

stimuli can threaten the validity of the analyses, we refer

the readers to Forster and Dickinson (1976), Kenny (1985),

Wells and Windschitl (1999). For more technical discus-

sions of mixed-effects models, Baayen et al. (2008), Judd
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Table 4 Fictitious Data fromWithin-Subjects, Within-Stimuli Design.

Table 4a

Condition Ice Cream Cake Mean

Subject ID F1 F2 F3 F1 F2 F3 Ice Cream Cake

S1 6 6 6 4 4 4 6 4

S2 7 6 5 5 4 3 6 4

S3 4 7 7 3 1 5 6 3

Mean 5.67 6.33 6 4 3 4

Table 4b

Condition Ice Cream Cake Mean

Subject ID F1 F2 F3 F1 F2 F3 Ice Cream Cake

S1 10 4 4 10 1 1 6 4

S2 4 5 9 1 2 9 6 4

S3 3 7 8 3 1 5 6 3

Mean 5.67 5.33 7 4.67 1.33 5

et al. (2012), Raaijmakers et al. (1999) and Raaijmakers’s

(2003) articles are recommended. For readers who are in-

terested in using R to analyze data with mixed-effect mod-

els, Baayen’s (2008) book titled “Analyzing linguistic data:

A practical introduction to statistics” provides a detailed

step-by-step instructions in Chapter 7. For readers who are

interested in using SAS to analyze data with mixed-effects

models, Littell, Milliken, Stroup, Wolfinger, and Schaben-

berger’s (2006) book titled “SAS for Mixed Models, Second

Edition” provides very detailed instructions.
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Appendix
In this appendix, we illustrate how to do mixed model analysis for the experimental designs discussed in the article. We

give instructions for using four popular statistical analysis programs: JMP, R, SAS, and SPSS.

Section 1: Technical Details.
There are two ways of estimating variance components: constrained and unbounded. With constrained estimates, nega-

tive estimates of variance are set to zero. In unbounded estimates, estimates can be negative in order for the estimates to

be unbiased. A technical discussion of the arguments for using either constrained or unbounded estimates is beyond the

scope of this paper. Technical discussions can be found in the following sources (Hocking, Green, & Bremer, 1989; Smith

&Murray, 1984; Thompson &Moore, 1963). Although both SAS and JMP allow options for constrained or unbounded vari-

ance estimates, R’s lme4 package (Bates, Maechler, Bolker, & Walker, 2015) and SPSS only do analyses using constrained
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Table 5 Notations used in JMP, R, SAS and SPSS

Flavor Nested within Food Type Flavor Crossed with Food Type

JMP Flavor[Food Type] Flavor * Food Type

R FoodType/Flavor Flavor : Food Type

SAS Flavor(FoodType) Flavor * Food Type

SPSS Flavor(FoodType) Flavor * Food Type

variance components. To ensure that all programs used the same methods in our examples, we used constrained vari-

ance estimates throughout. However, we do not take a position here on whether constrained or unbounded estimates

are preferable.

The denominator degrees of freedom and p-values of F tests in this tutorial were computed using Satterthwaite’s
approximation (Fai & Cornelius, 1996; Satterthwaite, 1946), the preferred method when a constrained variance compo-

nents model is used. An alternative method, Kenward-Roger Approximation (Kenward & Roger, 1997), is recommended

when sample sizes are moderate to small and design is reasonably balanced (Schaalje, McBride, & Fellinghamm, 2001),

although which method is better has not been fully resolved (Arnau, Bono, & Vallejo, 2009; Spilke, Piepho, & Hu, 2005).

There are many ways to create contrast matrices to fit the mixed effects model, and different program may use

different strategies to create the contrast matrices. A contrast matrix contains the contrasts used for coding the factor

in the mixed effects model. The default contrast matrix for lmer contains a contrast column for each level of the factor
with the baseline level. There is no separate contrast for the baseline level, and the contrast matrix is not orthogonal to

the intercept. The default contrast matrix for SAS and SPSS sets the baseline level to the last level of the factor instead of

the first, and the contrast matrix is not orthogonal to the intercept. The default for JMP applied is to use contrasts that

are orthogonal to the intercept. Since the F -values and p-values of the fixed effect are the same for different contrast
matrices, we used the default contrasts provided in each program. Researchers can choose reasonable contrasts based on

their experimental design and hypotheses. In R, researchers can easily apply the following codes before running model

to change the default of contrast to be the same with the contrasts that SAS (Bates, 2014, p. 6), SPSS, and JMP used:

>> contrasts(mydata$FoodType) <- contr.SAS # SAS and SPSS
>> contrasts(mydata$FoodType) <- contr.sum # JMP
>> contrasts(mydata$FoodType) <- contr.treatment # R

If the levels of one factor (e.g., A) occur only within a single level of another factor (e.g., B), then the factor A is nested

within B. If all levels of one factor (e.g., effect A) occur in combination with each level of another factor (e.g., B), then A

and B are said to be crossed. Table 5 shows the notations used in the four programs.

Finally, the analyses in both JMP and SPSS can be performed by either using a graphical interface or by writing code

whereas the analyses in both SAS and R are performed by writing code. In this tutorial, we show the graphical interface

in JMP and we provide the codes for all of the four statistical tools.

Before conducting any analyses, the data should be organized so that there are four variables: Subject, FoodType,

Flavor, and Rating.

Section 2: Program Specific Instructions
JMP-Specific Instructions
Choose “Fit Model” by clicking on “Analyze” in the menu, and the following dialog is shown. Choose “Mixed Model” in

“Personality,” uncheck “The Unbounded Variance Components,” indicate the “Rating” in “Y” (dependent variable), and

then add the “FoodType” in “Fixed Effects” as seen in Figure 1

R-Specific Instructions
In R, lme4 package (Bates et al., 2015) and lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2015) are applied
to analyze the data with mixed-effects models. In Section 7, MuMIn packages (Barton, 2016) is used to calculate theR2

in

the mixed effects model.

Read the data, name it “mydata,” and then create a new object which here called “data.model” from the lmer()
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Figure 1 Performing analyses with JMP

function. The mixed model has three essential elements: the dependent variable (Rating), a fixed effect (FoodType),

and the random effects. In the lmer() function, the dependent variable is specified on the left side of the ~ operator.
The independent variables are assigned on the right side of the ~ operator. Random effects indicated by placing them

in parentheses, as (1|variable), which indicates the intercept is random with respect to the variable. The format
for lmer() function is lmer(independent variable ~ fixed effect variable + (1|random effect
variable).

SAS-Specific Instructions
In SAS, use the PROC MIXED command to compute the mixed-effects analysis. To include the negative variance compo-

nents in the model, use the NOBOUND option. The data in the examples are in the datatset named as mydata.

There are three essential elements in this code: CLASS, MODEL, and RANDOM. The CLASS statement is used to name

the classification variables that would be used in the analysis. Therefore, these three variables are named: Subject,

FoodType, and Flavor. The MODEL statement is used to identify the dependent variable (Rating) and the fixed effects

(FoodType) by using the formula of dependent variable = fixed effect variable. In addition, the DDFM command to

specify the approximation to estimate the denominator degrees of freedom and p-values in F tests. In this tutorial,
SATTERTHWAITE approximation was used. The RANDOM statement is used to define the random effects that included in

the models.

SPSS-Specific Instructions
In SPSS, use the MIXED command to do a mixed-effects model analysis. There are three essential elements in this syntax:

BY, FIXED, and RANDOM. The BY statement is used to indicate the dependent variable and other variables that are used

in the model. The dependent variable (Rating) is placed in the left side of BY, and all other independent variables (Subject,

Flavor, FoodType) are placed in the right side of BY. The /FIXED statement is used to indicate the fixed effect variable:

FoodType. The /RANDOM statement is used to define the random effects that included in the model.
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Figure 2 Model effects for Between-Subjects and Between-Stimuli Design within JMP

Section 3: Between-Subjects and Between-Stimuli Design (Table 1b data)
JMP
In this design, there are two random effects: Subject and Flavor nested within FoodType. To indicate this, click on the

“Random Effects” tab under “Construct Model Effects,” and then use “Add” button for “Subject” and for “Flavor.” Then,

use the “Nest” button to create Flavor[FoodType]. Finally, click the “Run” function. Figure 2 illustrates this step

The following code performs the same analysis. Once the code is entered, click on “Run Script” button to execute the

script.

Fit Model(
Y( :Rating ),
Effects( :FoodType ),
Random Effects( :Subject, :Flavor[:FoodType] ),
NoBounds( 0 ),
Personality( ‘‘Mixed Model’’ ),
Run( Repeated Effects Covariance Parameter Estimates( 0 ) )

);

The output of fixed effects tests is contained in Figure 3, top panel.

R
In this design, there are two random effects: Subject and Flavor nested within FoodType. To indicate this, (1|Subject)
and (1| Flavor) are used. The nested effect would be identified by lmer function. The code to generate the complete
mixed-effects model in this design as follows:

> data.model = lmer(Rating ~ FoodType + (1|Subject) + (1|Flavor), data= mydata)

To view the results of the fixed-effectsmodel, enter the name of fittedmodel object as a command or usingsummary()
command. To obtain the estimates of degrees of freedom and p-values of the F -values for the fixed effects, use anova()
function from lmerTest package with the command:

> anova(data.model)

The output of fixed effect is contained as followed:

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
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Figure 3 Outputs from JMP (panel a), SAS (panel b) and SPSS (panel c) for the data of Table 1b

(a)

(b)

(c)

FoodType 0.89019 0.89019 1 4.2326 0.94256 0.3838

SAS
In this design, there are two random effects: Subject and Flavor nested within FoodType. The code to generate the

complete mixed-effects model in this design as follows:

PROC MIXED DATA=mydata;
CLASS Subject FoodType Flavor;

MODEL Rating = FoodType / DDFM=SATTERTHWAITE SOLUTION;
RANDOM Subject;
RANDOM Flavor(FoodType);

RUN;

The output of fixed effect is contained in Figure 3, middle panel.

SPSS
In this design, there are two random effects: Subject and Flavor nested within FoodType. The code to generate the

complete mixed-effects model in this design as follows:

MIXED Rating BY Subject FoodType Flavor
/FIXED = FoodType
/RANDOM Subject Flavor(FoodType)
/PRINT SOLUTION.

The output of fixed effect is contained in Figure 3, bottom panel.
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Figure 4 Model effects for Between-Subjects and Within-Stimuli Design within JMP

Section 4: Between-Subjects and Within-Stimuli Design (Table 2b data)
JMP
In this design, there are three random effects: Subject, Flavor, and the interaction between Flavor and FoodType. To

indicate this, click on the “Random Effects” tab under “Construct Model Effects,” and then use “Add” button for “Subject”

and for “Flavor.” Then, use the “Cross” button to create Flavor*FoodType. Finally, click the “Run” function. Figure 4

illustrates this step.

The following code performs the same analysis. Once the code is entered, click on “Run Script” button to execute the

script.

Fit Model(
Y( :Rating ),
Effects( :FoodType ),
Random Effects( :Subject, :Flavor, :Flavor * :FoodType ),
NoBounds( 0 ),
Personality( ‘‘Mixed Model’’ ),
Run( Repeated Effects Covariance Parameter Estimates( 0 ) ),

);

The output of fixed effect is shown in Figure 5, top panel.

R
In this design, there are three random effects: Subject, Flavor and the interaction between Flavor and FoodType. To in-

dicate this, (1|Subject), (1|Flavor), and (1|Flavor:FoodType) are used. The code to generate the complete
mixed-effects model in this design as follows:

> data.model = lmer(Rating ~ FoodType + (1|Subject) + (1|Flavor) + (1|FoodType:
Flavor), data= mydata)

To view the results of the fixed-effectsmodel, enter the name of fittedmodel object as a command or usingsummary()
command. To obtain the estimates of degrees of freedom and p-values of the F -values for the fixed effects, use anova()
function from lmerTest package.

> anova(data.model)

The output of fixed effect is contained as followed.

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
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Figure 5 Outputs from JMP (panel a), SAS (panel b) and SPSS (panel c) for the data of Table 2b

(a)

(b)

(c)

FoodType 1.6073 1.6073 1 4 2.6301 0.1802

SAS
In this design, three are random effects: Subjects, Flavor and the interaction between Flavor and FoodType. The code to

generate the complete mixed-effects model in this design as follows:

PROC MIXED DATA=mydata;
CLASS Subject FoodType Flavor;

MODEL Rating = FoodType / DDFM=SATTERTHWAITE SOLUTION;
RANDOM Subject;
RANDOM Flavor;
RANDOM Flavor*FoodType;

RUN;

The output of fixed effect is shown in Figure 5, middle panel.

SPSS
In this design, three are random effects: Subject, Flavor and the interaction between Flavor and FoodType. The code to

generate the complete mixed-effects model in this design as follows:

MIXED Rating BY Subject FoodType Flavor
/FIXED = FoodType
/RANDOM Subject Flavor FoodType*Flavor
/PRINT SOLUTION.

The output of fixed effect is shown in Figure 5, bottom panel.
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Figure 6 Model effects for Within-Subjects and Between-Stimuli Design within JMP

Section 5: Within-Subjects and Between-Stimuli Design (Table 3b data)
JMP
In this design, there are three random effects: Subject, Flavor nested within FoodType, and the interaction between

Subject and FoodType. To indicate this, click on the “Random Effects” tab under “Construct Model Effects,” and then use

“Add” button for “Subject” and for “Flavor.” Then, use the “Nest” button to create Flavor[FoodType], and use the “Cross”

button to create Subject*FoodType. Finally, click the “Run” function. Figure 6 illustrates this step.

The following code performs the same analysis. Once the code is entered, click on “Run Script” button to execute the

script.

Fit Model(
Y( :Rating ),
Effects( :FoodType ),
Random Effects( :Subject, :Flavor[:FoodType], :Subject * :FoodType ),
NoBounds( 0 ),
Personality( ‘‘Mixed Model’’ ),
Run( Repeated Effects Covariance Parameter Estimates( 0 ) ),

);

The output of fixed effect is shown in Figure 7, top panel. .

R
In this design, there are three random effects: Subject, Flavor nested within FoodType, and the interaction between

Subject and FoodType. To indicate this, (1|Subject), (1|Flavor), and (1|Subject:FoodType) are used.
The code to generate the complete mixed-effects model in this design as follows:

> data.model = lmer(Rating ~ FoodType + (1|Subject)+ (1|Flavor) + (1|Subject:
FoodType), data= mydata)

To view the results of the fixed-effectsmodel, enter the name of fittedmodel object as a command or usingsummary()
command. To obtain the estimates of degrees of freedom and p-values of the F -values for the fixed effects, use anova()
function from lmerTest package.

> anova(data.model)

The output of fixed effect is contained as followed.
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Figure 7 Outputs from JMP (panel a), SAS (panel b) and SPSS (panel c) for the data of Table 3b

(a)

(b)

(c)

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
FoodType 9.886 9.886 1 4 3.8684 0.1206

SAS
In this design, three are random effects: Subject, Flavor and the interaction between Flavor and FoodType. The code to

generate the complete mixed-effects model in this design as follows:

PROC MIXED DATA=mydata;
CLASS Subject FoodType Flavor;

MODEL Rating = FoodType / DDFM=SATTERTHWAITE SOLUTION;
RANDOM Subject;
RANDOM Flavor(FoodType);
RANDOM Subject*FoodType;

RUN;

The output of fixed effect is shown in Figure 7, middle panel.

SPSS
In this design, there are three random effects: Subject, Flavor nested within FoodType, and the interaction between

Subject and FoodType. The code to generate the complete mixed-effects model in this design as follows:

MIXED Rating BY Subject FoodType Flavor
/FIXED = FoodType
/RANDOM Subject Flavor(FoodType) FoodType*Subject
/PRINT SOLUTION.
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Figure 8 Model effects for Within-Subjects and Within-Stimuli Design within JMP

The output of fixed effect is shown in Figure 7, bottom panel.

Section 6: Within-Subjects and Within-Stimuli Design (Table 4b data)
In this design, we would like to make a note that since Subject× FoodType× Flavor interaction consists of 3 levels of the
grouping factor, which greater than the number of observations, R gives an error message. This issue is very unlikely to

occur with real data using a reasonable sample size. Therefore, the error or warning messages regarding this are ignored

and a way to override the error is given for the purpose of this tutorial.

JMP
In this design, there are six random effects: Subject, Flavor, the interactions between Subject and FoodType, Subject and

Flavor, FoodType and Flavor, and among Subject, FoodType and Flavor. To indicate this, click on the “Random Effects”

tab under “Construct Model Effects,” and then use “Add” button for “Subject” and for “Flavor.” Then, use the “Cross”

button to create Subject*FoodType, Subject*Flavor, FoodType*Flavor, and Subject*FoodType*Flavor. Finally, click the

“Run” function. Figure 8 illustrates this step.

The following code performs the same analysis. Once the code is entered, click on “Run Script” button to execute the

script.

Fit Model(
Y( :Rating ),
Effects( :FoodType ),
Random Effects(

:Subject,
:Flavor,
:Subject * :FoodType,
:Subject * :Flavor,
:FoodType * :Flavor
:FoodType * :Flavor * :Subject

),
NoBounds( 0 ),
Personality( ‘‘Mixed Model’’ ),
Run( Repeated Effects Covariance Parameter Estimates( 0 ) )

);

The output of fixed effect is shown in Figure 9, top panel.
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Figure 9 Outputs from JMP (panel a), SAS (panel b) and SPSS (panel c) for the data of Table 4b

(a)

(b)

(c)

R
In this design, there are six random effects: Subject, Flavor, the interactions between Subject and FoodType, Subject and

Flavor, FoodType and Flavor, and among Subject, FoodType and Flavor. To indicate this, (1|Subject), (1|Flavor),
(1|Subject:FoodType), (1|Subject:Flavor), (1|FoodType*Flavor), and(1|Subject:FoodType:Flavor)
are used. The code to generate the complete mixed-effects model in this design as follows:

> data.model = lmer(Rating ~ FoodType + (1|Subject)+ (1|Flavor) + (1|FoodType:
Flavor) + (1|Subject:FoodType) + (1|Subject:Flavor) +(1|Subject:Flavor:FoodType)
, data= mydata)

General speaking, the above codes would be successfully to produce the results. However, since the data in Table 4b,

the number of subject (observation) is less than the number of factors, the R gave an error message as following.

Error: number of levels of each grouping factor must be < number of observations

In order to override the errors, the following codes were used to override the issues of grouping factor > number of

observations. For more details about each code, please refer the package of lme4.

> data.model = lmer(Rating ~ FoodType + (1|Subject) + (1|Flavor) + (1|FoodType:
Flavor) + (1|FoodType:Subject) + (1|Flavor:Subject) + (1|Flavor:Subject:FoodType
), data= mydata, control = lmerControl(check.nobs.vs.nlev="ignore", check.nobs.
vs.nRE="ignore"))

To view the results of the fixed-effectsmodel, enter the name of fittedmodel object as a command or usingsummary()
command. To obtain the estimates of degrees of freedom and p-values of the F -values for the fixed effects, use anova()
function from lmerTest package.

> anova(data.model)

The output of fixed effect is contained as followed.
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Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
FoodType 9.7672 9.7672 1 2.2935 7.4954 0.09613 .

SAS
In this design, there are six random effects: Subject, Flavor, the interactions between Subject and FoodType, Subject and

Flavor, FoodType and Flavor, and among Subject, FoodType and Flavor. The code to generate the complete mixed-effects

model in this design as follows:

PROC MIXED DATA=mydata;
CLASS Subject FoodType Flavor;
MODEL Rating = FoodType / DDFM=SATTERTHWAITE SOLUTION;
RANDOM Subject;
RANDOM Flavor;
RANDOM Flavor*FoodType;
RANDOM Subject*FoodType;
RANDOM Subject*Flavor;
RANDOM Subject*Flavor*FoodType;

RUN;

The output of fixed effect is shown in Figure 9, middle panel.

SPSS
In this design, there are six random effects: Subject, Flavor, the interactions between Subject and FoodType, Subject and

Flavor, FoodType and Flavor, and among Subject, FoodType and Flavor. The code to generate the complete mixed-effects

model in this design as follows:

MIXED Rating BY Subject FoodType Flavor
/FIXED = FoodType
/RANDOM Subject Flavor FoodType*Subject Flavor*Subject FoodType*Flavor Subject

*FoodType*Flavor
/PRINT SOLUTION.

The output of fixed effect is shown in Figure 9, bottom panel.

Section 7: Additional Information from Statistical Reports
In the previous sections, we focused on the statistical outputs of fixed effect, the primary interest of this paper. In this sec-

tion, we discuss three additional statistical reports which might help some readers to interpret their results: fit statistics,

random effects covariance parameter, and fixed effects parameter estimates. The fit statistics report gives statistics used

formodel comparison: information criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criteria

(BIC). AIC and BIC are information-based criteria that assess the model fit penalized for the number of estimated param-

eter. Due to the complication of computational issues in mixed effects model, the model selection is less straightforward

than linear regression. Müller, Scealy, and Welsh (2013) discussed and compared four major model selection methods

in mixed effects model. The second useful statistical report is the random effect covariance parameter estimates. This

report provides details for the estimated covariance components of random effects in the model, which helps the readers

understand the variances of assigned random effect factors in the model. For example, the estimated covariance of ran-

dom effects in Table 1b were 0.22 for Subject, 6.55 for Flavor nested within FoodType, and 0.94 for the residuals. These

suggest that Flavor nested within FoodType has larger variance than the Subject in the model. The third useful statistical

report contains the fixed effects parameter estimates, which provides details for the fixed effect parameters specified in

the model. It gives the estimate coefficient of the specified fixed effect factor in the model. However, because different

contrasts produce different estimated coefficients, it is important for the readers to carefully consider the contrasts that

are used to define the effects of factors.

Coefficient of determination, R2
, is frequently used as a summary statistic to quantify the goodness-of-fit of fixed
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effects models: what proportion of the dependent variable(s) can be explained by the independent variable(s). How-

ever, R2
is not often reported in mixed effect models because there is no consensus of how to define R2

in mixed effects

model. A technical discussion of the definition of R2
and the methods of calculating it are beyond the scope of this

paper. Technical discussions and different methods to obtain R2
can be found in the following sources (Liu, Zheng, &

Shen, 2008; Nakagawa & Schielzeth, 2013; Orelien & Edwards, 2008; Snijders & Bosker, 1994; Xu, 2003). SPSS, SAS, and

JMP do not provide R2
for mixed effects model, but R’s MuMIn package (Barton, 2016) calculates R2

based on Nakagawa

and Schielzeth’s (2013) and Johnson’s (2014) methods. Because SPSS, SAS and JMP do not provide R2
, we only demon-

strated it in R. Nakagawa and Schielzeth (2013) categorizedR2
into two types: marginal and conditionalR2

. MarginalR2

represents the variance explained by fixed effects, and conditional R2
represents the variance explained by both fixed

and random factors. Although we adopt Nakagawa and Schielzeth’s (2013) methods to calculate the marginal R2
and

conditionalR2
, we do not take a position here on which methods are preferable.

We used the data from Table 1b as an example to demonstrate the calculation of conditional and marginal R2
:

r.squaredGLMM() function from MuMIn package.

> r.squaredGLMM(data.model)

The output of marginal R2
is 0.13, and the conditional R2

is 0.89. This means that 13% of the variances of Rating can

be explained by FoodType, and 76% (89% - 13%) of the variance of Rating can be explained by the random factors (subjects

and flavors). The estimated covariance of random effects in Table 1b shows that the variance for Subject is 0.2222, the

variance for Flavor nested within FoodType is 6.5556, and the variance of residuals is 0.9444. Combining the outputs of

covariance of random effects and r.squaredGLMM, the variance for the fixed effect is 1.1797 ((0.2222+6.5556+0.9444)×
0.1325257/(1−0.1325257) = 1.1797). Thus, the variance in thewholemodel is 8.90 (0.22+6.56+0.94+1.18 = 8.90). The
variance can be explained by subjects is 0.02 (0.22/8.90 = 0.02), by Flavor is 0.74 (6.56/8.90 = 0.74), and by FoodType
is 0.13 (1.18/8.90 = 0.13).

R^2m R^2c
0.133 0.894
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