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Abstract While maximum likelihood exploratory factor analysis (EFA) provides a statistical test

that k dimensions are sufficient to account for the observed correlations among a set of variables,
determining the required number of factors in least-squares based EFA has essentially relied on

heuristic procedures. Two methods, Revised Parallel Analysis (R-PA) and Comparison Data (CD),

were recently proposed that generate surrogate data based on an increasing number of principal

axis factors in order to compare their sequence of eigenvalues with that from the data. The latter

should be unremarkable among the former if enough dimensions are included. While CD looks for

a balance between efficiency and parsimony, R-PA strictly test that k dimensions are sufficient by
ranking the next eigenvalue, i.e. at rank k + 1, of the actual data among those from the surrogate
data. Importing two features of CD into R-PA defines four variants that are here collectively termed

Next Eigenvalue Sufficiency Tests (NESTs). Simulations implementing 144 sets of parameters, in-

cluding correlated factors and presence of a doublet factor, show that all four NESTs largely outper-

form CD, the standard Parallel Analysis, the Mean Average Partial method and even the maximum

likelihood approach, in identifying the correct number of common factors. The recommended,

most successful NEST variant is also the only one that never overestimates the correct number of

dimensions beyond its nominal α level. This variant is made available as R and MATLAB code as
well as a complement incorporated in a Microsoft Excel file.
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Introduction
The present article addresses the question of how many

factors, in exploratory factor analysis (EFA), are necessary

to explain the data. Although this question may appear

outdated from a historical perspective, it remains that true

data modeling approaches, rather than heuristics, have

only been proposed relatively recently for least squares

EFA approaches (Green, Levy, Thompson, Lu, & Lo, 2012;

Ruscio & Roche, 2012). Here, several model-based meth-

ods meant to identify the number of factors will be applied

to simulated data with known numbers of factors across

a range of study parameters. One method will clearly

emerge as the one to be recommended. For ease of use, this

best performing procedure is provided, besides its code in

R and MATLAB, as a programmed complement in an Excel

file. All there is to dowith the latter is to provide the data as

contiguous columns in a separate Excel file and to identify

the relevant columns as input to the procedure.

Factor Space Dimensionality

In teaching exploratory data analysis, what should we rec-

ommend to assess the number of reliable dimensions in

the dataset? The answer must depend on the purpose.

For instance, one may seek a reasonable description that

accounts for a substantial part of the variance involved,

where simplicity and avoidance of minor factors are bal-

anced against completeness (Fabrigar, Wegener, MacCal-

lum, & Strahan, 1999). The present investigation, however,

focuses on the relative merit of methods meant to iden-
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tify the full factor space dimensionality, i.e. how many di-

mensions are actually expressed in the data. In functional

terms, this question reduces to how many dimensions ap-

pear required to completely account for the pattern of cor-

relations among the variables. For this purpose, methods

that explicitly model the factor space can be expected to

stand the best chances of solving the problem correctly, but

the standard parallel analysis (PA: Horn, 1965) is also con-

sidered for comparison purposes.

While there are many contexts in which it may be

recommended to exclude minor factors, the question ad-

dressed here requires not ignoring doublet factors (i.e.,

factors that affect only two observed variables), or fac-

tors with eigenvalues less than unity that nevertheless af-

fect the data structure. Such dimensions could later be

consciously discarded to simplify the picture of the phe-

nomenon studied, but this should preferably be done after

becoming aware of their existence.

Assumptions

The basic assumption of the present work is the additiv-

ity of factor contributions to the observed variables. Situ-

ations where, for instance, a variable reflects a weighted

sum of factor scores while another would reflect a prod-

uct of factor scores are excluded a priori. Another, al-

though less crucial assumption is the normal distribution

of the several sources of variance. Only normal distribu-

tions will be involved, but due to the central limit theorem,

the results should be expected to generalize well to skewed

distributions. It is, however, generally a better practice to

transform variables whose distribution departs markedly

from normality before submitting them to analysis. This

may actually favor compliance to the additivity assump-

tion, since additive combinations of independent effects

tend to produce normal distributions.

Simulations

Candidate methods.

The problem addressed here is actually already solved, in

principle, withmaximum likelihood factor analysis (MLFA:

Lawley, 1940) and, in practice, based on Jöreskog’s (1967)

implementation. In this approach, factor models with an

increasing number of dimensions are developed as long

as the hypothesis that the residuals are independent is re-

jected. Model convergence failures, in the form of Hey-

wood cases (i.e. models that would reproduce more than

100% of the variance for a variable), are treated by remov-

ing the variable involved but counting it as one factor, as-

suming that such variable perfectly represents one under-

lying factor (Jöreskog, 1967). If a Heywood case indeed re-

flected a doublet factor, the other variable reflecting the

same doublet factor would then become a singlet factor

and would be disregarded as unique variance in the sequel

of the procedure.

Other modeling approaches have been attempted. The

mean average partial (MAP: Velicer, 1976) can be consid-

ered a model based approach, since principal components

(data model) are successively removed from the correla-

tion matrix, leaving partial correlations. MAP assesses di-

mensionality as the number of removed components for

which the average partial correlation, raised to exponent 2

or 4, is minimal.

PA only implements a null model (Turner, 1998) and,

in terms of data modeling, is theoretically adequate only to

decide on the need for at least one factor, i.e. to negate the

hypothesis of no common factor. Beyond this, PA is strictly

heuristic. PA and MAP fared reasonably well in simula-

tions (Peres-Neto, Jackson, & Somers, 2005; Velicer, Eaton,

& Fava, 2000; Zwick & Velicer, 1986) and are the main

methods recommended, even quite recently, by journal

editors (e.g., Ziegler & Hagemann, 2015) despite promis-

ing newer approaches (Green et al., 2012; Ruscio & Roche,

2012).

In recent developments, Green et al. (2012) proposed

two forms of revised parallel analysis (R-PA), where either

principal components or principal axis factors are used as

data models meant to account for the observed pattern of

correlations using an increasing number of factors. The

logic of the test is that if k dimensions are not sufficient to
account for the data, then the data eigenvalue at rank k+1
should be larger than those for most of parallel datasets

generated with the k-factor model. For this test, the au-
thors used eigenvalues from the same technique that pro-

vided the factor models, ranking the critical eigenvalue

from a principal component analysis (PCA) model among

PCA eigenvalues, and those from a principal axis factor

analysis (PAFA) model among PAFA eigenvalues. They

further rejected PAFA models with negative eigenvalues,

which is compatible with the present purpose, but their a

priori rejection of PCA models with eigenvalues less than

unity is not. Their principal axis factoring model simply

used the squared multiple correlation of each variable as

communalities, without iterative improvement. The same

authors (Green, Thompson, Levy, & Lo, 2015) later com-

pared their own preferred version of R-PA, that based on

PAFA, with the MLFA approach, reporting advantage for

their own method.

Contemporary to the development of R-PA, Ruscio and

Roche (2012) elaborated an approach named comparison

data (CD) that also uses increasing number of PAFA com-

ponents to model the data, but uses the PCA eigenvalues

to identify the sufficient number of dimensions. CD ap-

plies a criterion widely different from R-PA, based on the
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stabilization of the full pattern of surrogate data eigenval-

ues around the actual data eigenvalues, once enough fac-

tors are included in the model. To our knowledge, no di-

rect comparison of CD and R-PA has yet been published,

although Green et al. (2015), after becoming aware of the

CD method, expressed that “it would be interesting in the

future to compare the revised PA and the Ruscio–Roche

methods to understand how and why they differ”.

Although PA and MAP are included, the present work

mainly aimed at comparing approaches that explicitly

model the data space, namely the MLFA approach of

Jöreskog (1967) and the PAFA modeling approaches of

Green et al. (2012) and of Ruscio and Roche (2012). Three

related approaches based of PAFA models are also consid-

ered which incorporate elements of the CD and R-PA meth-

ods, namely CD’s iteration of commonality estimates and

its use of PCA eigenvalues to assess models derived from

PAFA, and R-PA’s ranking of eigenvalues at rank k + 1 to
decide on the sufficiency of the k dimension model.
The use of PCA for modeling the data, as in Green et al.

(2012), is excluded a priori, because mathematical analysis

indicates that data produced from the first k principal com-
ponents plus a random variable completing the variances

to unity must systematically have their first k PCA eigen-
values larger than those of the original data, simply be-

cause the unique variances of the p original variables span
the complete p dimensional space and therefore necessar-
ily contributes to all principal components. PCA based

models would thus assign too much signal variance to the

factors, underestimating the unique variances required for

expected unit variance of the surrogate variables. This can

be verified by ranking the original PCA eigenvalues among

those of corresponding rank from the PCA based surrogate

data. PCA based models are thus rejected here on the prin-

ciple that an acceptable model for the first k data dimen-
sions should generate surrogate data that correctly repro-

duce the first k eigenvalues of the original data.

Test Conditions.

The synthetic problems on which the methods are to be

compared must be inherently difficult, since for easy situ-

ations, nearly all methods should work well. For instance,

if all eigenvalues to be retained are above 2.0 and the com-

munalities of all the variables are similar, then Kaiser’s

eigenvalue > 1 rule or Cattell’s Scree test will unambigu-

ously provide the correct answer.

Difficult conditions include situations in which at least

one factor has lowweights on all the variables inwhich it is

expressed. For correlated factors, even if they have reason-

ably large loadings on their variables, the resulting factor

space can have a small eigenvalue (and therefore an eigen-

vector with only small loadings). Ignoring such dimension

does not amount to ignoring an independent minor factor.

For two correlated factors, for instance, a common meta-

factor accounts for their shared variance while a second

factor, possibly with an eigenvalue less than unity, essen-

tially accounts for what distinguishes the two actual fac-

tors. Ignoring minor factors would impede correct under-

standing of the underlying phenomenon. Another type of

difficult situation is the presence of a doublet factor, espe-

cially when its weights are rather modest. Such situations

are included here.

Methods
General Consideration.

This work was carried using MATLAB release R2015a (The

MathWorks, Inc., Natick, Massachusetts, United States), us-

ing the default pseudo random number generation algo-

rithm, the Mersenne Twister (Matsumoto & Nishimura,

1998).

Factor Structures.

The combinations of parameters used to generate test data

were inspired from Velicer et al. (2000), although with

some variation, including the introduction of correlated

factors and the presence of doublet factors. The present

investigation involved data structures with complete cross-

ing of number of factors (3 or 6), of variables per factor (4

or 8, each associated with only one factor), of factor load-

ings (.6 or.8), of factor correlation (0, .3, or .6), and of sam-

ple sizes (75, 150, or 300). Besides these 72 combinations,

a similar set of simulations was performed in which one

of the factors was expressed in only two variable (crating

a doublet factor), for a total of 144 simulation conditions.

For each of these, 100 datasets were generated to which

each candidate method was applied to assess the number

of dimensions.

For comparison purposes, the study by Velicer et al.

(2000) used the same sample sizes, but had only uncorre-

lated factors and no doublet condition. It involved simula-

tionswith 3, 6, or 9 factors, each expressed, as done here, in

4 or 8 different variables. Their maximum number of vari-

ables was thus 72 compared to 48 in the present studywith-

out 9 factor conditions. In their study, the factor loadings

were all fixed to .4, to .6, or to .8 in different conditions.

In the present study, .4 loadings were not used but small

expected eigenvalues are rather produced by correlating

the factors or by the presence of a doublet factor. Another

important difference is that while the preceding authors

generated only five datasets for each condition, here 100

datasets per condition are used to also allow within con-

dition statistical comparisons of the dimensionality assess-

ment methods.
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When all of k dimensions are to be identified, the diffi-
culty of a given problem should depend largely on its kth
eigenvalue. Based on the population eigenvalues, 6 of the

48 data structures have their critical (third or sixth) eigen-

value less than 1.0; all are for a correlation of .6 between

the factors and including a doublet factor. Of the remain-

ing data structures, 18 have their most critical eigenvalue

between 1.0 and 1.5; 8 others have it between 1.5 and 2.0,

and the remaining 16 data structures have it above 2.0.

The comparisons of candidate methods will be carried sep-

arately for these four ranges of critical population eigen-

values.

Algorithms.

Dimensionality assessment methods.

The eight factor space dimensionality assessment methods

compared are PA, MAP, MLFA, CD, the original R-PA and

three hybrid versions incorporating elements of CD and of

R-PA. The latter and the three new versions all rank eigen-

value k + 1 of the actual data among those of surrogate
data, rejecting the k factor model if the former ranks high,
indicating that shared variance is still present in the data

beyond the first k dimensions. They are thus collectively
called Next Eigenvalue Sufficiency Test (NEST). They differ

among themselves in twoways, model generation and type

of eigenvalue ranked, as will be described shortly.

MAP was implemented as its version that performed

best in the study by Velicer et al. (2000), namely with

the off-diagonal elements of the partial correlation ma-

trix raised to the fourth power before averaging. MLFA

used MATLAB’s factoran function embedded in a cus-
tom function that, following the suggestion of Jöreskog

(1967), removes any variable causing a Heywood case,

counting each such variable as an extra factor added to the

lowest number of factors for which the residuals of the re-

maining data qualified as independent by an α level of .05.
The remaining six methods all compare eigenvalues

from either the full or a reduced correlation matrix of the

original data to those of surrogate data. The latter are 500

independent synthetic datasets having the same number

of variables and cases as the test dataset, each generated

by what would be the unrotated factor structure of the

test dataset according to PAFA, assuming a given number

of factors. Except for PA, for which the model consists of

only independent variables, two related ways are used to

produce the model with which the surrogate datasets are

generated. These are two versions of PAFA differing in

their communality estimate method for the reduced corre-

lation matrix. The original R-PA method simply estimates

the communalities as the values of R2
obtained from the

multiple regressions predicting each variable from the re-

maining ones. The CD method rather adapts its commu-

nality estimates to the number k of factors to model; it it-
eratively updates the diagonal of the correlation matrix by

the variances reproduced by the first k dimensions based
on the current reduced matrix estimate.

Use of one or the other communality estimate for the

data model will be denoted by appending ‘NEST’ with ‘r’

(for regression) or ‘i’ (for iterative). In assessing whether

k factors are sufficient to account for the data, ranking the
original data eigenvalue at rank k + 1 among those of the
surrogate data can be based on either PCA or PAFA eigen-

values. This distinction in eigenvalue used to assess the

sufficiency of k dimensions will be denoted by appending
‘p’ or ‘f’ to ‘NESTr’ or NESTi’. This defines the four related

methods: NESTrf, NESTrp, NESTif and NESTip, where the

former is the original R-PAmethod. When it comes to rank-

ing PAFA eigenvalues, i.e. in the NEST methods with a final

‘f’, the only realistic choice is to reduce the correlation ma-

trices with the regression approach, without further itera-

tion.

Data generation.

In CD and all NEST versions, a k factor model consists of
the first k components of the reduced matrix, weighted by
the square root of their respective eigenvalues, with the

addition of independent random numbers for the unique

variance bringing the expected variance of each variable

to unity. Both for building all models and to test them

with PAFA eigenvalues, component extraction from a re-

duced correlationmatrix is done withMATLAB’s svd func-
tion embedded in a function that reassesses the signs of

the eigenvalues; this is required since svd itself returns
all eigenvalues as positive. This is achieved by post-

multiplying the reduced matrix by the eigenvectors and

comparing any row of the result with the corresponding

row of the eigenvectors. The signs change for eigenvalues

that should be negative. The eigenvalues and correspond-

ing eigenvectors are then reordered to ensure decreasing

eigenvalues. For k factors expressed on p variables in c
cases, each surrogate dataset is produced by applying ama-

trix of dimensions (c, k + p) of independent random num-
bers to the generating model.

In generating the test datasets for conditions in which

the factors are specified as correlated, a matrix (pro-

duced by the MATLAB chol function) transforming k in-
dependent sources into k variables that are pairwise inter-
correlated with the value r is applied to the k sets of factor
loadings before complementation with the diagonal ma-

trix implementing the unique variance that complements

to unity the expected variance of each variable.

For the methods relying on surrogate data, namely PA,

CD, and all NEST methods, 500 random datasets are used.
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This number was selected because the CD criterion has

been tuned for that number of comparison data. The same

surrogate data are used for all methods based on the same

model; more explicitly, CD, NESTif and NESTip use the

same surrogate data based on the iterated model, while

NESTrf and NESTrp use the same surrogate data based on

the non-iterated PAFA model.

Implementation Details.

PA was implemented by generating 500 sets of (c, p) ran-
dom numbers from a normal distribution and using the

means of the resulting 500 sets of eigenvalues as thresholds

at each rank. The mean, rather than the 95th percentile as

suggested by Glorfeld (1995), is used because the PA rep-

utation of tending to overestimate the number of dimen-

sions, on which this suggestion is based, essentially comes

from simulations including singlet factors (i.e. variables

depending on none of the common factors). The 95th per-

centile, however, is the relevant cut-off value to reject the

hypothesis of no common factor. This criterion also ap-

plies in all NEST methods in their assessing the rank of the

data eigenvalue k + 1 among those of the surrogate data.
A model with k dimensions is thus rejected when no more
than 25 out of 500 surrogate datasets produce their rele-

vant eigenvalue equal to or larger than that of the actual

data.

The CD method was implemented essentially as Ruscio

and Roche (2012) described it, except that all data genera-

tion are here based on independent normally distributed

random numbers, instead of random numbers reflecting

the observed distributions. Although this is not explicitly

described in Ruscio and Roche (2012), the original imple-

mentation of CD likely used the PAFA algorithm described

in Ruscio and Kaczetow (2008) to develop the surrogate

data generating model. It iterates the communalities as

the variances explained by the first k eigenvalues of the
initially full, then reduced correlation matrix until conver-

gence. The CD decision rule is based on PCA eigenvalues

(i.e. of full correlations matrices), more specifically on the

root mean square (rms) difference between the original set

of eigenvalues and each set of eigenvalues of the surrogate

data. A set of 500 rms difference values is thus available

for each hypothesis of k factors to retain. To decide on a
significant reduction of the rms differences due to the in-

clusion of one extra factor in the model, a rank test is ap-

plied to pairs of rms sets that differ by one factor. When the

Mann-Whitney rank-sum test between sets for k and k + 1
factors becomes not significant by a liberal criterion, the

number of factors is set to k, the lower of the two model
dimensions involved in the comparison. The authors de-

termined that operating the rank test at α = .3 provides
a good balance between tendencies to over- and to under-

estimate the number of data dimensions.

Comparison of methods.

The methods are mainly to be compared in terms of

their success rates. Since the dimensionality assessments

produced by the various methods are paired within test

dataset, the correct chi-squared test excludes equality

cases. In the present context of pairwise comparison of

methods, this means comparing the counts of datasets cor-

rectly solved by only one or by only the other of the two

methods.

Besides pooling the trials across conditions that share

the same range of critical eigenvalue, the methods may be

compared pairwise on the number of conditions in which

one method significantly outperforms the other. For this

purpose, a liberal α level of .10 is applied within each of
the 144 test conditions, but the usual .05 criterion remains

used for deciding whether two methods differ on the num-

ber of conditions in which each outperforms the other by

the liberal .10 criterion.

For the methods that appear possibly worth retaining,

it is relevant to verify their actual type I error when the

correct number of dimensions constitutes the null hypoth-

esis. If a method is prone to overestimation, i.e. it tends

to reject the correct model significantly above the nominal

5% α level, then some of the success it achieves in condi-
tions where much power is required to detect the true di-

mension with a small eigenvalue might be due to this bias

rather than to its true sensitivity.

Results
Success rates.

The eight methods are mainly to be compared in terms of

percentage correct. These results are presented in Table

??with the row-wise best, or equal best, performing meth-
ods signaled in bold. Although all methods except CD cor-

rectly identified the number of dimensions at least 85% of

the time when the critical eigenvalue was above 2.0, only

the four NEST methods performed relatively well in the

more challenging test conditions. NESTrf, the original R-PA

method, outperformed the other NEST variants only when

the critical population eigenvaluewas below 1.0. These are

all cases involving a doublet factor and a correlation of .6

between all pairs of factor. Otherwise, NESTif and NESTip

outperformed all other candidate methods and did not dif-

fer from one another for the next two ranges of critical

population eigenvalues, but NESTip surpassed in accuracy

all other methods when the critical population eigenvalue

was at least 2.0. Although PA compared to the NEST vari-

ants for the least difficult problems, only the NEST variants

appear worth retaining and further considering for finer
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Table 1 Percentage of correct identifications of the number of factors for the eight methods studied by range of the

smallest eigenvalue to be retained.

Critical Dimensionality assessment method

eigenvalue range PA MAP MLFA CD NESTrf NESTrp NESTif NESTip

≤ 1.0 0.4a 0.8a 14.6 33.8 57.2 55.0b 55.8b 53.1
1.0-1.5 36.2 6.7 26.9 33.8 73.8a 73.9a 77.1b 76.6b

1.5-2.0 74.0 12.0 41.5a 38.5a 87.4b 88.0b 89.4c 90.0c

≥ 2.0 95.3a 85.0 87.7 45.9 90.6 94.7a 92.1 96.3
Unrestricted 57.7 32.9 48.1 38.6 79.6 80.8 81.5a 82.5a

Note. On each critical eigenvalue line, percentages sharing a common subscript do not differ at the .05 α level. The
best methods, within critical eigenvalue ranges, are marked in bold. As a reminder, NESTrf is the same as R-PA.

analysis.

The NEST methods may also be compared pairwise on

the number of test conditions in which one outperforms

the other at a liberal level (namely .10) over the 100 test

datasets of the condition. In this approach, NESTip always

outperformed the other NEST methods. The difference is

not significant in its comparison with NESTif (13 against

6 test conditions, χ2(1) = 2.58, p = .108), but is sig-
nificant when NESTip is compared to NESTrf (31 against

7, χ2(1) = 15.16, p = .0001) or to NESTrp (20 against
6, χ2(1) = 7.54, p = .006). NESTif more often outper-
formed NESTrf than was outperformed by it (26 against

7, χ2(1) = 10.95, p = .0009); it also outperformed NES-
Tif in more conditions that the opposite (27 against 13,

χ2(1) = 4.90, p = .027). Finally, NESTrp outperformed
NESTrf in 11 conditions with the opposite relationship ob-

served in only 3 test conditions (χ2(1) = 4.57, p = .033).

Other considerations relevant for selecting among
NEST variants.

When NEST methods are applied with the correct number

of dimensions as null hypothesis, they would be expected

to reject that hypothesis at the 5% nominal rate, provided

their surrogate data generating model is faithful. Table ??
lists the false alarm rate of the four NEST variants for the

four ranges of critical population eigenvalues. The error

rates that differ significantly, at the .05 α level, from the
nominal 5% expected error rate are marked in bold and

those that differ from the nominal rate at the .001 level are

expressed in red. It can be seen that the two NEST variants

that rank the eigenvalues of reduced correlation matrices,

namely NESTrf and NESTif, express some systematic posi-

tive bias to reject the correct null hypothesis which results

in overestimating the factor space dimension. The NEST

variants that rank the eigenvalues of full correlation ma-

trices did not exceed the nominal 5% rate in the different

ranges of critical population eigenvalue; NESTip is actually

conservative at all levels of the critical population eigen-

value.

Discussion
Of all the methods tested, NESTif and NESTip were ob-

served to be the most reliable, but NESTif sometimes dis-

plays a positive bias, which may account for some of its

success. Interestingly, the positive bias of NESTif was ob-

served only for the conditions in which the critical pop-

ulation eigenvalue was above 2.0, conditions for which

NESTip significantly outperformed all other methods, in-

cluding NESTif.

Since bias can only be estimated for the correct number

of dimensions constituting the null hypothesis, reasoning

for situations where the current null hypothesis is one less

that the correct number may be hazardous, especially for

a method that also displayed a negative bias in some range

of critical population eigenvalue. A method that is known

to sometimes significantly exceed its nominal type I error

rate may nevertheless be suspected of deriving some of its

success from this characteristic.

Although the original R-PA, here called NESTrf, was

the best performing method when the critical population

eigenvalue was below unity, it may be suspected that the

differences among the NEST methods for this range of con-

ditions is entirely due to type I errors. Indeed, if the false

alarm rates in these conditions are subtracted from the

success rates, then all four NEST methods give very close

net success values, between 52.4 and 52.6%.

Preferring NESTip over NESTif appears justified based

on the observation that the difference in success rate be-

tween the two methods either did not differ or favored

NESTip, despite NESTip being systematically more conser-

vative than NESTif. This preferred version of the Next

Eigenvalue Sufficiency Test differs from the original R-

PA by generating its surrogate data from a model of the

data factor space based on iterated communality estimates,

rather than simply from multiple regression R2
. Further-

more, to test the sufficiency of k dimensions, the eigenval-
ues k+1 used for ranking the original data among the sur-
rogates are based, in NESTip, on full, rather than reduced,
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Table 2 Percentages of false rejection of the correct null hypothesis when tested at the 5% level by the four NEST

variants by range of the smallest eigenvalue to be retained.

Critical Dimensionality assessment method

eigenvalue range NESTrf NESTrp NESTif NESTip

≤ 1.0 4.63 3.60 2.33 0.52
1.0-1.5 5.95 4.04 3.99 2.25
1.5-2.0 6.97 5.04 4.75 2.88
≥ 2.0 8.97 4.84 6.71 3.28
Unrestricted 7.19 4.50 5.03 2.63

Note. Percentages that differ at the .05 α level from the nominal 5% error rate are in bold. Those that differ from 5%
at the .001 level are further shown in red.

correlation matrices. These two substitutions mildly but

significantly improved performance.

It seems that the reduced precision of deriving the

model used to generate the surrogate datasets based on

simple estimates of the communalities from multiple re-

gression explains the excess of type I errors when the data

structures provide for relatively large critical population

eigenvalues. It also appears that ranking eigenvalues from

full correlation matrices, rather than from reduced corre-

lation matrices, introduces a negative bias at all levels of

the critical eigenvalue. NESTrp would thus tend to balance

the tendencies to over and underestimate the factor space

dimensionality, while NESTip should, in principle, be hand-

icapped by its negative bias. This handicap does not, how-

ever, prevent NESTip to generally perform best.

Clearly, the success rates observed here cannot be

taken as those to be expected with actual data. These rates

are averages over a range of clearly heterogeneous condi-

tions, all given equal weights. There can be no pretension

that these conditions are as uniformly distributed, in any

area of investigation using EFA, as they are here. What the

present work provides, however, is some rather solid indi-

cation of the relative advantage of NESTip, at least in the

range of conditions assessed here.

While the other NEST variants exhibited significant ex-

cess of type I errors when the correct number of dimen-

sions constituted the null hypothesis, NESTip rather proved

systematically conservative, effectively overestimating the

factor space dimensionality at a rate significantly less than

the nominal 5% α level. Thus, contrary to the other NEST
variants, it does not derive any part of its power from a

slight propensity to reject the null hypothesis above the

nominal α rate when the last dimension to identify would
otherwise be missed.

Comparison with earlier studies.

PA and MAP. While MAP rivalled PA in some earlier stud-
ies, it was not impressive in the current set of conditions;

it did particularly poorly in all conditions having the crit-

ical population eigenvalue below 2.0 and its success rate

was 10% below that of PA in the remaining, less demand-

ing conditions. Although PA is a heuristic rather than

a data modeling approach, it was a surprise to observe

that, in these easier conditions, it actually significantly sur-

passed some NEST variants, namely NESTrf and NESTif

that rank eigenvalues from reduced correlation matrices,

doing nearly as well as the best performing NESTip. PA,

however, did not stand the comparison with any NEST

method in more challenging test conditions, including the

range of critical population eigenvalues between 1.5 and

2.0.

As to the question of the alleged tendency of PA to

overestimate the number of dimensions, examination of its

overestimations rates confirmed this to be incorrect in ab-

sence of singlet factors. Its observed overestimation rates

are extremely low, below 0.1%, in all four ranges of critical

population eigenvalues.

CD. Another surprise concerns the relatively poor perfor-
mance of the CD method, it being correct only about 38%

overall, ranging 34% to 46% across the four levels of criti-

cal population eigenvalues. Ruscio and Roche (2012) doc-

umented the good performance of CD, relative to PA and

MAP, on simulations that randomly selected the number

of subjects between 200 and 1000, the number of factors

between 1 and 5 and the number of variables between 15

and 60. Factors affectingmore than one variable were clas-

sified as correlated, although the generating factor scores

were not made to correlate. In their study, PA was cor-

rect in 76.4% of the simulations, MAP in 59.6% and CD in

87.1%. The present modest performance of CD may not be

attributed exclusively to the conditions in which the factor

scores were correlated. Examination of its performance

separately for r = 0, .3, or .6, irrespective of the critical

population eigenvalue, yields respective success rates of

39.2%, 40.5%, and 36.1%.

The discrepancy of the present results with those of

Ruscio and Roche (2012) could suggest that CD might need

specific conditions, like a large number of variables, to fare
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well. The poorer performance of CD compared to any NEST

version and even to PA for critical population eigenvalues

above 1.5 may, however, be attributed to the stopping rule

that characterises CD. By looking for a relative stabilisa-

tion of the rms difference across the pattern of eigenval-

ues over increasing number of factors in the model, the

approach implicitly looks for a balance between efficiency

and parsimony. Further balance is expressed in the liberal

α = .30 criterion selected for the rank test. The test is
bilateral, but since the rms difference of eigenvalues can

only decrease, this is functionally a .15 significance level.

This α level might be suboptimal for conditions other than
those on which it was determined. Further work would

be needed to explain the poor success of CD in the present

simulating conditions. The general NEST approach is, how-

ever, more congruent with the present objective of com-

pleteness, regardless of parsimony.

MLFA. Green et al. (2015) compared MLFA and PA to their
R-PA version that corresponds to the present NESTrf, and

observed than although there was no uniformly superior

method, R-PA generally fared better than PA and the latter

better than MLFA. Many of their simulations included sin-

glet variables or less than two factors, but the two or three

factor conditions yielded this same general pattern. The

present study, across all conditions, replicates this order,

with success rates of 79.6% for R-PA/NESTrf, 57.7% for PA

and 48.1% for MLFA.

Their implementation of MLFA, however, applied

Jöreskog’s (1967) proposal of removing the offending vari-

ables but counting them as representing factors. To as-

sess a posteriori the effect of this addition to the proce-

dure, the set of 144 test conditions was repeated to com-

pare the success rates of MLFAwith and without Jöreskog’s

proposal. With it, the observed success rates were, as ex-

pected, within the confidence limits of those reported in

Table ?? (13.6%, 26.7%, 48.1%, and 79.6% across the four
levels of critical eigenvalues). It turned out however, that

MLFA is generallymore accuratewhen the procedure stops

whenever a Heywood case is detected, accepting the cur-

rent hypothesis as the number of dimensions (since the

hypothesis of one less dimension was rejected as insuffi-

cient). The success rates in the four levels of critical eigen-

values were respectively 32.9%, 49.9%, 70.9%, and 87.3%.

The overall success rate of 61%makes this version of MLFA

more successful that PA, thus changing, with the current

set of simulation conditions, the order observed by Green

et al. (2015). The improvements observed for the four lev-

els of critical eigenvalues are, however, not large enough to

bring MLFA to levels of success comparable to those of the

NEST variants, which all respectively exceeded 50%, 70%,

85%, and 90%.

The comparison of the two implementation forms of

MLFA is also worth examining with respect to the absence

or presence of a doublet factor. Without doublet, the two

forms of MLFA fared equivalently (78.2% and 78.3%) but

the version incorporating Jöreskog’s proposal actually did

more poorly than the plain version in the presence of a

doublet (17.4% versus 49.6%).

Limitations and future work.

As already mentioned in discussing the current perfor-

mance of CD that does not match that documented by Rus-

cio and Roche (2012), there is no guarantee that NESTip or

any other NEST method should quite generally outperform

CD. But given the current poor performance of CD, and in

absence of contradicting information using problem struc-

tures more favorable to CD, the current study minimally

establishes that there is a class of problem complexity for

which NEST methods markedly outperform CD as well as

MLFA, even without the handling of Heywood cases pro-

posed by Jöreskog (1967).

Reasons were proposed why CD is handicapped for the

purpose of identifying the total number of factors con-

tributing to the correlations between the observed vari-

ables. This handicap of CD would remain, even for much

larger sample sizes than those studied here. MLFA, how-

ever, might fare far better than it did here for much

larger sample sizes, with larger number of factors and

of observed variables, perhaps especially when the fac-

tor space includes small eigenvalues due to factor correla-

tions. Would there be conditions sufficiently different from

the present ones under which MLFA outperforms NESTip?

This is possible but such conditions remain to be identified.

If such conditions exist for which MLFA would perform

better than NESTip, the other NEST variants should also

be verified, because perhaps the widely changed condi-

tions would also change their relative power. More work is

thus required either to extend the confidence that NESTip

is generally the method to be recommended or to develop

rules to adapt the recommendation to particular observ-

able data conditions.

Conclusion
In EFA, data modeling approaches may be used to identify

how many dimensions are required to account for the cor-

relations expressed in a data set. Ideally, all dimensions

should be identified, including so-called minor factors. If

these reflect negligible sources of information, they can be

consciously disregarded to simplify the picture. But if they

result from the correlation of important factors, their ne-

glect would prevent correct understanding of the underly-

ing dynamics. To identify all the common dimensions ex-

pressed in a data set, the Next Eigenvalue Sufficiency Test,

implemented in its NESTip version, was shown, over a lim-
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ited but representative range of conditions, to be the most

reliable of the eight methods tested. This NEST procedure

is made available in R and MATLAB code as well as a com-

plement in Excel (see Appendix A). An illustrative applica-

tion of the latter is provided in Appendix B.

Authors’ note
The author thanks Louis Laurencelle for a critical review

of this manuscript.
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Figure 1 Screen window interface by which NEST.xls implements NESTip.

Appendix A: Availability of NEST.
Despite its well-earned reputation, PA has long remained much underused for its lack of availability in popular statisti-

cal analysis packages. To palliate such problem, R (NEST.R) and MATLAB (NEST.m) code is provided as supplementary

material on the journal’s web site, the latter further allowing illustrative graphs. To make NEST practical for EFA to a

larger audience, NESTip has also been implemented through macros within a Microsoft Excel file (NEST.xls) that works

on PC computers (the Apple implementation of Visual Basic for Applications was too rudimentary when this was devel-

oped), also available on the journal’s web site. Permission for the programmed complements must be granted by the

user by lowering the security level following a system warning to that effect. Once this file is opened, a separate Excel

file containing either the data or their correlation matrix must be opened; it will automatically have access to the NEST

complement. The data need not and should not be copied to NEST.xls itself. The variables submitted to NEST must be

contiguous and free from missing data, but a correlation matrix can be either complete or limited to its upper or lower

triangular form. Line 1 of the data sheet may start directly with the data or contain the variable labels.

Appendix B. Illustrative application of the NEST Excel complement.
The use of NEST.xls is illustrated with the 12 item subset selected by Finch and West (1997), from 25 self-monitoring

items collected by Briggs, Cheek, and Buss (1980), to produce a clean data set to illustrate confirmatory factor analysis

(CFA) of a three factor model (extroversion, other-directedness, acting). Four items were retained by Finch and West for

each factor. They report the correlations, based on 2951 participants, rounded to the second decimal. Although their

three factor CFA model represented substantial improvement over a single factor model, it did not adequately account

for the data, as testified by χ2(51) = 638 (the authors did not report the associated p < 10−20
). Consistent with this

unacceptable fit index, NEST.xls indicates, as seen in Figure ??, that the three factor model is inadequate, although four
dimensions suffice. Details of its use follow.

Different versions of Excel offer complements in different ways. The NEST complement may be offered directly or

through the ‘Complement’ tab. Another complement implemented in NEST.xls is an aid to detect outliers (Achim, 2012).

Selecting the NEST complement item opens a window only asking to select the data columns. This is done by clicking on

the columns headings, not on the line containing the variable names. Then clicking the GO button applies NESTip based

on 1000 surrogate datasets, rather than the 500 used in the present work. When a correlation matrix is specified, which

is detected by the number of data lines equating their number of selected columns, a query window asks for sample size.

A moving horizontal cursor indicates progression.

The results are displayed within the same window. First the PA null model is tested and the rank of the data eigenval-

ues among 1000 simulations is given for each component rank. Figure ?? indicates that the first three data eigenvalues
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ranked first among the 1001 available and all remaining eigenvalues ranked last. The number of factors that PA suggests

terminates that line. This is followed by the NEST (preferred NESTip version) for models with increasing number of di-

mensions, where the rank of the data eigenvalues among the corresponding eigenvalues of the surrogate data is given

for each consecutive eigenvalue up to one past the number of factors constituting the current null hypothesis. This last

rank is the actual Next Eigenvalue Sufficiency Test of the model; the previous ranks are presented to assure that the PAFA

model was successful at approximating the data eigenvalues. For instance, in Figure ??, for “H0: 3 factors”, the ranks
are 528, 511, 422, and 12; the first three ranks confirm close approximation of the corresponding data eigenvalues by the

model and the last one specifies p < .012 (i.e., = 12/1001) for the test of the current null hypothesis. The test ranks for
consecutive eigenvalues up to k+1 are followed by the test verdict (model rejected or accepted) using the .05 significance
level. All previous ranks should be around 500 since the model was adjusted to match the data eigenvalues.
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