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between the success on a question and the number of questions correctly answered. This tutorial

explains what the rpb is and how to use it through the interpretation of effect sizes and significance
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Introduction
When evaluating a large group of students, both the teach-

ers and the students like to keep the number of questions

to a minimum. Teachers wishing to shorten their examina-

tions should select questions that are reasonably difficult

and that are able to discriminate students who understand

from those who do not. Very hard questionsmight discrim-

inate the top students from the rest, but will not provide in-

formation on what the average or weaker students under-

stand. It will also result in a majority of low scores, with

very few average and high scores. The inverse is not more

desirable; very easy questions will only discriminate the

weaker students from the rest and will produce a majority

of high scores with very few average or low scores. For-

tunately, there are methods to identify which questions of

an examination are reasonably difficult and are accurate

in their discrimination at all levels of understanding.

One of these methods consists in studying the Pear-

son correlation (r) between correctly answering a ques-
tion and the number of correctly answered questions (the

“score”) on the examination. If a question is relevant and

well formulated, correctly answering it will have a strong

positive correlation with the score; those who answer it

correctly should, on average, have a higher score than

those who did not.

However, r can only be calculated for two continuous
variables, which is not the case here because the success or

failure on a question is dichotomous. To study the correla-

tion between a dichotomous and a continuous variable, we

must turn to a special instance of the Pearson correlation,

called the point-biserial correlation, rpb (not to be confused
with the biserial correlation, which is usedwhen one of the

variables is artificially dichotomized). The rpb is mathe-
matically equivalent to r, but has a more intuitive formula
which provides insights on what constitutes a “good” ques-

tion.

In this tutorial, we define, compute and interpret rpb
in the context of improving an examination. We then dis-

cuss methods to interpret it as an effect size and to test its

significance. We follow with the introduction of the cor-

rected rpb, which is more appropriate for our context and
can be adequately tested for significance. We conclude on

a comparison of the two methods of significance testing
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presented in this paper with a näıve t-test on rpb.

Defining rpb as a special instance of r
The Pearson correlation, r, is a measure of the linear de-
pendence between two variables. It is one of themost com-

monly used statistical tools, especially in the social sciences

(see Meyer et al., 2001, for a review in psychology). It is de-

fined as

r =
cov (x, y)

s (x)× s (y)
, (1)

where cov (x, y) is the covariance between scores x and
scores y, and s (x) and s (y) are the standard deviations of
the scores in x and y. This definition expands to

r =
n
∑

(xiyi)−
∑
xi ×

∑
yi√

n
∑
x2i − (

∑
xi)

2 ×
√
n
∑
y2i − (

∑
yi)

2
, (2)

in which all the summations are over the n elements, xi
and yi, i = 1, 2, . . . , n, are two continuous variables be-
tween which the correlation is being computed, and n is
the number of (x, y) pairs.
If we wish to study the correlation between a continu-

ous and a dichotomous variable, we must instead use rpb.
Let us start by defining the continuous variable, x, as the
score of a student on the test, and the dichotomous vari-

able, y, as an indication of whether the student answered
the question incorrectly (scored 0) or correctly (scored 1).

Because we chose 0 and 1 as values of y, the average of
y is the proportion of students who answered the ques-
tion correctly, denoted p. Conversely, the proportion of stu-
dents who answered incorrectly, denoted q, is 1 − p. This
choice, along with a few algebraic manipulations, allows to

rewrite Equation 2 into

rpb =
√
pq × µ1 − µ0

σ
, (3)

where µ1 and µ0 are the average scores of the students

who answered the question correctly and incorrectly, and

σ is the population’s standard deviation of the scores (com-
puted by dividing the sum of squares by n, not by n−1). An
intuitive explanation for using the population’s standard

deviation instead of the sample’s is that we study all the

students who took the examination, not a sample. Those

interested in a proof that Equations 1, 2 and 3 are equiva-

lent can easily find one online.

The first part of Equation 3,
√
pq, shows why it is desir-

able to have reasonably difficult questions on an examina-

tion. Because p + q = 1, the maximal value of
√
pq = 0.5,

when p = q = 0.5. However, examinations composed
solely of questions with a success rate of 50%would have a

group average of 50%. In order to maintain both a reason-

able class average and a high value of rpb, we recommend

to select questions where 0.2 ≤ p ≤ 0.8. These values re-
sult in

√
pq ≥ 0.4, which isn’t too far from the maximal

value of 0.5; questions with p beyond these values can still
be used, but will likely have a small rpb (when p = 0 or
p = 1, the result of Equation 3 is 0). Also, one should pon-
der on the validity or pertinence of questions that are cor-

rectly answered or failed bymore than 80% of the students

before adding them to their examination. Still, these values

are only guidelines and very hard or easy questions could

be relevant in some contexts. To summarize, you can use

questions of any level of difficulty to craft an examination

with the desired group average, but only questions with

an acceptable value of
√
pq can potentially be identified as

strongly correlated with the score.

The second part of Equation 3,
µ1−µ0

σ , is the normalized

distance between the average scores of the students who

answered the question correctly and incorrectly. Whether

the rpb is positive or negative depends on this term; it will
be positive if the average of those who answered correctly

is greater, and negative if it is smaller. This term also

shows how themagnitude of the correlation increases with

the difference between the two averages.

It would have been hard to draw any conclusion on

what properties of a question lead to a higher correlation

by looking at Equations 1 and 2. Equation 3, however, is

much more transparent on that matter. We will now apply

it to real data.

Computing rpb on sample data
Attached to this manuscript is a file that contains the re-

sults of 165 students (n) on a 50 questions (k) examination
carried out by one of the authors. In this file, each line

corresponds to a student, and each column to a question.

The sum of a line is x, the student’s score on 50. Calculat-
ing the scores of all students allows us to find the popula-

tion’s standard deviation of the scores, which is constant

and will be used to compute the rpb of all 50 questions

(σ =

√∑
(x− µ)2/n ∼= 6.245). The average of a column

is the p for that question (and 1 − p = q). To compute µ1,

we average the scores of the students who answered that

question correctly (and similarly for µ0).

As an example: there are 57 students out of 165 who

answered Question 4 correctly, thus p ∼= .345, and the av-
erage score of those 57 students is µ1

∼= 31.702. Similarly,
we find q ∼= .655 and µ0

∼= 26.954. Applying Equation 3,
we obtain

rpb (Q4) ∼=
√
.345× .655× 31.702− 26.954

6.245
∼= .362.

Using software to compute rpb
We will now see how to use software to compute rpb. Be-
cause rpb ≡ r, we will simply use the correlation functions
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included in those software. In the additional content of this

manuscript, youwill find an Excel spreadsheet and an SPSS

file that use the methods described in this section.

Computing rpb with Excel Prior to computing the rpb, you
must find the score of each student. If you are using our

data and want the scores in column AY, the cell AY2 would

contain

=SUM(A2:AX2).

Once you have the scores of all students, correlate them

with their result on Question 4 in column D

=CORREL(D2:D166, AY2:AY166)

Computing rpb with SPSS. Again, the first step will be to
calculate the scores. Supposing you use our data and that

the question variables are named from Q1 to Q50, this will

be done by

COMPUTE Total = SUM(Q1 to Q50).

You can then compute the correlation between Question 4

and the scores with

CORRELATIONS VARIABLES = Q4 Total.

Interpreting rpb
The goal of computing the rpb of a question is to determine
if it should be kept in the examination, based on the mag-

nitude of its correlation and on whether this correlation is

positive or negative. A question with a large positive cor-

relation is a good predictor of the score, and is therefore

informative. A question with a large negative correlation,

on the other hand, indicates that those who answered it

correctly usually have a lower score. If every question had

a large negative correlation, then correctly answering all

the questions would result in a negative score (which is

impossible). Hence, questions with large negative corre-

lations should be investigated for errors in their formula-

tion or in the way they were corrected, and removed from

the examination. Also, note that correlation does not mean

causation; suppose that a student correctly answers only

one question, and that this question has a strong positive

correlation with the total score. Even if he did answer it

correctly, his score will still be very low.

Before we proceed with the interpretation of rpb, we of-
fer a word of warning on removing questions with a small,

non-significant correlation (positive or negative). The rpb
is not an intrinsic property of a question, but a contextual

one determined by the other questions in the examination.

This means that the rpb of a question will change when
you remove or add questions; altering the examination too

much might turn a strong positive correlation into a weak

one. In other words, questions with weak correlations set

the context for questions with strong correlations to exist

and should not be removed hastily. If you believe that a

question with a weak rpb should be removed from your ex-
amination, you should use more sophisticated methods to

confirm your intuition. The combined use of correspon-

dence analysis and procrustes analysis, for example, is a

method that describes how questions relate to each other

and can detect if this relationship changes through differ-

ent samples. A weakly correlated question that is incon-

sistent between samples could be eliminated safely. For

an in-depth coverage of multidimensional scaling, which

touches on procrustes and correspondence analyses, see

T. F. Cox and Cox (2000).

We will now look at different ways of interpreting a

correlation as an effect size and of determining if it is sig-

nificant.

Effect size of rpb
To determine the impact of one variable on another (the

“effect size”), we can look at the proportion of variance

shared between both variables, which happens to be the

definition of r (Equation 1). In other words, a large pos-
itive correlation means that the question is correctly an-

sweredmore frequently by students with a high score than

by those with a low score. Cohen’s (1988) general rule of

thumb is to consider r = ± .10 as small, r = ± .30 as
medium and r = ± .50 as large effect sizes, but these are
only guidelines; a correlation of .10 between undergoing a
brain surgery and permanent brain damage, for example,

could be considered very large.

We now present how to determine the precision of a

correlation by computing its confidence interval. We also

offer two other measures that provide different interpre-

tations of the value of a correlation.

Confidence interval. A confidence interval (CI) is a range
that includes a proportion of the values we might expect to

find if we repeated the same experiment many times. For

example, if we choose α = .05, we can find the bounds
of a 95% CI, which would contain the average of 95 out

of 100 repetitions of the same experiment. To determine

these bounds, we would normally take the critical values

from the Z score distribution for α/2 = .025, which are
±1.96 (or ±2.576 if we wanted a 99% CI), and multiply
them by the standard error (SE) of our data. However, be-

cause we are using values from the Z score distribution, we

must first make sure that our data loosely follows this dis-

tribution. Specifically, in the case of correlations, we must

adjust their variance to compensate for the fact that they

only exist within the interval [−1; 1], whereas the Z dis-
tribution goes from [−∞; +∞]. We do so by applying the
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Fisher r to z′ transformation:

z′ = arctanh (rpb)

=
ln (1 + rpb)− ln (1− rpb)

2

= ln

(√
1 + rpb
1− rpb

)
,

(4)

where ln (a) is the natural logarithm of a. Once the corre-
lations are in z′ scores, we determine the standard error of
z′ with:

SEz′ =
1√
n− 3

. (5)

Next, we apply the regular method to calculate confidence

intervals:

95% CIz′ = [z′ − 1.96× SEz′ ; z′ + 1.96× SEz′ ]

=
[
z

′

− ; z
′

+

]
.

(6)

However, we are interested in a confidence interval of cor-

relations, not of transformed scores. Hence, wemust trans-

form our z′ back into rpb with the inverse of Equation 4:

rpb = tanh (z′) =
e2z

′ − 1

e2z′ + 1
, (7)

where e is the base of the natural logarithm. Finally, we
apply Equation 7 to Equation 6 to obtain our confidence

interval:

95% CIrpb =
[
tanh

(
z

′

−

)
, tanh

(
z

′

+

)]
. (8)

Let us continue our previous example by finding the

95% CI of Question 4’s rpb:

z′ (Q4) = arctanh (.362) ∼= .378

SEz′ (Q4) =
1√

165− 3
∼= .079

95% CIz′ (Q4) ∼= [.378− 1.96× .079 ; .378 + 1.96× .079]
∼= [.225 ; .533]

95% CIrpb (Q4) ∼= [tanh (.225) ; tanh (.533)]
∼= [.221 ; .487]

In other words, we can expect that if that examination was

passed 100 times, there would be 95 times where the rpb of
Question 4 would be between .221 and .487, inclusively.Coefficient of determination. The coefficient of determi-
nation, r2, is the proportion of variance that is shared by
the variables being correlated. For example, Question 4

shares, or can account for, .3622 ∼= 13.07% of the variance
of the scores (and vice-versa). It is worth noting that some

oppose the use of squared correlations (D’Andrade & Dart,

1990; Ozer, 1985) or think that r should be preferred to r2

as an effect size measure (Cohen, 1988; Hunter & Schmidt,

1989; Kvalseth, 1985; Rosenthal, 1991).

Forecasting efficiency. Another way of understanding r
is in term of the forecasting efficiency (FE; Vorhees, 1926),

which indicates to what degree relying on x to predict y is
better than a blind guess. It is computed using the follow-

ing equation:

FE = 1−
√
1− r2. (9)

Looking at Question 4, the FE suggests that rely-

ing on this question to predict a student’s score is 1 −√
1− .3622 ∼= 6.76% better than a blind guess. Figure 1

puts this value in perspective.

Significance testing of rpb
Although measuring an effect size is informative, it is also

useful to know when an effect is large enough to be sta-

tistically different from no effect at all. Null hypothesis

significance tests are the most common methods to detect

this; with correlations, we use Student’s t-test with the null

hypothesis (H0) that the two variables are not correlated

(ρ = 0). However, this assumption that the two variables
are uncorrelated does not hold if one of the variables is

partially determined by the other, which is the case here;

the score is determined by the number of questions that

were correctly answered.

In the context of assessing an examination, if the ques-

tions are graded in an “all-or-nothing” fashion or are all

worth the same number of points, we can predict the mag-

nitude of the “built-in association” between the questions

and the score. Here, every one of the k questions of an
examination should have a coefficient of determination

r2 = 1/k (see Appendix A for a demonstration). In other
words, if a question that tests language competencies was

inserted in an examination on statistical knowledge, we

would expect that question to have r =
√
1/k with the

total score instead of 0. Hence, H0 : ρ = 0 is invalid and
H0 : ρ =

√
1/k should be tested instead. Sadly, this is not

possible using regular null hypothesis significance tests.

This expected value ρ =
√

1/k is not valid in most
examinations, where grades are not “all-or-nothing” and

questions are worth different numbers of points. How-

ever, the built-in association remains for all sorts of grad-

ing schemes, as the problem is that the score is partially

determined by the question it is being correlated with.

Hence, we present a first alternative to the t-test on rpb:
confidence intervals (CI) around ρ. By using Equations 4
to 8, we determine bounds that will be used as our critical

values of rpb. Any value more extreme than these critical
values is then considered as significantly negative or posi-

tive. Because the CI is centered on a positive value instead

of 0, it should have less Type I and Type II errors on pos-

itive and negative correlations, respectively, compared to

blindly using a t-test on rpb.

The Quantitative Methods for Psychology 492

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.1.p046


¦ 2017 Vol. 13 no. 1

Figure 1 Forecasting efficiency as a function of r. The forecasting efficiency is a measure of how relying on the inde-
pendent variable to predict the dependent variable is better than a blind guess. It increases slowly, and reaches high

values only with extremely high correlations. It can be hard to understand the meaning of r = .5, but “13.40% better
than chance” is clearer.

Let us apply this method to our data, with n = 165,
k = 50 and α = .05, to create a 95% CI. Using Equations 4
to 8 on rpb =

√
1/50, we find the following bounds

95% CIrpb

(√
1/50

)
∼= [−.012; .288] . (10)

Although this approach to testing the significance of

rpb is not the most adequate, it is “good enough” for non-
critical situations. Its first drawback stems from the fact

that the r to z′ transformation aims to make the distri-
bution closer to a Normal Distribution, which is why we

choose our bounds to be (precisely) ±1.95996 SE from the
mean. However, a t-test assumes a Student Distribution

with df = n − 2 = 163, with critical t-values ±1.97462.
Hence, we do not obtain the same critical rpb for a t-test
and a confidence interval. For example, in a context where

H0 : ρ = 0 is valid, the 95% CI suggests that rpb(crit) =
±.152786, but the t-test would use rpb(crit) = ±.152847.
Its second drawback is that it requires the knowledge

of the expected value of ρ, which can be tedious to find
depending on the grading scheme of the examination. A

workaround is to convert the examination into one where

ρ =
√
1/k is true. This is achieved by giving a score of ei-

ther 0 or 1 to each question depending on if the answerwas

incorrect or correct, as we have done since the beginning

of this tutorial.

Using the corrected rpb
We now present an alternative to rpb that is more rigor-
ous in our context, the corrected point-biserial correlation

(r∗pb), which studies the correlation between correctly an-
swering a question and the score computedwithout includ-

ing this question’s result (Crocker & Algina, 1986). The r∗pb
for a question is calculated with the same equation as rpb,
but the score on that question is not included in the stu-

dents’ total scores. Hence, the averages are calculated on

k − 1 questions and the standard deviation is different for
each question. Using the asterisk to denote this exclusion,

we calculate r∗pb with

r∗pb =
√
pq × µ∗1 − µ∗0

σ∗
. (11)

Consequently, the built-in association between the ques-

tion and total score is entirely removed, andH0 : ρ = 0 be-
comes a valid hypothesis. Those interested in understand-

ing the impact of the built-in association and the benefits

of r∗pb versus rpb can findmore information in Appendix A.
Computing r∗pb is slightly more tedious compared to rpb,

as σ changes for each question. Still, by using Equation 3,
we can calculate r∗pb for Question 4:

r∗pb (Q4) =
√
.345× .655× 30.702− 26.954

6.090
∼= .293, (12)
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Using software to compute r∗pb
As it was the case for rpb, you will find an Excel spread-
sheet and SPSS syntax in this article’s additional content

that compute the value of r∗pb for our sample data.Computing r∗pb esing Excel. To find the r∗pb for Question
4, we first compute the scores in column AZ, excluding

the score of Question 4 (in column D). Hence, the cell AZ2

should contain

=SUM(A2:C2) + SUM(E2:AX2)

Alternatively, if the total scores are already in column AY,

then you can use

=AY2 - D2

We then correlate this score with the question using the

same formula as before

=CORREL(D2:D166, AZ2:AZ166)

Computing r∗pb using SPSS. In SPSS, with the question
variables still named Q1 to Q50, run the following com-

mand to compute the scores without including Question 4

COMPUTE TotalQ4 = SUM(Q1 to Q3) + SUM(Q5
to Q50).

Alternatively, if you still have the variable Total, you can

use this command instead

COMPUTE TotalQ4 = Total - Q4.

Then, find r∗pb by using the same formula as before,

CORRELATIONS VARIABLES= Q4 TotalQ4.

Effect size of r∗pb
Just like we did for r (and rpb), we can find a confidence
interval, coefficient of determination and forecasting effi-

ciency for r∗pb. However, the interpretation of r
∗
pb is slightly

different from the one for rpb. A strong positive r
∗
pb means

that the question is a good predictor of performance on an

examination composed of the questions onwhich the score

was computed, whereas a strong positive rpb means that
the question is a good predictor of the score on an exami-

nation including that question. This new measure can be

used to pick questions that evaluate how prepared the stu-

dents are for this specific test.

Using the equations described earlier, we find that the

95% CI of Question 4’s r∗pb is [0.146; 0.426], that its coeffi-
cient of determination is 8.57% and that its FE is 4.38%.

Significance testing of r∗pb
With r∗pb, the null hypothesis H0 : ρ = 0 is appropriate,
which means we can use a t-test to determine its signifi-

cance. Compared to a t-test on rpb, it will have less Type II

errors for negative correlations and less Type I errors for

positive correlations. The t-value of a correlation is calcu-

lated with:

t = r ×
√
n− 2

1− r2
. (13)

Going back to our example, we can determine the crit-

ical values of r∗pb for our examination. We start by finding
the critical t-values, with α = 0.05 and df = 163, which
gives us tcrit ∼= ±1.97. We then solve for our critical r∗pb
using Equation 10, which gives us r∗pb(crit)

∼= ±.153. We
conclude that Question 4 is a good predictor of success on

the other questions, as .293 > .153.

Comparing the significance testing methods
We will now apply a t-test and calculate a confidence in-

terval on both the rpb and r
∗
pb to analyze and interpret

Questions 38, 39, 18 and 20. We have previously com-

puted the critical correlation values for confidence inter-

vals, which are rpb(crit) ∼= {−.011616, .287985} and
r∗pb(crit)

∼= ±.152786, as well as those for t-tests, which are
rpb(crit) ≡ r∗pb(crit)

∼= ±.152847. Table 1 shows the con-
clusions drawn from each test. Please note that we do not

support using a t-test on rpb or a confidence interval on r
∗
pb

to test their significance. We strongly recommend to use

the t-test on r∗pb or, at the very least, to use the confidence
interval on rpb.
We clearly see that Question 38 is an excellent predictor

of both the score (rpb) and of how well students performed
on the 49 other questions (r∗pb). Question 20, however, is
seriously problematic; such a strong negative correlation

means that a correct answer predicts a lower score and a

bad performance on the rest of the questions. It should be

removed from future examinations.

Next, we turn to Question 39. Here, all alternative

methods agree that this question is not positively corre-

lated with the score or to successfully answering the other

questions. In this situation, doing a näıve t-test on rpb
would lead to a Type I error. Finally, Question 18 is more

complex to interpret. It is negatively correlated with the

score, as suggested by the CI on rpb, but not significantly
correlated with the performance on the 49 other questions,

according to r∗pb. In this situation, depending on the inter-
pretation of interest to the evaluator, a näıve t-test could

lead to a Type II error.

Conclusion
In this article, we presented the point-biserial correlation,

which is to be used instead of the Pearson correlationwhen

one variable is naturally dichotomous. We studied how to

compute its confidence interval using Fisher’s r to z′ trans-
formation and different ways of interpreting a correlation

as an effect size. We also explained the problem of using a
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Table 1 Regular (rpb) and corrected (r
∗
pb) point-biserial correlations of questions 38, 39, 18 and 20. The correlations and

interpretation drawn from a t-test and a 95% confidence interval on both values follow. A “+” indicates that the method

would declare the correlation significantly positive; “-” and “0” are used for significantly negative and non-significant

correlations, respectively. Although the significance of questions 38 and 20 is the same for all tests, we find that Ques-

tion 39 would result in a false positive if tested näıvely. As for question 18, the decision to consider it as weakly or as

significantly negative depends on the tester’s goal.

rpb r∗pb
Q# rpb t-test 95% CI r∗pb t-test 95% CI

38 0.513 + + 0.468 + +

39 0.173 + 0 0.102 0 0

18 -0.038 0 - -0.113 0 0

20 -0.673 - - -0.713 - -

t-test on data that is intrinsically correlated, such as the rpb
between the success on a question and a score composed of

that question. Finally, we presented two alternative meth-

ods to test the significance of correlations in the academic

context.

Beyond testing a questionnaire post-hoc with these

methods, there exist a priori techniques to create strong

tests. One of these, the Cognitive Diagnosis Models, con-

sists in identifying the common content underlying certain

items (DiBello, Roussos, & Stout, 2006; George & Robitzsch,

2015). The strength of this approach is that items can in-

clude increasingly complex concepts when the person tak-

ing the test shows he mastered the pre-requisite, simpler

concepts. Another paradigm that aims to improve tests is

the Item Response Theory (van der Linden & Hambleton,

1996). This technique specializes in psychometric scales

and multiple-choice questionnaires that measure abstract,

latent concepts. Those who are willing to significantly im-

prove their examinations and tests should look into these

two methods.

As a final note, we think this paper highlights the im-

portance of understanding the nature of the variables we

manipulate. Identifying one of the variables as binary jus-

tified the choice of using rpb instead of r, and reflecting on
the way the score is computed made us look for alternative

approaches to studying significance, such as r∗pb. Paying
close attention to the characteristic of our data can lead to

great discoveries and should be a skill we hone at any given

occasion.
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Table 2 Comparison of predicted and observed parameters of correlations between the score on a question and the

total score on an examination, as well as the Anderson-Darling test on observed data fitted to a Normal Distribution with

the expected parameters. The observed values rpb and σ
2
were computed on 100,000 correlations with a sample size of

1,000 students, when there are 10, 25, 50, 100 and 250 questions with a success rate p = .5. These results confirm that
there is indeed a built-in association of

√
1/k when studying the rpb between the score on a question and the total score

on the examination, making t-tests inadequate.

k
√
1/k rpb

(k−1)2×(k−0.5)
1000k3 σ2

A-D p-value
10 .3162 .3163 7.695× 10−4 7.694× 10−4 .1085

25 .2000 .1999 9.032× 10−4 9.032× 10−4 .1750

50 .1414 .1414 9.508× 10−4 9.508× 10−4 .9263

100 .1000 .0999 9.752× 10−4 9.752× 10−4 .7821

250 .0632 .0632 9.900× 10−4 9.900× 10−4 .2464

Note. A-D: Based on the Anderson-Darling test

Appendix A: Inadequacy of t-test on rpb for data with a built-in association
The computation of t-values on Pearson correlations is based on the assumptions that the correlations are distributed

approximately normally and that the two variables are independent, or that the null hypothesis H0 : ρ = 0 is valid.
We know that rpb is distributed normally when the samples are large enough (Tate, 1954), but the two variables are not
independent when correlating a score with one of the questions that make up this score. In this situation, even when a

question should not have any predictive power on the score, its correlation will not be zero because of the way the score

is computed. We call this a “built-in association”.

In what follows, we ran two simulations in which we studied the correlation between the success on a question and

the score on an examination. Our goal was to show that, even in unrealistically optimal situations, applying a t-test

on rpb is not appropriate. Hence, each simulation was composed of 100,000 examinations with n = 1000 students,
k ∈ {10, 25, 50, 100, 250} questions and a fixed success rate of p = .5 for each question. We had first randomly
assigned the success rates of every question such that p ∈ [.2, .8], but found no impact on ourmain conclusions. For each
student, we sampled a question score from a Binomial distributionB [1, .5] and a remaining score fromB [k − 1, .5].
In the first simulation, the total scorewas the sum of the question and remaining score, and so the correlation between

the question and total score was the rpb. In the second simulation, the total score was equal to the remaining score, and
the correlation was the r∗pb. Our results show that t-tests are not adequate for rpb in this context, but that they are for r

∗
pb.

Simulation 1
The goal of the first simulation was to confirm that there was indeed a built-in association in rpb. Because each question
is worth the same amount of points and is graded dichotomously, they should, on average, have r2pb = 1/k, such that
k∑
i=1

r2pbi = 1, and thus rpb =
√
1/k. Also, Tate (1954) showed that the variance of rpb is

σ2 =

(
1− r2

)2
n

×
(
1 + r2 × 1− 6pq

4pq

)
. (14)

Because p = .5, n = 1000, and r2 = 1/k, we can simplify Equation 14 to

σ2 =
(k − 1)

2 × (k − 0.5)

1000k3
. (15)

Hence, we expect that rpb will follow the Normal distribution,N
[√

1/k, (k−1)2×(k−0.5)
1000k3

]
.

As we can see in Table 2, the expected averages, variances and distributions of rpb are observed, as shown by
the Anderson-Darling tests, for all values of k. Figure 2 shows the distribution of rpb when k = 50, which follows
N [0.1414, .0009508]. The red lines indicate the critical rpbvalues of a t-test with α = .05 and df = 998 forH0 : ρ = 0,
such that rpb(crit) ∼= ±.062. This figure shows clearly that a t-test is not appropriate for data with a built-in association;
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Figure 2 The rpb follows a Normal distribution with µ =
√
1/k. This figure illustrates why this is a problem; if we

use a t-test to detect significance, we will make many Type I and Type II errors. The red dotted lines indicate the critical

t-values for a two-sided t-test with α = .05, which are definitely not appropriate for this data (.9947� .05).

Table 3 Observed parameters of correlations between the score on a question and the score of the remaining questions

of an examination, as well as the Anderson-Darling comparing the observed data to N [0, 0.001]. The observed values
r∗pb and σ

2
were computed on 100,000 correlations with a sample size of 1,000 students, when there are 10, 25, 50, 100

and 250 questions with a success rate p = .5. These results confirm that t-tests are adequate for r∗pb, as its distribution is
not different fromN [0, 0.001].

k r∗pb σ2
A-D p-value

10 - .0001 0.001 .7915

25 - .0000 0.001 .6827

50 - .0000 0.001 .6934

100 - .0001 0.001 .4300

250 - .0001 0.001 .2763

Note. A-D: Based on the Anderson-Darling test

an examination with 50 questions would typically have 50 “significantly strong positive correlations” according to t-tests

on rpb. Finally, as shown in Figure 3, even with a large number of questions,H0 : ρ = 0 is not appropriate for data with
a built-in association.

Simulation 2
In Simulation 2, we correlated the question with the remaining scores instead of the total scores. Because the question

and remaining scores are independent, we predict that H0 : ρ = 0 will be adequate. Also, note that when rpb = 0,
Equation 14 becomes σ2 = 1/n. Hence, for any value of k, r∗pb should follow the same distribution, N [0, .001]. We
ran an Anderson-Darling test on each condition to test that hypothesis, which was confirmed for all conditions (as can be

seen in Table 3).

Figure 4 shows the distribution for r∗pb when k = 50. This time, the distribution is centered at r∗pb
∼= 0 and there

are approximately 5% of the observed values (2.46% to the left and 2.47% to the right) that fall beyond the critical values,

r∗pb(crit) = ±.062. These results indicate that we can apply a t-test to r
∗
pb and that the built-in association is absent from

this correlation.
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Figure 3 Even though increasing the number of questions (k) does decrease the mean correlation for rpb, it will never
reach 0. In the case of r∗pb, the correlation is independent of k and hence the mean correlation is always 0.

Conclusion
We have shown that applying a t-test to data with a built-in association, such as rpb, is not appropriate. If one is interested
in the correlation between correctly answering a question and the number of other questions correctly answered in an

examination, replacing rpb with r
∗
pb is a safer alternative. If the correlation of interest is the one between the success

on the question and the total number of correctly answered questions, it would be wiser to use the confidence interval

method presented in this article.
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Figure 4 The r∗pb ¬ follows a Normal distribution with µ = 0. The red dotted lines indicate the critical t-values for a
two-sided t-test with α = .05, which are definitely appropriate for this data (.0246 + .0247 ∼= .05).
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