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Adding bias to reduce variance in psychological results:

A tutorial on penalized regression
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Abstract Regression models are commonly used in psychological research. In most studies, re-

gression coefficients are estimated via maximum likelihood (ML) estimation. It is well-known that

ML estimates have desirable large sample properties, but are prone to overfitting in small to mod-

erate sized samples. In this paper, we discuss the benefits of using penalized regression, which is

a form of penalized likelihood (PL) estimation. Informally, PL estimation can be understood as in-

troducing bias to estimators for the purpose of reducing their variance, with the ultimate goal of

providing better solutions. We focus on the Gaussian regression model, where ML and PL estima-

tion reduce to ordinary least squares (OLS) and penalized least squares (PLS) estimation, respec-

tively. We cover classic OLS and stepwise regression, as well as three popular penalized regression

approaches: ridge regression, the lasso, and the elastic net. We compare the different penalties (or

biases) imposed by each method, and discuss the resulting features each penalty encourages in the

solution. To demonstrate the methods, we use an example where the goal is to predict a student’s

math exam performance from 30 potential predictors. Using a step-by-step tutorial with R code,

we demonstrate how to (i) load and prepare the data for analysis, (ii) fit the OLS, stepwise, ridge,

lasso, and elastic net models, (iii) extract and compare the model fitting results, and (iv) evaluate

the performance of each method. Our example reveals that penalized regression methods can pro-

duce more accurate and more interpretable results than the classic OLS and stepwise regression

solutions.
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Introduction
Since the mid-19th century, researchers have employed a

variety of methods in an attempt to understand relation-

ships between psychological variables. Over the years,

the General Linear Model (GLM) has proven to be a use-

ful framework for analyzing psychological data; note that

the GLM framework incorporates linear regression, one-

way and factorial analysis of variance, analysis of covari-

ance, etc., which have become some of the most commonly

used statistical tools in psychological research (see Azen

& Budesco, 2009; Chartier & Faulkner, 2008; Cousineau,

2005). In most applications of the GLM to psychological

data, the ordinary least squares (OLS) loss function is used

to estimate the model coefficients. The OLS coefficients are

equivalent to theMaximumLikelihood Estimates (MLEs) of

the coefficients under the assumption that the model error

terms are independent, identically distributed (iid) Gaus-

sian variables with mean zero.

Despite their widespread use, it is well-known that the

OLS coefficients can perform poorly under certain situa-

tions, e.g., highly correlated predictors and/or small signal

to noise ratios (SNRs). Furthermore, it is well-known that

MLEs have desirable large sample properties (e.g., consis-

tency and efficiency), but may not be ideal for analyzing

small to moderate sized samples of data. In any real psy-

chological study the sample size is finite, so the desirable

large sample properties of the MLEs may not be attained.

The Quantitative Methods for Psychology 12

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.1.p001
mailto:helwig@umn.edu
http://www.orcid.org
http://www.orcid.org/0000-0003-2907-1497
http://dx.doi.org
http://dx.doi.org/10.20982/tqmp.13.1.p001
http://www.orcid.org/0000-0001-5908-0402
http://www.orcid.org/0000-0001-5908-0402


¦ 2017 Vol. 13 no. 1

An undesirable consequence of relying on ML estimation

in small to moderate sized samples is overfitting, which

refers to the phenomenon of finding spurious effects. In

the case of unbiased estimators such as the OLS coeffi-

cients, the over-fitting phenomenon can be attributed to

the high variability of the OLS coefficients in small to mod-

erate sized samples. This is particularly true when the SNR

in the data is small, which may be the case in many psy-

chological studies.

When the GLM is being applied to test clearly defined

hypotheses, it is useful to give some consideration to the

sample size that would be needed to find effects of certain

magnitudes (Cohen, 1992) and with reasonable accuracy

(Kelley &Maxwell, 2003). However, inmany cases the sam-

ple size is out of the control of the researcher, e.g., due to

budget constraints or study design, so it may not always

be possible to obtain enough subjects to confidently rely

on OLS regression. Furthermore, given the wealth of data

collected in some domains of psychology (e.g., education,

social, health, personality, etc.), it is becoming common

to have more potential predictor variables than subjects,

i.e., n < p. In such cases, the OLS regression coefficients
are not uniquely defined, so some alternative approach is

needed. One possibility is to fit the regression model to a

subset of the predictors, where the subset is selected via

some prior knowledge. Another possibility is to use a data-

driven approach such as penalized regression.

Penalized regression is a form of penalized likelihood

estimation where the goal is to find an estimator that pro-

vides an optimal balance between fitting the data and pro-

viding a parsimonious solution (see Hastie, Tibshirani, &

Friedman, 2009). These approaches introduce a “penalty”

to the OLS loss function, where the penalty is designed to

encouragemore interpretable and/or stable results. Unlike

the classic OLS estimator, penalized least squares (PLS) es-

timators are biased due to the imposed penalty. However,

by introducing a small bias, it may be possible to substan-

tially reduce the variability of the estimator, resulting in

a better behaved estimator than the corresponding unpe-

nalized estimator. Consequently, penalized estimation can

be informally understood as introducing bias to estimators

for the purpose of reducing their variance, with the goal of

providing solutions that are more interpretable and more

likely to validate in new samples of data.

In this paper, we discuss how penalized regression

methods can be a useful tool for improving the replicability

of psychological research. We note that other authors have

recently discussed the benefits of penalized estimation for

psychology (Jacobucci, Grimm, & McArdle, 2016; McNeish,

2015); however, our tutorial is unique in the sense that we

unify all of the penalized regression methods under the

elastic net umbrella—which is not discussed in the previ-

ous tutorials on this topic. We begin by reviewing the GLM

and OLS estimation, as well as some classic approaches to

predictor selection, i.e., stepwise regression and p-value

model selection. Next, we define three concepts of statisti-

cal estimators—bias, variance, and mean squared error—

that are crucial to understanding the logic of penalized

regression estimators. We then discuss three penalized

regression methods (ridge, lasso, elastic net), where each

concept is introduced as a simple modification to OLS loss

function. We compare the different penalties (or biases)

imposed by each method, and discuss the resulting fea-

tures each penalty encourages in the solution. To demon-

strate the methods, we use an example where the goal is

to predict a student’s math exam performance from a va-

riety of potential predictors. Using a step-by-step tutorial

with embedded R code (R Core Team, 2016), we demon-

strate how to both fit and evaluate the various regression

models. Our results reveal that the penalized regression

approaches can provide more accurate and more informa-

tive solutions than the classic OLS and stepwise regression

coefficients.

1 Regression Background
1.1 Ordinary Least Squares Regression

Given data collected from n subjects, the general linear
model (GLM) assumes that

yi = β0 + β1xi1 + · · ·+ βpxip + εi (1)

for i = 1, . . . , n where yi is the observed response vari-
able for the i-th subject, xij is the j-th observed predictor
for the i-th subject, (β0, β1, . . . , βp) are the unknown re-

gression coefficients, and εi
iid∼ N(0, σ2) are independent,

identically distributed (iid) Gaussian error terms. This im-

plies that (yi|xi)
ind∼ N(β0 +

∑p
j=1 βjxij , σ

2), i.e., condi-
tioned on the predictors xi = (xi1, . . . , xip)

′
, the yi are

independent, normally distributed variables with mean

β0 +
∑p
j=1 βjxij and homogenous variance σ

2
. The GLM

can be written more compactly in matrix form such as

y = 1nβ0 + Xβ + ε (2)

where y = (y1, . . . , yn)′ is the n × 1 response vector,
1n = {1}n×1 is an n × 1 vector of ones, X = {xij}n×p is
the n×p designmatrix,β = (β1, . . . , βp)

′
is the p×1 vector

of slope coefficients, and ε = (ε1, . . . , εn)′ ∼ N(0n, σ
2In)

is the n× 1 error vector. The previously mentioned model
assumptions imply that (y|X) ∼ N(1nβ0+Xβ, σ2In), i.e.,
conditioned on the design matrixX, the response vector y
follows a multivariate normal distribution with mean vec-

tor 1nβ0 + Xβ and covariance matrix σ2In, where In is
the n× n identity matrix.
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The unknown coefficients of the GLM (i.e., β0 and
β) are often obtained by minimizing the ordinary least
squares (OLS) function

OLS(β0,β) =

n∑
i=1

(
yi − β0 −

∑p
j=1 βjxij

)2
= ‖y − 1nβ0 −Xβ‖2

(3)

where ‖u‖2 =
∑n
i=1 u

2
i denotes the squared Euclidean

norm for any vector u = (u1, . . . , un)′. The coefficients
that minimize the OLS function in Equation (3) have the

form

β̂0 = ȳ −
∑p
j=1 β̂j x̄j

β̂ = (X′cXc)
−1X′cyc

(4)

where ȳ = 1
n

∑n
i=1 yi and x̄j = 1

n

∑n
i=1 xij are the sam-

ple means of Y and Xj (respectively), and Xc = CX
and yc = Cy are mean-centered versions of the design
matrix X and response vector y (respectively) with C =
In − n−11n1′n denoting a centering matrix.

1.2 Standardized Regression

The coefficient βj represents expected change in Y for one-
unit change in Xj holding other predictors constant. If

Xj and Xk are measured in comparable units, then the

magnitudes of βj and βk will be comparable. However,
Xj and Xk are measured in different units (e.g., age and

intelligence), the scales of βj and βk are not comparable
with one another, which confounds the interpretation of

the model results. To resolve this, the standardized regres-

sion model transforms the response and predictor vari-

ables into Z-scores (i.e., mean zero and variance one) be-
fore fitting the model. More specifically, the standardized

regression model has the form

y∗i =

p∑
j=1

β∗j x
∗
ij + ε∗i (5)

where y∗i = (yi − ȳ)/sy is the standardized response vari-
able with s2y = 1

n

∑n
i=1(yi − ȳ)2 denoting the sample vari-

ance of Y , and x∗ij = (xij − x̄j)/sj is the j-th standardized
predictor with sj = 1

n

∑n
i=1(xij − x̄j)2 denoting the sam-

ple variance ofXj . In this case, β
∗
j represents the expected

change in Y standard deviations (SDs) for one SD change
inXj holding other predictors constant.

Letting C = In − n−11n1
′
n denote a centering ma-

trix and S = diag(s1, . . . , sp) denote a diagonal scaling
matrix, the standardized design matrix can be written as

Xcs = CXS−1. Similarly, ycs = Cys−1y is standardized

version of Y . The OLS solution for β∗ has the form

β̂∗ = (X′csXcs)
−1X′csycs

= (S−1X′cXcS
−1)−1S−1X′cycs

−1
y

= s−1y S(X′cXc)
−1X′cyc = s−1y Sβ̂

(6)

where β̂ is the least squares estimate without standard-
izing. Consequently, the standardized regression coeffi-

cients are related to the original (i.e., unstandardized) co-

efficients via a simple rescaling: β̂∗j = β̂jsj/sy for all
j = 1, . . . , p. Finally, note that the least squares estimate of
the intercept is zero in the standardized regression model,

given that ȳ = x̄j = 0 for all j = 1, . . . , p, so the intercept
term can be omitted.

1.3 Variable Selection

1.3.1 Stepwise regression
Given a collection of potential predictor variables

X1, . . . , Xp, stepwise regression uses an automated se-
lection algorithm to determine which predictors should

be included in the model. The three common variations

of stepwise regression include: (i) forward selection only,

(ii) backward elimination only, and (iii) both forward se-

lection and backward elimination. All three methods itera-

tively add/remove predictors to/from the model according

to some user-determined criterion. However, due to the

stepwise nature of these algorithms, stepwise regression

does not necessarily evaluate the chosen criterion for all

2p possible models. As a result, there is no guarantee that
stepwise regression will produce the model (among the 2p

candidate models) that optimizes the chosen criterion.

In this paper, we implement stepwise regression by

minimizing either Akaike’s (1974) An Information Crite-

rion (AIC) or Schwarz’s (1978) Bayesian Information Crite-

rion (BIC):

AIC(β0,β) = n ln(σ̃2) + 2ν

BIC(β0,β) = n ln(σ̃2) + log(n)ν
(7)

where σ̃2 = ε′ε/n =
∑n
i=1 ε

2
i /n is the MLE of the er-

ror variance σ2
, and ν is the number of parameters in

the model. Adding more predictors will reduce the esti-

mated model error variance (as measured by σ̃2
), but will

increase the model complexity (as measured by ν). Thus,
at each iteration of the stepwise regression algorithm we

seek to minimize the AIC or BIC, i.e., find a balance be-

tween model fit and parsimony. We note that other cri-

teria could be used in the stepwise regression algorithm,

e.g., Mallows’s (1973) Cp or Allen’s (1974) PRESS statistic.
The AIC is optimal when the fit model is an approximation

to some unknown true model (Yang, 2005)—which is likely
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the case with all real data—so the AIC is often the default

choice in applications of stepwise regression.

1.3.2 One-step p-value selection
Instead of an iterative stepwise regression algorithm, a

more crude approach would be to use a single step where

predictors with p-values smaller than some predetermined

level (e.g, p < 0.05) are retained in themodel, and all other
predictors are removed from the model. We do not recom-

mend this p-valuemodel selection approach, given that the

(Type III) p-values with all of the predictors included in the

model may not be an accurate representation of the util-

ity of each predictor, particularly if predictors are corre-

lated with one another. Note that the (Type III) p-value for

the j-th predictor tests the significance of Xj after includ-

ing (i.e., conditioning on) the other p− 1 predictors, which
does not reveal whether Xj should be included in (or ex-

cluded from) the regression model. However, we suspect

that some authors may consider a variant of this p-value

model selection approach, sowe include thismethod in our

example.

1.4 Bias, Variance, and Mean-Squared Error

Let θ̂ = (β̂0, β̂1, . . . , β̂p)
′
and θ = (β0, β1, . . . , βp)

′
denote

the (p+1)×1 vectors containing the OLS estimated and un-
known true regression coefficients, respectively. Assuming

that the linear model in Equation (1) is the true model, the

statistical bias of the OLS estimators are given by
bias(θ̂) = E(θ̂)− θ (8)

where E(θ̂) denotes the expected value of OLS estimated
regression coefficients. In other words, bias is the expected

difference between the estimated regression coefficients

and the unknown true regression coefficients. An estima-

tor is said to be unbiased if the expected value of the esti-
mates is equal to the parameter being estimated (i.e., if bias

= 0). It is well known that the OLS coefficients are unbiased

estimates of the regression coefficients under the assump-

tions specified in Equation (1).

The mean-squared error of the OLS estimator is given
by

MSE(θ̂) = E(‖θ̂−θ‖2) = E([β̂0−β0]2)+

p∑
j=1

E([β̂j−βj ]2)

(9)

which is the total expected squared difference between

the estimated and true coefficients. Although not intuitive

from its definition, the MSE can be rewritten as

MSE(θ̂) = V(θ̂) + bias2(θ̂) (10)

where V(θ̂) =
∑p
j=0 V(β̂j) is the total variance of the re-

gression coefficient vector with V(β̂j) denoting the vari-

ance of the j-th coefficient, and bias2(θ̂) =
∑p
j=0[E(β̂j)−

βj ]
2
is the total squared bias of the regression coefficient

vector. Consequently, theMSE quantifies both the accuracy

of the estimator (via the bias) and the precision of the esti-

mator (via the variance). An ideal estimator is both accu-

rate (low bias) and precise (low variance). However, as we

explain in the next section, we cannot have the best of both

worlds: adding bias reduces variance (and vice versa), so

we want to find some estimator that provides an optimal

balance of variance and bias, i.e., an estimator that mini-

mizes the MSE.

The covariance matrix of θ̂ has the form σ2(X̃′X̃)−1

where X̃ = [1n,X]. This implies that V(θ̂) =
σ2tr((X̃′X̃)−1) where tr(A) =

∑m
k=1 akk is the matrix

trace function, which is the sumof the diagonal elements of

a squarematrix. The OLS estimator is unbiased, so theMSE

is equal to the variance, i.e., MSE(θ̂) = σ2tr((X̃′X̃)−1).
In the following section, we discuss three penalized regres-

sion estimators (ridge, lasso, and elastic net) that purposely

introduce a bias to the solution with the ultimate goal of

reducing the MSE—by reducing the variance—of the esti-

mator. As we will see, introducing a small bias can result

in an estimator with better expected performance with re-

spect to MSE, especially when working with small to mod-

erate sized samples. Thus, by reducing the variability of

estimators, penalized regression methods have the poten-

tial to produce more reproducible results.

2 Penalized Regression
2.1 Ridge Regression

When the predictorsX1, . . . , Xp are uncorrelated, the OLS

solution will be stable because X′cXc is diagonal if pre-

dictors are uncorrelated. When the predictors in Xc are

highly correlated, the OLS coefficients are unstable be-

cause X′cXc is nearly singular. Ridge regression (Hoerl

& Kennard, 1970) is a form of penalized regression that

shrinks and stabilizes the coefficient estimates. Ridge re-
gressionminimizes the PLS function
PLS2(β0,β) = OLS(β0,β) + λP2(β)

=

n∑
i=1

(
yi − β0 −

∑p
j=1 βjxij

)2
+ λ

∑p
j=1 β

2
j

= ‖y − 1nβ0 −Xβ‖2 + λβ′β

(11)

where P2(β) =
∑p
j=1 β

2
j and λ > 0 is a regularization pa-

rameter. Given λ, the coefficients that minimize the ridge
PLS function in Equation (11) have the form

β̂0(λ) = ȳ −
∑p
j=1 β̂j(λ)x̄j

β̂λ = (X′cXc + λIp)
−1X′cyc

(12)
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whereXc and yc are defined as they were in Equation (4).
Unless units of X1, . . . , Xp are comparable, the penalty

is typically applied to the standardized regression coeffi-

cients such that ‖β∗‖2 gets closer to zero.
The regularization parameter λ > 0 controls the trade-

off between fitting the data and shrinking the coefficients:

OLS(β0,β)measures fit and P2(β)measures size. As λ →
0 we have β̂λ → β̂, and as λ → ∞ we have β̂λ → 0p.
Consequently, as λ → 0 the bias decreases and the vari-
ance increases, and as λ → ∞ the bias increases and the

variance decreases. Our goal is to find a λ that provides
an optimal balance between fitting the data and shrinking

the coefficients, i.e., the λ that minimizes theMSE. Interest-
ingly, Hoerl and Kennard (1970) showed that there always
exists some λ > 0 such that the expected MSE of the ridge
estimator is less than that of the OLS estimator. Thus, we

can always improve the expected performance of the OLS

estimator by shrinking the coefficients towards zero.

To choose the regularization parameter, we could con-

sider minimizing the ordinary cross-validation (OCV) crite-
rion

OCV(λ) =
1

n

n∑
i=1

(
yi − β[i]

0(λ) − x′iβ
[i]
λ

)2
(13)

where (β
[i]
0(λ),β

[i]
λ ) minimizes PLS2(β0,β) holding out the

i-th observation’s data. Letting ŷλ = Hλy = {ŷi(λ)}n×1
denote the ridge fitted values, where ŷi(λ) = β̂0(λ) + x′iβ̂λ,
we can rewrite the OCV criterion using the results of the

full model fit to all n data points, such as

OCV(λ) =
1

n

n∑
i=1

(
yi − ŷi(λ)
1− hii(λ)

)2

(14)

where hii(λ) is the i-th diagonal of Hλ = 1
n1n1

′
n +

Xc(X
′
cXc + λIp)

−1X′c, which is the ridge equivalent of
the hat matrix, i.e., the matrix defining the linear combina-
tion that turns the response Y into the fitted values Ŷ , see
Hastie et al. (2009).

Using the OCV to select λ, the influence of each obser-
vation depends on the leverage score hii(λ), which could
be quite different. To adjust for this, we could consider a

weighted OCV criterion

WOCV(λ) =
1

n

n∑
i=1

wi

(
yi − ŷi(λ)
1− hii(λ)

)2

(15)

where wi > 0 is the weight assigned to the i-th obser-

vation. Setting wi =
(1−hii(λ))2

[n−1tr(I−Hλ)]2
replaces each hii(λ)

with its average value, resulting in the Generalized Cross-
Validation (GCV) (Golub, Heath, & Wahba, 1979) criterion
GCV(λ) =

1
n‖(I−Hλ)y‖2

[1− tr(Hλ)/n]2
=

1
n

∑n
i=1(yi − ŷi(λ))2

(1− νλ/n)2
(16)

where νλ = tr(Hλ) is the effective degrees of freedom of the
ridge estimator with regularization parameter λ. The GCV
criterion is often preferred over the OCV criterion for a few

reasons: (i) the GCV is simpler to compute than the OCV,

(ii) the logic of OCV, i.e., “leave-one-out”, does not make

much sense if there are replicate (or near replicate) pre-

dictor scores, i.e., if xh = xi (or xh ≈ xi) for some h 6= i,
which will likely be the case as the number of points n
grows, and (iii) the GCV tends to be “rather more reliable”

than the OCV (Ramsay & Silverman, 2005, pg. 97). Thus, the

GCV is our preferred method for selecting the ridge regu-

larization parameter.

2.2 Lasso Regression

Ridge regression shrinks and stabilizes coefficient esti-

mates, but (for λ < ∞) all regression coefficients remain
non-zero. Consequently, ridge regression is not useful for

selecting relevant predictors. In other words, ridge regres-

sion will not necessarily help you determine which pre-

dictors should or should not be included in a regression

model. In contrast, the least absolute shrinkage and se-
lection operator (lasso) (R. Tibshirani, 1996, 2011) can ac-
complish the coefficient shrinkage and variable selection

simultaneously. Lasso regression minimizes the PLS func-

tion

PLS1(β0,β) = OLS(β0,β) + λP1(β)

=

n∑
i=1

(
yi − β0 −

∑p
j=1 βjxij

)2
+ λ

∑p
j=1 |βj |

(17)

where P1(β) =
∑p
j=1 |βj | and λ > 0 is a regularization

parameter. As in the ridge case, unless units ofX1, . . . , Xp

are comparable, the penalty is typically applied to the stan-

dardized regression coefficients. Unlike the OLS and ridge

PLS problems, there is no closed-form solution (i.e., sim-

ple formula) for the optimal lasso regression coefficients.

Obtaining the lasso estimate β̂λ is a convex optimization
problem, which requires an iterative algorithm (see Efron,

Hastie, Johnstone, & Tibshirani, 2004; Friedman, Hastie, &

Tibshirani, 2010).

Similar to the ridge situation, in lasso regression we

still have (i) β̂λ → β̂ as λ→ 0, and (ii) β̂λ → 0p as λ→∞.
However, unlike ridge regression, as the lasso regulariza-

tion parameter increases, some regression coefficients re-

main non-zero and some will go to zero. See Friedman

et al. (2010) for an eloquent explanation of how the lasso

penalty forces coefficients to zero via a soft-thresholding
operator. This key feature of the lasso estimator enables

the approach to determine which predictors are most im-

portant for explaining the variation in the response vari-

able, which often results in sparser and more easily inter-

pretable regression solutions.

The Quantitative Methods for Psychology 52

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.1.p001


¦ 2017 Vol. 13 no. 1

To choose λ, we could consider using the GCV crite-
rion. However, defining the effective degrees of freedom is

not as straightforward because the lasso fitted values can-

not be written as a simple linear transformation of the re-

sponse vector. To overcome the issue of needing to define

the effective degrees of freedom of the lasso estimator, it

is typical to use a K-fold CV procedure to select λ, which
begins by randomly splitting the data intoK > 1 different
groups (or folds). Let (yk,Xk) denote k-th fold’s data, and
let (y[k],X[k]) denote the full data set holding out the k-th
fold’s data. The K-fold CV procedure for lasso regression
is carried out as follows:

1. Separately for each fold k = 1, . . . ,K

• fit model using (y[k],X[k]) to estimate (β̂
[k]
0(λ), β̂

[k]
λ )

• define CV-MSE loss for k-th fold as Ek(λ) = ‖yk −
β̂
[k]
0(λ)1nk −Xkβ̂

[k]
λ ‖2

2. Choose λ that minimizes CV-MSE(λ) = 1
K

∑K
k=1Ek(λ)

Typical choices for the number of folds include K = 2,
K = 5, orK = 10.

2.3 Elastic Net Regression

The lasso performs well in many situations, but it is not

without its limitations. In particular, it is well-known that

(i) when n < p the lasso can only retain n non-zero coeffi-
cients, (ii) when n > p and the predictors are highly corre-
lated, ridge regression tends to outperform the lasso, and

(iii) when two predictors are highly correlated, lasso tends

to select one predictor and ignore the other (correlated)

predictor. The elastic net (Zou & Hastie, 2005) combines
the lasso (L1) and ridge (L2) penalties to address these is-

sues. The elastic net minimizes the PLS function

PLSα(β0,β) = OLS(β0,β) + λPα(β) (18)

where Pα(β) =
∑p
j=1{

1
2 (1 − α)β2

j + α|βj |}, λ > 0, and
0 ≤ α ≤ 1 controls the influence of the L1 and L2 penal-

ties. Like in ridge and lasso, the penalty is typically applied

to the standardized regression coefficients unless units of

X1, . . . , Xp are comparable.

In elastic net regression, setting α = 0 results in the
ridge regression solution, and setting α = 1 results in the
lasso solution. Setting 0 < α < 1 uses a hybrid penalty that
is a combination of the ridge and lasso. Furthermore, note

that setting λ = 0 produces the OLS solution, so the elastic
net provides a flexible umbrella framework throughwhich

the previously discussed methods can be viewed. For the

elastic net, there are two parameters to tune viaK-fold CV:
λ and α. In this case, it is typical to select a grid of reason-
able α values to try, e.g., α ∈ {0, 0.1, 0.2, . . . , 0.9, 1}, and
then useK-fold CV to select an optimal λ for each α. Note
that it is necessary to ensure that the random fold assign-

ments are preserved across the different model fittings to

ensure that the differences in the CV scores are not due to

sampling differences. The pair of regularization parame-

ters (λ̂, α̂) that minimize the CV score are then used for
prediction purposes.

2.4 Summary

We summarize some of the important characteristics of the

discussed penalized regression estimators in Table 1. All

three methods (i.e., ridge, lasso, elastic net) modify the OLS

loss function by incorporating a penalty term related to the

size of the regression coefficients. All three discussed pe-

nalized regression methods make it possible to build pre-

diction models from data when there are more predictors

than subjects (i.e., n < p), which is not possible using OLS.
By including different penalty terms, it is possible to en-

courage different types of solutions. Ridge encourages a

stabilized solution where the (squared) magnitudes of the

coefficients are reduced but still greater than zero. In con-

trast, lasso and the elastic net can encourage sparse solu-

tions where certain coefficients are entirely removed from

the model, which allows for the selection of important pre-

dictors. The elastic net offers some advantages over the

lasso in certain situations, but these advantages come with

the cost of needing to tune the model with respect to two

regularization parameters (λ and α). Furthermore, both
the lasso and the elastic net do not directly provide any in-

ference information, e.g., for forming confidence intervals

around the estimated coefficients. We note that there has

been some interesting recent developments with regards

to lasso inference (Lockhart, Taylor, Tibshirani, & Tibshi-

rani, 2014; Taylor & Tibshirani, 2015); however, when p-

values and/or confidence intervals are needed, the boot-

strap is often employed (see Efron & Tibshirani, 1993; R.

Tibshirani, 2011).

3 Example Predicting Educational Performance
The supplementary onlinematerial contains an R script file

(R Core Team, 2016) with all of the analysis code used in

this example. The data are freely available online.

3.1 Overview of Data

To demonstrate the different penalized regression meth-

ods, we use student performance data that were collected

by Paulo Cortez at the University of Minho in Portugal

(Cortez & Silva, 2008). The data are available from the Uni-

versity of California-Irvine’s Machine Learning repository

(Lichman, 2013). In this example, we use the math perfor-

mance data (student-mat.csv), which contains math exam

scores and various predictor variables from n = 395 Por-
tuguese students. See Table 2 for the list of 30 predictors,

which contain factors relating to the student’s behavior,

the student’s school, the student’s family, etc. Unlike Cortez
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Table 1 Typical characteristics of different regression estimators.

OLS Ridge Lasso Elastic Net

Penalty none λ
∑p
j=1 β

2
j λ

∑p
j=1 |βj | λ

∑p
j=1{

1
2 (1− α)β2

j + α|βj |}
Reg. Par. none λ > 0 λ > 0 λ > 0 and 0 ≤ α ≤ 1
CV Method none any K-fold K-fold
n < p Case N/A applicable selects≤ n applicable

Collinearity unstable stable selects one selects both

Strength MLE MSE selection ridge-lasso hybrid

Weakness overfitting no selection no inference no inference

Note. Reg. Par. = Regularization Parameter and CV = Cross-Validation. CV procedure “any” refers to any of OCV, GCV
orK-fold.

et al., we choose to predict the student’s scores on the first

exam (instead of the final grade) because we hope to iden-

tify factors that cause students to fall behind early in the

semester. By discovering factors that relate to poor math

performance on the first exam, it may be possible to create

student-specific interventions (e.g., tutoring or more study

time) with hopes of improving the final grade.

3.2 Data Preprocessing

As a preliminary step, we need to load the data file into R

(R Core Team, 2016), which can be accomplished using the

commands:

datapath = "~/Desktop/psych-penreg/
student-mat.csv"

student = read.table(datapath, sep=";",
header=TRUE)

The first line of code defines the location of the data file (in

this case a folder on the Desktop named “psych-penreg”),

and the second line of code reads the data into the R envi-

ronment via the read.table function. The option sep=";"
declares the field separator used in the data file (in this

case a semi-colon), and the header=TRUE option specifies
that the first row of the data file contains variable (header)

names.

Next, we load the two R packages that we will use:

MASS (Venables & Ripley, 2002) for ridge regression and
glmnet (Friedman et al., 2010) for lasso and elastic net re-
gression:

library(MASS)
library(glmnet)

Note that it is necessary to install the packages before you

can load the packages via the library function. This can be

accomplished with the install.packages function or manu-
ally within the R graphical user interface.

As a next step, we define the response variable and the

predictor variables:

y = student$G1
n = length(y)
X = model.matrix(~., data=student

[,1:30])
X = X[,-1]

The first line of code creates the response vector, which are

the students’ scores on the first math exam (i.e., G1). The
second line of code defines the sample size, i.e., n = 395
students. The third line of code calls R’s model.matrix
function to create a design matrix for our regression

model. The first input of the model.matrix function is a
formula specifying the model predictors, which come to

the right of the tilde. In this case, we are using R’s short-

hand notation for “include all predictors” in the input data

frame, andwe are inputting the first 30 columns of the data

frame. The fourth line of code removes the intercept col-

umn from the design matrix to avoid redundancy (R’s re-

gression functions will include the intercept automatically,

so X should only contain predictors). We can now check
the dimensions, i.e., number of rows and columns, of the

model matrix

> dim(X)
[1] 395 39

Note that the model matrix has n = 395 rows and p = 39
columns. The reason that we have more columns in X
(than the 30 columns that we input via student[,1:30]) is
because there are four categorical predictors with multi-

ple levels (see Table 1), which the model.matrix function
automatically converts into dummy coded variables.

3.3 OLS Model Fitting

We begin by fitting the OLS regression model via R’s lm
function:

olsmod = lm(y ~ ., data=data.frame(X))
olsmod.sum = summary(olsmod)
olscoef = coef(olsmod)
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Table 2 Predictor variables for math performance example.

Variable Type Range/Levels

Student’s School (school) binary 1=MS, 0=GP

Student’s Sex (sex) binary 1=male, 0=female

Student’s Age (age) integer 15, 16, . . . , 22

Student’s Address (address) binary 1=Urban, 0=Rural

Family Size (famsize) binary 1=≤ 3members, 0=> 3members
Parent Status (Pstatus) binary 1=living together, 0=living apart

Mother’s Education (Medu) integer 1=none, . . ., 5=higher
Father’s Education (Fedu) integer 1=none, . . ., 5=higher

Mother’s Job (Mjob) categorical home, teacher, health, services, other

Father’s Job (Fjob) categorical home, teacher, health, services, other

Reason at School (reason) categorical close, reputation, courses, or other

Student’s Guardian (guardian) categorical mother, father, other

Travel Time to School (traveltime) integer 1=<15 min, . . ., 4=>60 min
Study Time per Week (studytime) integer 1=<2 hrs, . . ., 4=>10 hrs

Number of Failures (failures) integer 0, 1, 2, 3

Extra School Support (schoolsup) binary 1=yes, 0=no

Extra Family Support (famsup) binary 1=yes, 0=no

Extra Paid Classes (paid) binary 1=yes, 0=no

Extra-Curricular Activities (activities) binary 1=yes, 0=no

Attended Nursery School (nursery) binary 1=yes, 0=no

Higher Education Interest (higher) binary 1=yes, 0=no

Internet Access at Home (internet) binary 1=yes, 0=no

In Romantic Relationship (romantic) binary 1=yes, 0=no

Quality of Family (famrel) integer 1=very bad, . . ., 5=excellent
Free Time after School (freetime) integer 1=very low, . . . , 5=very high

Goes Out with Friends (goout) integer 1=very low, . . . , 5=very high

Weekday Alcohol Consumption (Dalc) integer 1=very low, . . . , 5=very high

Weekend Alcohol Consumption (Walc) integer 1=very low, . . . , 5=very high

Health Status (health) integer 1=very bad, . . . , 5=very good

Number of Absences (absences) integer 0, 1, . . . , 75

Note. MS = Mousinho da Silveira and GP = Gabriel Pereira.

The first line of code fits the model, the second line of code

creates an object summarizing the fit model, and the third

line of code extracts the model coefficients. In the first line,

we are (again) using R’s shorthand notation to specify that

we want to include all variables in the data frame as pre-

dictors in the model. To find the predictors that are signif-

icant at the p < 0.05 level, we can use the R code:

ix = which(olsmod.sum$coefficients[-1,4]
< 0.05)

pvalmod.05 = lm(y ~ ., data=data.frame(X
[,ix]))

where the first line of code determines which predictors

are significant at the p < 0.05 level, and the second line
of code refits the model with the selected predictors. To

extract the coefficients we could use a similar procedure

as was used to obtain the OLS coefficients, i.e., we could in-

put the pvalmod.05 object into the coef function. However,
this would return a vector of length seven because only six

predictors (and an intercept) are included in the reduced

model. For ease of comparison with the other methods,

we instead create a sparse vector (of class dgCMatrix) the
same length as olscoef and then place the selected coeffi-
cients in the appropriate locations of the initialized vector:

pvalcoef.05 = as(matrix(0, length(
olscoef), 1), "dgCMatrix")

ix = match(names(coef(pvalmod.05)),
names(olscoef))

pvalcoef.05[ix] = coef(pvalmod.05)
rownames(pvalcoef.05) = names(olscoef)

Note that the first line of code initializes the coefficient

vector, the second line of code determines which coeffi-

cients from the OLS regression model were selected at the
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p < 0.05 level, the third line of code places the selected
coefficients (from the refit model) in the corresponding lo-

cations of the pvalcoef.05 vector, and the last line of code
assigns names (labels) to the coefficients. We repeated this

procedure using p < 0.15 to select the predictors, which
just involves a simple modification to the previous code:

ix = which(olsmod.sum$coefficients[-1,4]
< 0.15)

pvalmod.15 = lm(y ~ ., data=data.frame(X
[,ix]))

The coefficient vector for the p < 0.15 model can be cre-
ated via a simple modification of the code used for the

p < 0.05model, so we omit the code here. See the R script
file in the supplementary materials for this omitted R code.

3.4 Stepwise Model Fitting

To fit the stepwise regression model, we can use the step
function in R:

stepmod.aic = step(olsmod)

Note that the step function is a “minimal implementation”
of the stepAIC function in theMASS package (Venables &
Ripley, 2002). By default, the step function performs AIC
selection using both forward selection and backward elim-

ination. To extract the coefficients, we use a similar proce-

dure as was used for the pvalmod.05 model (see the sup-
plementary R code). To perform stepwise regression using

the BIC (instead of the default AIC), we can use the R code

stepmod.bic = step(olsmod, k = log(n))

where the k input controls the weight assigned to the
model degrees of freedom in the calculation of the infor-

mation criterion (default is k=2). The coefficient vector
for the BIC model can be created via a simple modification

of the previously discussed code (see the supplementary R

code).

3.5 Ridge Model Fitting

To fit the ridge regression model, we can use the lm.ridge
function in R’sMASS package (Venables & Ripley, 2002):

lamseq = seq(0,300,length=1000)
ridgemod = lm.ridge(y ~ ., data=data.

frame(X), lambda=lamseq)

The first line of code defines the sequence of λ values
at which the GCV score will be evaluated. The second line

of code calls the lm.ridge function to fit the model for each
λ in the sequence. When tuning λ it is important to check
to see if you have searched a large enough range of val-

ues. This can be accomplished by plotting the sequence of

λ values against their corresponding GCV values:

plot(ridgemod$lambda, ridgemod$GCV, xlab
="Lambda", ylab="GCV")

lines(rep(lamseq[which.min(ridgemod$GCV)
],2), range(ridgemod$GCV), lty=3)

which should produce the plot in Figure 1. Note that we

see a clearminimum in the GCV values, which occurs when

λ̂ = 126.43. If we were to have set the maximum λ in our
sequence too small (e.g., λ = 50), the GCVminimumwould
occur on the boundary point, implying that the search se-

quence needs to be expanded.

To extract the ridge coefficients, we can use the R code:

gcvmin = which.min(ridgemod$GCV)
ridgecoef.min = coef(ridgemod)[gcvmin,]

The first line of code determines which of the λ valuesmin-
imized the GCV criterion. The second line of code extracts

the ridge coefficients. Note that calling the coef function
will return a matrix containing the coefficients for all of

the models (one for each λ), so it is necessary to index the
optimal coefficient vector using gcvmin.

3.6 Lasso Model Fitting

The first step in lasso is to split the data into folds for the

K-fold CV:

set.seed(1)
foldid = sample(rep(1:10, length.out=n))

The first line of code sets the random seed in R so that the

random sampling result can be reproduced; the number

input to the set.seed function is not important, but each dif-
ferent value will produce a different random sample. The

second line randomly splits the data into K = 10 folds by
creating a vector of integers 1, . . . , 10 the length of the re-
sponse variable, and then randomly sampling the fold as-

signment for each student. Given the fold assignments, the

lasso regression model can be fit using the cv.glmnet func-
tion in the glmnet R package (Friedman et al., 2010) using
the following code:

cvlasso = cv.glmnet(X, y, foldid=foldid,
alpha=1)

The first input to the cv.glmnet function is the model de-
sign matrix, and the second input is the response vector.

The foldid input controls the fold assignments used for the
K-fold CV procedure, and the alpha input controls the α
used in the elastic net penalty (α = 1 corresponds to lasso).
To visualize the performance of the lasso estimator for dif-

ferent values of λ, we can create a plot similar to that cre-
ated for ridge regression (see Figure 1). In this case, we

plot the natural logarithm of the regularization parameter,

i.e., log(λ), versus the CV-MSE estimate obtained from the
K-fold CV procedure, see Figure 2:
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Figure 1 Plot of λ versus GCV(λ) for ridge regression. The dotted line denotes the value of λ that minimizes the GCV
criterion.

plot(cvlasso)

As is evident from Figure 2, there is a clear minimum at

λ̂ = 0.095 (log(λ̂) = −2.350). However, the plot also

displays another line at λ̂∗ = 0.242 (log(λ̂∗) = −1.420),
which is the largest value of λ that is within one stan-
dard error of theminimumCV-MSE. Theoretically, themin-

imum λ̂ should be preferred, but λ̂∗ will encourage sparser
solutions. To obtain the two possible sets of coefficients

(corresponding to λ̂ and λ̂∗), we can use the R code:

lassocoef.min = coef(cvlasso, s="lambda.
min")

lassocoef.1se = coef(cvlasso, s="lambda
.1se")

3.7 Elastic Net Model Fitting

Similar to the lasso model fitting procedure, the first step

in elastic net is to split the data into folds for theK-fold CV.
This can be accomplished using the same code as before,

and using the same random seed will ensure that the fold

assignments are comparable for the lasso and elastic net

solutions. The next step is to define a sequence of α values,
which can be accomplished using the R code:

alphaseq = seq(0, 1, length=21)

In this case, we have created a vector of 21α values: 0, 0.05,
0.1, . . ., 0.95, 1. Next we need to fit the model by calling the
cv.glmnet function separately for each value in alphaseq.
This can be accomplished using a simple for loop in R:

cvlist = vector("list", length(alphaseq)

)
for(k in 1:length(alphaseq)){
cvlist[[k]] = cv.glmnet(X, y, foldid=
foldid, alpha=alphaseq[k])

}

The fist line of code initializes a list named cvlist of length
21, which will hold the model fitting results for each of the

21 values in alphaseq. The remaining lines of code loop
through the 21 values in alphaseq fitting the model via the
cv.glmnet function.
To determine which combination of (λ, α) minimized

the CV-MSE criterion, we need to collect and compare the

CV-MSE results such as:

mincv = sapply(cvlist, function(x) min(x
$cvm))

minid = which.min(mincv)

This first line of code collects the minimum (across λ) CV-
MSE estimate from each of the 21 models, and the second

line of code finds the minimum (across α). To visualize the
elastic net fitting results, we can plot two different CV ob-

jects, see Figure 3:

plot(alphaseq, mincv, xlab="Alpha", ylab
="Mean-Squared Error", type="b")

plot(cvlist[[minid]])

The first line plots the minimum CV-MSE for each α,
and the second line plots the CV-MSE results for different

λ values with α̂ = 0.05 set at the optimal value. We can
extract the elastic net coefficients for the optimal α value
using the R code:
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Figure 2 Plot of log(λ) versus CV-MSE(λ) for lasso regression. The left dotted line denotes the value of λ that minimizes
the CV-MSE, and the right dotted line denotes the largest value of λ that is within one standard error of the minimum
CV-MSE.

enetcoef.min = coef(cvlist[[minid]], s="
lambda.min")

enetcoef.1se = coef(cvlist[[minid]], s="
lambda.1se")

3.8 Summarizing the Results

The estimated coefficients from each model are given in

Tables 3 and 4. Comparing the OLS and ridge models, the

shrinkage is evident for several coefficients. For example,

in the OLS model the male students are expected to have

0.9 more points on the math exam than female students,

whereas the expected sex effect is only 0.6 points in the

ridge model. However, note that the OLS and ridge mod-

els both retain all coefficients in the model, i.e., all coeffi-

cients have non-zero estimates. In contrast, the other ap-

proaches produce sparser solutions than the OLS and ridge

models by setting some of the coefficients to zero. The p-

value selection methods produced the sparest models, and

the stepwise regression methods produced models slightly

larger than the p-value methods. As expected, (i) smaller

p-values encouraged sparser models (for the p-value selec-

tionmethod), and (ii) the BIC selected a sparser model than

the AIC.

The lasso and elastic net selected larger models than

the p-value and stepwise regression approaches. As ex-

pected, the lasso and elastic net models using λ̂∗ (1 SE
above minimum CV-MSE) produce sparser solutions than

the models using λ̂ (minimum CV-MSE). The selection re-

sults for the lasso and elastic net solutions are mostly sim-

ilar, with the elastic net selecting the same predictors as

the lasso plus some additional predictors. Some of the fac-

tors that relate to better expected math performance in-

clude: being male, having a father who is a teacher, hav-

ing a mother who works in healthcare, studying more each

week, and having an interest in higher education. Some

of the factors that relate to poorer expected math perfor-

mance include: having more past course failures, needing

extra educational support (at school or home), and going

out more with friends.

3.9 Evaluating the Methods

In this section, we conduct an auxiliary simulation study

to further demonstrate the power of penalized regression.

We want to emphasize that a typical application of pe-

nalized regression would include everything that we have

demonstrated up to this point, but would not include the
sort of simulation analysis that we conduct here. We con-

duct this auxiliary simulation study just to emphasize that

penalized regression methods can be more useful than un-

penalized (OLS and stepwise) estimation when working

with psychological data.

With real data, the ground truth is unknown so it is typ-

ical to evaluate the performance of regression models by

splitting the data into a training dataset (which is used to

build the model) and the testing dataset (which is used to

evaluate the model). This can be accomplished in R using

the following code:
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Figure 3 Results for elastic net regression. Top: minimum CV-MSE for each α. Bottom: log(λ) versus CV-MSE(λ) with
α̂ = 0.05 set at the optimal value.

set.seed(55455)
testID = sample.int(n, 95L)
ytest = y[testID]
Xtest = X[testID,]
ytrain = y[-testID]
Xtrain = X[-testID,]

The first line (again) calls the set.seed function to ensure
that the random sampling results are reproducible. The

second line of code randomly samples 95 students (out of

the 395) to be in the testing dataset. The third and fourth

lines of code define the testing dataset (ytest, Xtest) by in-
dexing the sampled rows of the full dataset. Finally, the

fifth and sixth lines of code define the training dataset

(ytrain, Xtrain) by indexing the non-sampled rows of the
full dataset.

We used the model fitting procedure described in

the previous subsections, but we replaced X and y with
Xtrain and ytrain. To evaluate the performance of each
method, we can calculate the mean-squared prediction er-

ror (MSPE). Letting (ytest,Xtest) denote the response and
design matrix for the ñ test data points (ñ = 95 for our
testing dataset), the MSPE is defined as

MSPE(θ̂,ytest,Xtest) = ñ−1‖ytest − ŷtest‖2

where ŷtest = 1β̂0 + Xtestβ̂ are the predictions for the
test data with (β̂0, β̂) denoting the coefficients estimated
from the training data. To obtain the MSPE for each of the

fit models, we can use R code along the lines of

yhat.ols = cbind(1,Xtest) %*% olscoef
mse.ols = mean( (ytest - yhat.ols)^2 )
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For the other methods, the code is nearly identical; we just

need to replace olscoef with the coefficients for a different
model (e.g., ridgecoef.min or lassocoef.min) in the above
code. We omit the code here to save space, but the R code

for forming the MSPE for each model is provided with the

supplementary material.

To examine the variability of the MSPE due to random

sampling (when forming the training and testing datasets),

we can simply repeat the entire procedure using multiple

different random samples. We did this for 100 different

random splits of the data into training and testing datasets.

Figure 4 displays a box plot of the MSPE across the 100

splits for each of the 10 different methods. The average

MSPE (across the 100 random splits) for each method is

given by

> meanmse
ols p0.05 p0.15 step.aic

9.412707 9.313102 9.291680 9.115387
step.bic ridge lasso.min lasso.1se
9.318641 8.863382 8.765813 9.369715
enet.min enet.1se
8.777928 9.314690

These average MSPE values and the boxplots in Fig-

ure 4 reveal that the lasso and elastic net using λ̂ (min-
imizer of CV-MSE) perform best across the 100 random

splits of the data. The ridge performs next best and pro-

ducesMSPEs that are only slightly larger than the lasso and

elastic net solutions. The stepwise regression algorithm

(with AIC selection) was the best unpenalized estimator,

but the MSPEs were noticeably larger than the correspond-

ing MSPEs of the (minimum) penalized regression meth-

ods. The p-value selection methods and the lasso and elas-

tic net using λ̂∗ (1 SE aboveminimizer of CV-MSE) only per-
formed slightly better than the OLS solution, which tended

to perform worse than all of the other methods.

For each of the 100 splits, we can determine which of

the 10 estimators had the smallest MSPE. The total number

of times (across the 100 splits) that each method was best

(i.e., smallest MSPE) is given below:

> prctbest
ols p0.05 p0.15 step.aic

1 5 9 11
step.bic ridge lasso.min lasso.1se

10 13 22 8
enet.min enet.1se

14 7

which reveals that the lasso with λ̂ performed the best
most frequently (22% of the time), followed by the elastic

net with λ̂ (14% of the time), the ridge (13% of the time),

and stepwise regression with AIC (11% of the time) or BIC

(10% of the time). The lasso and elastic net with λ̂∗ were
rarely the best method (8% and 7%, respectively), and the

p-value selection methods with p < 0.05 and p < 0.15
showed a similarly poor performance (5% and 9%, respec-

tively), Finally, note that the OLS solution was best only

1% of the time. This confirms that the penalized regres-

sion methods reliably outperform the classic OLS estima-

tor with respect to predicting math performance. For these

data, the lasso solution should be preferred, but the elastic

net and ridge also performed well.

We also want to emphasize one point regarding the re-

lation between the MSPE and the CV-MSE. Comparing Fig-

ures 2 and 3 with Figure 4, we note that the CV-MSE pro-

vides an excellent estimate of the MSPE—without the has-

sle of having to split the data and fit each model to 100 dif-

ferent training datasets. Thus, the CV-MSE is able to es-

timate the MSPE with (substantially) less computationally

work. This provides some insight into why we want to find

regularization parameters that minimize the CV-MSE cri-

terion: these parameters should also minimize the MSPE.

Finally, we want to highlight the dangers of using a single

sample split to evaluate the models. Using the training and

testing data corresponding to the original sample split, i.e.,

the split defined above with set.seed(55455), the obtained
MSPE values are

> msetab[1,]
ols p0.05 p0.15 step.aic

7.942079 8.266810 8.344716 7.960406
step.bic ridge lasso.min lasso.1se
8.533376 7.075778 7.106077 7.093757
enet.min enet.1se
7.072657 7.065903

which are overly optimistic, i.e., MSPE≈ 7 is an underesti-
mate of the typical MSPE (≈ 9), see Figure 4. Also, note that
the p-value and stepwise regression methods actually pro-

duce a larger MSPE than the OLS solution with this sample

split. This emphasizes that models selected via p-value or

stepwise methods are not guaranteed to cross-validate any

better than the original OLS model with all of the predic-

tors included.

4 Discussion
4.1 Take Home Points

In this tutorial, we discuss the potential of three popular

penalized regression methods (ridge, lasso, and elastic net)

for psychological research. The GLM is one of the pri-

mary statistical tools in psychology, and many researchers

rely on OLS estimation when estimating the parameters of
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Figure 4 Box plots of mean-squared prediction error across 100 random splits of the data.

GLMs. Our tutorial clearly demonstrates that penalized re-

gressionmethods can and should be considered as alterna-

tives to classic OLS estimation when fitting GLMs. Penal-

ized regression methods modify the classic OLS loss func-

tion by attaching a penalty term, which induces a certain

bias to the solution. By encouraging different types of bi-

ases to the estimation, we can obtain solutions that are of-

ten more stable, reliable, and/or interpretable. In all three

of the discussed penalized regression methods, the bias is

designed to encourage solutions of “no effect”, i.e., solu-

tionswhere the estimated regression coefficients are closer

Despite the negative conno-tations of the word “bias”,our tutorial has demon-strated that biased estima-tors can be a good thing.

in magnitude to zero. The three meth-

ods differ with respect to the type of

bias they impose, which determines the

characteristics of the estimator (see Ta-

ble 1).

Ridge regression is useful for

shrinking and stabilizing OLS solutions,

but will not help select which predictors

are important. In contrast, the lasso can accomplish both

the coefficient shrinkage and the variable selection simul-

taneously, making it a useful choice when one wants to

determine a parsimonious prediction model from a large

set of potential predictors. However, the lasso does have

some restrictions when fitting models where n < p or
models with highly correlated predictors. The elastic net

uses a penalty that is a hybrid of the ridge and lasso penal-

ties, which allows it to overcome some of the lasso’s limita-

tions. But, in any real data situation, it is not always clear

whether the lasso or elastic net should be preferred. Fur-

thermore, the elastic net has the additional regularization

parameter α, which increases the computational burden
of the problem. So the real question is whether or not the

tuning of the extra parameter is worth the effort in terms

of prediction gains.

Our real data example clearly reveals the potential of

penalized regression methods for predicting psychological

outcomes (math performance in this case). Using a step-by-

step tutorial with R code, we demonstrated how to (i) load

and prepare the data for analysis, (ii) fit the OLS, stepwise,

ridge, lasso, and elastic net models, (iii) extract and com-

pare the model fitting results, and (iv) evaluate the pre-

dictive performance of the methods. Our example demon-

strates that all three penalized regression methods reliably

outperform the classic OLS and stepwise regression coeffi-

cients with respect to minimizing the

MSPE. For these particular data, the

lasso performed the best; however, the

elastic net performed very similarly to

the lasso, and the performance of the

ridge was not much worse than that of

the lasso and elastic net. We want to

emphasize that the superior MSPE per-

formance of the lasso was achieved using fewer predictors

than the OLS, ridge, and elastic net models, which high-

lights the lasso’s ability to build parsimonious and power-

ful prediction models.

4.2 Some Extensions

4.2.1 Generalized Linear Models
In this paper, we focused on the classic GLM where the re-

sponse follows a normal distribution. However, the penal-

ized regression estimators discussed in this paper can be

easily extended to any Generalized Linear Model (GzLM;

McCullagh & Nelder, 1989) such as logistic or Poisson re-

gression (see Friedman et al., 2010). In this case, the same

penalty term is used for each method (see Table 1). How-
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ever, we no longer add the penalty term to the OLS loss

function. Note that GzLMs are typically fit by maximizing

the log-likelihood function corresponding to the assumed

response variable distribution. And note that maximiz-

ing the log-likelihood function is equivalent to minimizing

the negative of the log-likelihood function. For penalized

GzLMs, the penalty term is added to the negative of the log-

likelihood function, which is then minimized to estimate

the regression coefficients. This is referred to as penalized

likelihood estimation.

4.2.2 Smoothing Spline Models
The GLM discussed in this paper is a form of paramet-

ric regression, where the relationship between Y and

X1, . . . , Xp is assumed to take some predetermined form

that depends on the unknown parameters in θ. In contrast,
a smoothing spline model is a form of nonparametric re-

gression (see Craven &Wahba, 1979; Gu, 2013; Hastie et al.,

2009; Ramsay & Silverman, 2005; Ruppert, Wand, & Carroll,

2003; Silverman, 1985; Wahba, 1990; Wang, 2011; Wood,

2006). Unlike a parametric regression model, a nonpara-

metric regression model does not assume that the relation-

ship between Y andX1, . . . , Xp has some known form in-

volving a finite number of model parameters. Instead, the

goal in nonparametric regression is to estimate the form of

the relationship between Y andX1, . . . , Xp. Similar to the

PLS methods discussed in this paper, a smoothing spline

introduces a penalty term that encourages smoother esti-

mates of the function to avoid overfitting. The goal is to

find a balance between fitting the data (measured by OLS

fit) and smoothing the function (measured by the smooth-

ness penalty).

4.2.3 Bootstrap Resampling
As previously mentioned, one of the primary limitations

of the lasso and elastic net is the lack of inference infor-

mation obtained with the solution. That is, given the op-

timal lasso or elastic net model, we do not obtain any in-

formation (e.g., standard errors of coefficients) that can be

used to form confidence intervals around the regression

coefficients. Although there has been some recent devel-

opments for lasso inference (Lockhart et al., 2014; Taylor

& Tibshirani, 2015), the nonparametric bootstrap (Efron,

1979; Efron & Tibshirani, 1993) is still often used for infer-

ence in applications of penalized regression. The bootstrap

involves resampling (with replacement) the data to create

B different samples of data each of size n∗ ≤ n. Typically
B ≥ 10, 000 and n∗ = n unless the full sample size n is
very large. The regression model is then fit separately to

each of the B samples of data to obtain B different repli-
cates of the regression coefficient estimates. The distribu-

tion of the coefficient estimates across theB replicates can

be used to estimate the standard errors of and form confi-

dence intervals for regression coefficients (see Efron & Tib-

shirani, 1993).

4.2.4 Bootstrap Aggregating (Bagging)
When prediction is of primary concern, the bootstrap can

be used to combine prediction results from multiple mod-

els, which often results in better predictions (see Breiman,

1996). Bootstrap aggregating (or bagging) involves (i) re-

sampling the data with replacement to create B different
samples of data, and (ii) fitting the regression model sep-

arately to each of the B samples. Instead of using the

bootstrap distribution of the coefficients for inference pur-

poses, we could consider using the bootstrap distribution

for prediction purposes, i.e., “bagging” our predictions.

By aggregating (or averaging) the predictions from the B
models, we can often obtain a prediction result that ismore

reliable and accurate than the result that would have been

obtained via only fitting the model to the original dataset.

4.3 Concluding Remarks

Despite the negative connotations of the word “bias”, our

tutorial has demonstrated that biased estimators can be

a good thing. In particular, we have demonstrated that

biased regression estimators can outperform classic OLS

estimators with respect to predicting psychologically rel-

evant outcomes. Unlike OLS estimators (which are based

on large sample maximum likelihood theory) penalized re-

gression estimators use data-driven, cross-validation rou-

tines in attempt to create reliable prediction models. Fur-

thermore, using the lasso or elastic net, it is possible to

select which predictors are most important for regression

models, which can provide a more parsimonious interpre-

tation of the model. If the goal is to obtain valid—not just

significant—estimates of regression coefficients, then hap-

hazard applications of OLS regression should be avoided.

Instead, cross-validation oriented penalized regression es-

timators should be preferred, because such estimators en-

courage more parsimonious and reproducible research re-

sults.

Authors’ note
I thank Denis Cousineau for helpful comments on an early

draft of this paper.
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Table 3 Estimated coefficients for unpenalized regression models.

OLS p < 0.05 p < 0.15 Step-AIC Step-BIC

(Intercept) 11.375 11.466 10.737 10.868 10.932

schoolMS 0.010 . . . .

sexM 0.894 0.809 0.849 0.846 0.770

age -0.070 . . . .

addressU 0.151 . . . .

famsizeLE3 0.429 . . . .

PstatusT 0.154 . . . .

Medu 0.118 . . . .

Fedu 0.144 . . . .

Mjobhealth 0.926 . . 1.782 1.852

Mjobother -0.782 . -0.986 . .

Mjobservices 0.467 . . 1.237 1.237

Mjobteacher -0.923 . . . .

Fjobhealth -0.553 . . . .

Fjobother -1.135 . -0.642 -1.036 .

Fjobservices -0.994 . . -0.910 .

Fjobteacher 1.187 . . 1.352 2.229

reasonhome 0.166 . . . .

reasonother -0.181 . . . .

reasonreputation 0.444 . . . .

guardianmother 0.050 . . . .

guardianother 0.866 . . . .

traveltime -0.025 . . . .

studytime 0.605 0.611 0.573 0.625 0.678

failures -1.314 -1.445 -1.326 -1.321 -1.425

schoolsupyes -2.155 -1.947 -1.947 -2.117 -2.016

famsupyes -0.979 -0.596 -0.770 -0.895 -0.843

paidyes -0.102 . . . .

activitiesyes -0.053 . . . .

nurseryyes 0.030 . . . .

higheryes 1.141 . 1.635 1.298 .

internetyes 0.255 . . . .

romanticyes -0.211 . . . .

famrel 0.026 . . . .

freetime 0.255 . 0.251 0.249 .

goout -0.414 -0.349 -0.404 -0.429 -0.373

Dalc -0.063 . . . .

Walc -0.025 . . . .

health -0.168 . -0.179 -0.231 .

absences 0.012 . . . .

Note. An entry of . indicates that a variable was not selected by a given method.
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Table 4 Estimated coefficients for penalized regression models.

Ridge Lasso (λ̂) Lasso (λ̂∗) E-Net (λ̂) E-Net (λ̂∗)
(Intercept) 10.398 10.268 10.945 10.133 10.370

schoolMS 0.007 . . . .

sexM 0.619 0.589 0.171 0.627 0.280

age -0.025 . . 0.000 .

addressU 0.129 0.066 . 0.115 0.028

famsizeLE3 0.356 0.214 . 0.318 0.129

PstatusT 0.037 . . . .

Medu 0.121 0.012 0.069 0.101 0.106

Fedu 0.139 0.120 0.025 0.132 0.101

Mjobhealth 0.758 0.994 0.259 0.780 0.393

Mjobother -0.551 -0.399 -0.401 -0.531 -0.325

Mjobservices 0.432 0.624 0.176 0.453 0.215

Mjobteacher -0.396 . . -0.332 .

Fjobhealth -0.032 . . . .

Fjobother -0.434 -0.159 -0.041 -0.378 -0.140

Fjobservices -0.310 . . -0.228 .

Fjobteacher 1.222 1.502 0.953 1.284 0.731

reasonhome 0.079 . . 0.031 .

reasonother -0.087 . . -0.047 .

reasonreputation 0.351 0.266 0.030 0.326 0.161

guardianmother -0.075 . . -0.030 .

guardianother 0.379 0.284 . 0.337 .

traveltime -0.072 . . -0.047 -0.027

studytime 0.420 0.453 0.228 0.430 0.226

failures -0.973 -1.217 -1.113 -1.049 -0.687

schoolsupyes -1.620 -1.770 -1.378 -1.664 -1.004

famsupyes -0.701 -0.680 -0.273 -0.705 -0.320

paidyes -0.058 . . -0.009 .

activitiesyes 0.013 . . . .

nurseryyes 0.062 . . . .

higheryes 1.060 0.879 0.385 1.038 0.696

internetyes 0.206 0.015 . 0.160 0.018

romanticyes -0.145 . . -0.087 .

famrel 0.022 . . . .

freetime 0.156 0.111 . 0.147 0.010

goout -0.294 -0.291 -0.149 -0.298 -0.154

Dalc -0.060 . . -0.038 -0.010

Walc -0.076 -0.053 . -0.073 -0.059

health -0.123 -0.101 . -0.115 -0.039

absences 0.004 . . 0.001 .

Note. An entry of . indicates that a variable was not selected by a given method.
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