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Spike neural models

Part I: The Hodgkin-Huxley model
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Abstract Artificial neural networks, or ANNs, have grown a lot since their inception back in the

1940s. But no matter the changes, one of the most important components of neural networks is

still the node, which represents the neuron. Within spiking neural networks, the node is especially

important because it contains the functions and properties of neurons that are necessary for their

network. One important aspect of neurons is the ionic flow which produces action potentials, or

spikes. Forces of diffusion and electrostatic pressure work together with the physical properties

of the cell to move ions around changing the cell membrane potential which ultimately produces

the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates

the ionic flow of the giant squid axon via four differential equations. The model is implemented in

Matlab using Euler’s Method to approximate the differential equations. By using Euler’s method,

an extra parameter is created, the time step. This new parameter needs to be carefully considered

or the results of the node may be impaired.
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Introduction
The arrival of computers ushered in the advent of artificial

neural networks (ANNs). ANNs have a variety of purposes,

such as regression and classification (Dreiseitl & Ohno-

Machado, 2002), learning (Sutskever, Vinyals, & Le, 2014),

recognition (Taigman, Yang, Ranzato, & Wolf, 2014), pre-

diction (Shen & Bax, 2013), and helping researchers under-

stand the human brain (Kuebler & Thivierge, 2014). Over

time, three distinct generations of ANNs have emerged: the

first generation is digital, the second generation is analog,

and the third generation is spiking.

The origin of ANNs is rooted in biology, and for these

first generation networks the main biological feature they

used was the all or nothing aspect of neural firing: to fire

or not fire, 0 or 1. In a landmark paper by McCulloch and

Pitts (1943), they use the “all-or-none” characteristic of neu-

ral activity and fashioned the idea of modelling neurons to

be threshold gates which either fire or don’t fire (McCul-

loch & Pitts, 1943). The general idea behind the threshold

gate is that the computational unit of the network receives

input from other units in the form of a 1 (fire) or 0 (didn’t

fire) and sums up these inputs. If the summation passes a

pre-determined threshold, the unit fires, or outputs 1, and

if the summation does not pass the threshold, the unit out-

puts a 0 to signify not firing. This concept of a threshold

gate for the nodes (or neurons) of the network gave rise

to a number of ANNs including the perceptron (Rosenblatt,

1958) and the Hopfield network (Maass, 1997; Denker et al.,

1987; Hopfield, 1982). These networks helped develop the

idea of using neural networks to understand how informa-

tion is stored and remembered (Rosenblatt, 1958).

Digital input and output has limited capabilities

though; first generation ANNs cannot handle “degrees“,

such as humans’ ability to see degrees of colour or feel de-

grees of pressure through touch. The second generation

of ANNs allows for analog input and output. This genera-

tion is muchmore robust and flexible, able to solve a wider

range of problems and solve them more efficiently. For ex-

ample, the second generation handles greyscale, instead of
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just black and white, and also solves logic problems using

fewer nodes (DasGupta & Schnitger, 1994).

Analog data works because of the addition of an acti-

vation function which is an abstraction of the neural fir-

ing rate. In second generation ANNs, the choice of an ac-

tivation function is very important as different activation

functions (e.g. sigmoid or cubic) differ in terms of effi-

ciency and quality of approximation (DasGupta & Schnit-

ger, 1994). Many feedforward, reinforced learning, and

backpropagation networks are second generation neural

networks.

Work on the second generation ANNs is still ongoing,

both improving current ANNs and developing new ones.

Applications that use deep learning, such as speech recog-

nition and computer vision, are examples of second gen-

eration ANNs (LeCun, Bengio, & Hinton, 2015). In fact, the

vast majority of applications that use ANNs employ second

generation ANNs. Still, research is realizing that second

generation ANNs cannot match the human brain’s capabil-

ities. For example, humans have extremely fast process-

ing speeds and are very efficient for learning and recog-

nizing items in their environment, especially considering

the different forms and views objects can take. Therefore,

the third generation returns to our biological roots and

looks at how our brains function (Maass, 1997). Specifi-

cally, the third generation of ANNs are spiking neural net-

works (SNNs) where action potentials (spikes) form the in-

put and output of the network nodes. This goes beyond

the ‘all or nothing’ of the first generation because they in-

clude other important aspects of neurons such as how the

spikes might encode information. The third generation

of ANNs may also take into account different features of

the neurons such as how much of the neurotransmitter is

released, or the time delay between different presynaptic

spikes. The added information from biologically inspired

nodes gives more opportunities for information encoding

and decoding.

In all generations though, the first step in understand-

ing an ANN is understanding the node, or neuron. SNN

nodes can be divided into three categories based on their

similarity to biological neurons (Zamani, Sadeghian, &

Chartier, 2010).

Explicit representations of biological neurons. These
models are the most biologically accurate. Different pa-

rameters of the model represent specific biological com-

ponents of a neuron. These models explain how neurons

function in detail but they are computational expensive

and therefore simulations tend to be slow.

General representation of neural networks. While
these models are not quite as biologically detailed as the

previous models, they are still complex models composed

of multiple differential equations. In this category, the pa-

rameters do not exactly correspond to a biological compo-

nent; theymodel the biological behaviorwhile ignoring the

physical characteristics that make the behavior happen.

Generic threshold-fire neural networks. These models
are the simplest in terms of equations and the farthest

from accurately representing the biological neuron. They

model a neuron’s ability to integrate inputs and fire via a

threshold.

The above categories are regarding the nodes only; the

architecture of the SNNs can also vary in complexity and

functionality. Trying to review all SNNs would require a

complete book. Therefore, for a meaningful coverage of

the subject, this tutorial primarily focuses on the node.

This tutorial is split into two parts, part one focuses on the

explicit representation of the neuron, specifically on the

Hodgkin-Huxley model of the node while part two will fo-

cus on the other two categories of SNN nodes.

The node represents the neuron in the brain, or, more

accurately, it represents the cell body (soma) of the neu-

ron. Much like the cell body, the node receives signals from

other nodes and decides if it is going to send a signal along

to other nodes. No ANN, spiking or otherwise, exists with-

out a node and in SNNs there are a lot of options to choose

from. The Hodgkin-Huxley model is a point neuron model.

Point neuronmodels are only concernedwith how the neu-

ron handles input voltage to produce, or not produce, an

action potential. They are not concerned with more com-

plex features of neurons that can affect the buildup and

dissemination of the action potential. There are models

that also incorporate other features, for example, the com-

partmental neuron model takes into consideration time of

inputs: inputs come in from different sources in different

locations therefore their signals take varying amounts of

time to reach the summation point (Gerstner, 2002).

The node in the Hodgkin-Huxley model simulates the

biological functioning of the neuron. Therefore before re-

viewing the model, a brief review of the biological neuron

is in order. This biological review is followed by an expla-

nation of the Hodgkin-Huxley model and then a discussion

on how to implement the model (see Appendix A for Mat-

lab code of the Hodgkin-Huxley model).

The Biological Neuron
The Hodgkin-Huxley model is an example of an explicit

representation of the neuron. This model is concerned

with how the movements of ions produce the changes in

the voltage of the neuron. Therefore, to understand what

this model mimics, a basic knowledge of the ionic changes

is important. There are other models in the literature that

focus on different aspects of the neuron.
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Figure 1 The ionic basis of the resting potential. Diagram create by Synaptidude at English Wikipedia and retrieved

from commons.wikimedia.org/wiki/File:Basis_of_Membrane_Potential2.png.

Ionic Movement

When a neuron is at rest (no input current) intracellular

fluid is negatively charged and has a high concentration

of potassium ions (K
+
) and organic ions (A

–
) with smaller

concentrations of chloride ions (Cl
–
) and sodium ions (Na

+
).

The extracellular fluid is positively charged and contains

high concentrations of Cl
–
and Na

+
but low concentration

of K
+
(see Figure 1). The cell membrane is semipermeable

and separates the intracellular fluid from the extracellular

fluid. The permeability of the cell membrane depends on

the ion; it is more permeable to K
+
than it is to Na

+
, and it

is not permeable to A
–
. This permeability, the forces within

the neuron, ion pumps, and the ionic channels control the

movement of all the ions.

There are two forces working on the ions at all times:

diffusion and electrostatic pressure. These forces affect

ionic movement in the extra- and intracellular fluid. The

force of diffusion moves ions so that each ion is equally

spread throughout the fluid with no areas of high or low

concentrations. Therefore, because there is a high concen-

tration of K
+
in the intracellular fluid, diffusion exerts pres-

sure tomove some of the ions to the extracellular fluid. Dif-

fusion also exerts pressure on the Na
+
ions to move from

the extracellular fluid to the intracellular fluid. If there

was just diffusionworking on these ions, the neuronwould

have equal Na
+
and K

+
ions in the intra- and extracellular

fluid since the force of diffusion breaks up any areas of

high concentration of ions, moving the ions to areas with

lower concentrations.

Electrostatic pressure causes ions of the same charge

to be repulsed by each other while making ions of opposite

charges attracted to each other. Extracellular fluid is posi-

tively charged therefore it repulses positively charged ions,

such as K
+
, while attracting negatively charged ions such

as Cl
–
. Similarly, intracellular fluid is negatively charged

therefore repulsing Cl
–
while attracting K

+
.

Both K
+
and Cl

–
have two forces exerting opposing pres-

sures on them which holds their overall concentration sta-

ble within the intra- and extracellular fluid. For Na
+
ions,

the force of diffusion and electrostatic pressure both exert

pressure to move these ions from the extracellular fluid to

the intracellular fluid. Therefore, to achieve stability, the

cell membrane contains sodium-potassium pumps which

pushes three Na
+
ions out of the cell in exchange for pump-

ing two potassium ions into the cell. Overall, these pumps

and the cell membrane permeability keep the balance of

Na
+
and K

+
stable in the intra- and extracellular fluid
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Figure 2 Ion locations while at rest (top) com-

pared to during an action potential (bottom). Di-

agram created by Blausen Medical Communications,

Inc. and retrieved from commons.wikimedia.org/wiki/

File:Blausen_0011_ActionPotential _Nerve.png.

despite extra pressure on the Na
+
to enter the intracellular

fluid.

Cells also have different ion channels which, when

open, allow ions of a particular type to flow though the

cell membrane (see Figure 2). The opening and subsequent

closing of these channels affect, and are affected by, the

voltage of the cell membrane and are the cause of action

potentials. When a current enters the cell it changes the

membrane potential. An action potential, the rapid move-

ment of ions, starts when the membrane potential reaches

a prescribed threshold due to external sources of input cur-

rent. When the membrane potential reaches said thresh-

old, Na
+
channels open allowing Na

+
to enter the cell (flood

the intracellular fluid) which causes the membrane poten-

tial to spike. K
+
also have channels to allow K

+
ions to leave

the intracellular fluid but these channels require a higher

membrane potential voltage than the Na
+
channels. There-

Figure 3 Ion movements during an action potential. Bot-

tom image shows when channels open or close during

an action potential. Top image shows the correspond-

ing sodium channel at specific points of the action poten-

tial. Diagram created by: If Only and retrieved from sci-

oly.org/wiki/index.php/File:Image12.jpg.

fore, first Na
+
enters the cell and creates a sharp increase

in the membrane potential. This increase then causes the

K
+
channels to open, allowing K

+
to leave the intracellu-

lar fluid. At this point, Na
+
is entering faster than K

+
is

leaving because of the electrostatic and diffusion forces ex-

erted on it, so there is a still a net gain in membrane po-

tential. When the peak occurs, Na
+
channels become re-

fractory (blocked) so Na
+
can no longer enter the cell, but

K
+
can still leave, thereby making the membrane potential

decrease (see Figure 3). Once the resting potential of the

membrane is reached K
+
channels close and Na

+
channels

reset so that they can eventually be opened again. At the

end of the action potential, the mix of Na
+
and K

+
in the

intra- and extracellular fluid is not the stable mixture de-

scribed earlier. Therefore the forces of diffusion and elec-

trostatic pressure are not balanced, producing a refractory

period where the cell membrane goes below the resting

point before increasing again as the ions move into their

stable states.
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Figure 4 General structure of a neuron. Diagram created by Quasar Jarosz and retrieved from

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg. Edited to include labels, modified axon label,

and removed Schwann cells.

Neuron Overview

Ion movements and the subsequent action potentials are

just a small part of how neurons work. As mentioned be-

fore, there are other models that deal with other aspects of

neurons and how the brain functions as a whole. There-

fore, for a more thorough understanding of the complex-

ity involved in biological modelling, below is a very quick

and general review of how the brain works. There are also

many resources for more detailed explanations, such as

those by Carlson and Birkett (2016) or Dubois (2010).

As seen in Figure 4, most neurons contain a cell body

(soma), dendrites in the form of dendritic tree(s) which

contain dendritic spines at the ends, axon(s) which may

be covered in multiple myelin sheaths (the nodes of Ran-

vier are areas between the myelin sheath), and terminal

buttons at the axon terminal. The dendritic spines receive

messages from other neurons while terminal buttons se-

crete a neurotransmitter that is turned into messages for

other neurons. The soma contains the nucleus and sums

up incoming currents from the dendrites. The configura-

tion of these components can vary depending on the type

of neuron. For example, a bipolar neuron has one den-

dritic tree, which has many dendrites on it. The one den-

dritic tree is connected to the soma. The soma is also con-

nected to an axon which in turn leads to multiple termi-

nal buttons. Another type of neuron is the multipolar neu-

ron which is similar to the bipolar neuron except that it

has multiple dendritic trees attached to the soma. In all

neurons, the length of the axon, the number of branches

that end in terminal buttons, and the number of dendritic

spines varies.

Dendrites, soma, axons, and terminal buttons are all

important components of how messages are passed from

one neuron to other neurons. It starts when a neuron,

called the presynaptic neuron, releases a chemical neuro-

transmitter into the synapse, a small space between a ter-

minal button of the presynaptic neuron and a dendritic

spine of the postsynaptic neuron, the neuron being stud-

ied. The neurotransmitter binds with spots on the den-

dritic spine of the postsynaptic neuron which creates a

message via a current. Messages are passed down the tree

to the soma where all messages are combined and inte-

grated via the ion adjustment detailed above. If the sum-

mation of the incoming currents passes a threshold, an

action potential occurs. The resulting voltage spike trav-

els down the axon to the terminal buttons making them

release their own chemical neurotransmitters. How the

neurotransmitter is released depends on the type of neu-

rotransmitter, but it will generally use channels that can

be opened and closed. When the action potential reaches

the terminal button a chain reaction occurs that ultimately

opens up the channel, allowing the neurotransmitters to

leave the terminal button and go into the synapse. Once in

the synapse, the whole reaction starts again with the next

neuron(s) who have dendritic spines on the other side of

those synapses. The number of dendrites and their length

to the soma can affect when they are integrated by the

soma.

The brain has other supporting cells which can affect
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how messages are formed and passed. These support-

ing cells, glia, are different types of neurons than those

discussed above and include astrocytes, oligodendrocyte,

and microglia. Astrocytes provide nutrients and regulate

the extracellular fluid. Oligodendrocytes form the myelin

sheaths which surround and insulate axons of the neurons

allowing the action potential to travel down the axon bet-

ter. Microglia protects the brain from invading microor-

ganisms. The functions of these glia cells affect how effi-

ciently neurons work.

Models break down neuron functions and properties

by using mathematical equations. Models that are biolog-

ically accurate tend to use more equations than models

that are less biologically accurate due to the fact that multi-

ple biological components are explicitly being modelled to

simulate the neuron’s functioning.

Hodgkin-Huxley Model
The Hodgkin-Huxley model, one of the simplest biological

models (Abbott & Kepler, 1990), uses four differential equa-

tions to compute the membrane potential. These four dif-

ferential equations model the ionic flow of the neuron.

In the early 1950’s, Hodgkin and Huxley studied the gi-

ant axon of a squid and used their findings to develop their

model of the neuron (Hodgkin & Huxley, 1952b, 1952c,

1952d; Hodgkin & Keynes, 1955; Hodgkin & Huxley, 1952a;

Hodgkin, Huxley, & Katz, 1952). They studied ionic flow by

inserting an electrode into the cell and inputting a current

tomeasure how the flow of ions and cell membrane change

based on this inputted current. From their measurements,

the researchers were able to derive detailed equations to

explain the changes to the ionic current density. In gen-

eral, they found that:

I = CM
dV

dt
+ Ii (1)

where I is the total membrane current density measured
in microamps per centimeter squared, CM is the mem-

brane capacity measured in microfarads per centimeter

squared
1
which is assumed to be constant and equal to 1

µF/cm2
,
dV
dt is the change in the displacement of the mem-

brane potential from its resting value with respect to time

and Ii represents the three different ionic current densities
measured (Na

+
, K
+
, and leakage).

You will commonly see Eq. 1 written as:

CM
dV

dt
= I −

∑
ion

Iion (2)

where the summation is over all ionic currents measured.

This equation is useful because it focuses on the change of

the membrane potential.

The ionic current density is divided into the three ionic

currents that Hodgkin and Huxley measured. These ions

are sodium (Na
+
), potassium (K

+
) and a catch-all group

called leakage. Leakage consists mostly of chloride but

may also have small amounts of other ions. Despite large

amounts of organic ions in the intracellular fluid, organic

ions is not modelled because they don’t move between the

intra- and extracellular fluid. The three measured ionic

currents are represented in equation 1 as Ii and in equa-
tion 2 as

∑
ion

Iion. Each of these ions has their own equation

such that the summation:

∑
ion

Iion = INa+ + IK+ + ILeak (3)

is decomposed into:

INa = gNa+ hm
3 (V − ENa+) (4a)

IK = gK+ n
4 (V − EK+) (4b)

ILeak = gLeak (V − ELeak) . (4c)

Therefore:

∑
ion

Iion = gNa+ hm
3 (V − ENa+)

+ gK+ n
4 (V − EK+)

+ gLeak (V − ELeak) .

(5)

The parameters include constants gi which are the
maximum membrane conductances per ion measured in

millisiemens per centimeter squared
2
andEi are the value

at which time there is no movement of the corresponding

ion between the intra- and extracellular fluid (the rever-

sal potential). The values of gi and Ei were calculated by
Hodgkin and Huxley to fit their empirical findings (see Ta-

ble 1).The parameters h, m, and n are voltage-dependent
conductance variables, also known as gating variables.

Changes in these variables are calculated using differen-

tial equations (Equations 6a, 6b, and 6c). In all of the equa-

tions, i represents Na+, K+, and the leakage.
The gating variables represent the probability of the

channels being open, of ions moving from intracellular to

extracellular fluid, or vice versa. By definition the values

of the gating variables (h, m, and n) can be anywhere be-
tween 0 and 1 and are dependent on both time and mem-

brane voltage. The change in the gating variables is based

1
A farad is the capacitance in which one electric charge causes a potential difference of one volt.

2
Siemens is the unit of electric conductance.
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Table 1 The constant parameters of the Hodgkin-Huxley

model. In the original article, parameters are determined

with the membrane resting potential (Vrest) set to 0 mV in
other articles, a resting potential of -65 if used. To reflect

either case, the above constants, and the Matlab code (Ap-

pendix A), add a parameter Vrest.

Ei gi
Na

+ 115 + Vrest mV 120 mS/cm
2

K
+ −12 + Vrest mV 36 mS/cm

2

Leak 10.6 + Vrest mV 0.3 mS/cm
2

on the following differential equations:

dh

dt
= αh (V ) (1 − h) − βh (V )h (6a)

dm

dt
= αm (V ) (1 −m) − βm (V )m (6b)

dn

dt
= αn (V ) (1 − n) − βn (V )n (6c)

The asymptotic value of any of the gating variables is:

x̄ =
αx (V )

αx (V ) + βx (V )
(7)

where x stands for h, m, or n. You may see Equation 7
written as:

x̄ =
αx (V )

τx (V )
(8)

where τ is the time constant and equals αx(V ) + βx(V ).
These equations are also called the Equilibrium functions.

The above equations use αi and βi, which are formulas
that Hodgkin and Huxley derived from their research (see

Table 2).

There are two types of gating variables, activation (m
and n) and inactivation (h) which represent the proba-
bility of the Na

+
(h and m gates) and K

+
(n gate) chan-

nels being open. Higher values, or probabilities, of activa-

tion gates means there is an increase in the depolarization

of the cell membrane, while higher values of inactivation

gatesmeans there is a decrease in the depolarization of cell

membrane. Figure 5 shows how the gate values change to

stay in equilibrium dependent on the voltage. Na
+
has the

two forces working on it, which is represented by the h
and n gates; with increased voltage is a decrease of inac-
tivation, and an increase in activation of Na

+
channels. K

+

channels open later than Na
+
channels, as seen by m rais-

ing after the n gate. The inactivation gate is the opposite
of the activation gates, decreasing as the activation gates

increase.

Table 2 Equations used to define gating variables. Vrest is
added to reflect that different resting potentials often used

in varying articles (either 0 mV or -65 mV). See Appendix B

for more information on the different forms of these equa-

tions.

αi(V ) βi(V )

h 0.07e
(Vrest−V )

20
1

1 + e3−0.1(V−Vrest)

m
2.5 − 0.1 (V − Vrest)

e2.5−0.1(V−Vrest) − 1
4e

(Vrest−V )
18

n
0.1 − 0.01 (V − Vrest)

e1−0.1(V−Vrest) − 1
0.125e(Vrest−V )/80

Figure 6 shows the conductance of the ions in relation

to an action potential. When an action potential starts, Na
+

conductance drastically increases and at the peak of the

action potential, Na
+
conductance starts decreasing. This

represents sodium’s movement into and then out of the

intracellular fluid by the opening and then closing of the

Na
+
channels. When an action potential starts, the sodium

channels open, allowing the Na
+
into the cell, but at the

peak of the action potential the channels become refrac-

tory so Na
+
can no longer enter but slowly leaves the cell

by the forces working on the ions. The ion channels for K
+

are slower to open and close which is also reflected in the

conductance of K
+
.

The four differential equations that make up the

Hodgkin-Huxley model therefore are the three gating vari-

ables (Eqs 6a, 6b, and 6c) and the ionic current density

equation (Eq 1). These equations are the mathematical

equivalent of the ionic current: how movement of the ions

affect the membrane potential and how the membrane po-

tential affects the movement of the ions. Notice that the

gating variables are affected by the voltage of the mem-

brane and that the voltage is affected by the gating vari-

ables and ionic current. This is related to how the differ-

ent ions can permeate the cell membrane depending on

the membrane potential because different channels open

and close depending on cell membrane voltage.

The parameter I in equations 1 and 2 is an input cur-
rent, which means current coming in from an outside

source. How the model handles an input current to pro-

duce action potentials is very important since it is the con-

version of input current from other neurons into action po-

tentials that is the basis of our brain’s functionality.

Figure 7 displays some of the different neural re-

sponses that occur due to an input current. These re-

sponses are based on ionic current, therefore changes in

the conductance and gating variables are also displayed. If

the input is too low no action potential is produced (top
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Figure 5 Equilibrium Function of the gating variables (Eq.

11)

row). At the introduction of the input current the ions

fluctuate until they reach a new steady state with slightly

higher voltages. When a slightly higher voltage is injected

into the node (middle row) a potential might be induced

before stabilization occurs. In terms of biology, this is a

redistribution of the ions due to the changes of electro-

static pressure. When the input current reaches approx-

imately 6.3 µA/cm2
a steady stream of action potentials oc-

curs (bottom row). Notice though, that there is an increas-

ing amount of time between each spike in the regular spik-

ing pattern; this increase in the interval between spikes is

an important and basic component of spikes. The Hodgkin-

Huxley model explains the membrane potential and thus

action potentials via ionic current changes. Because the

model is strongly based on biological principles, the results

it produces are accurate in both timing and voltage, impor-

tant characteristics in modelling.

Implementation of the Hodgkin-Huxley Model
The majority of equations used in modelling the Hodgkin-

Huxley model are differential equations; these equations

represent the change in the variable over time (change in

voltage, change in gating), not the actual membrane poten-

tial or gating value at a given time. The functions to de-

termine the value at a given time is the integral of the dif-

ferential equation. The problem with that is that the four

differential equations are interrelated and so it is hard to

calculate the integral. Therefore an approximation of the

function is used, often by Euler’s method (see Appendix C

for a review of Euler’s method).

The Hodgkin-Huxley model is fitted to the squid’s giant

axon so the Hodgkin andHuxley did thework in parameter

Figure 6 Conductance of ions in relation to an action po-

tential. Total time illustrated is 15 ms with a steady input

current of 2 mV

selection; they figured out the necessary values for the re-

versal potential, and membrane conduction as well as the

full equations for the gating variables. Besides the input

current, another parameter occurs because of the integral

approximation method used. In Euler’s method, there is

a parameter that is the time step, dt, which depending on

the value selected may make it impossible for the model

to work, or make the model take too long to work. The

time step is directly related to the time it takes to run, so

the smaller the value, the longer simulations will take. All

simulations used in this tutorial set dt to 0.01. For a rough

approximation of time differences, when dt=0.01, a 150 ms

simulation took roughly 250 ms to run on a basic laptop

running Windows 7 and Matlab 2013. The same simula-

tion at dt=0.1 took approximately 75 ms and dt=0.001 took

approximately 1650 ms. While it may seem like using a

larger dt makes the most sense, dt is also related to how ac-

curate the simulation is. Having a large dt can mean some

necessary steps in ionic flow are skipped such as the open-

ing and closing of voltage dependent gates. Therefore the

simulation becomes inaccurate. Specifically in the case of

Hodgkin-Huxley, larger dt values can drastically affect the

ionic current so that the spikes voltage is higher value than

the code can handle, or is not realistically plausible, which

will stop the code from functioning.

Conclusion
The Hodgkin-Huxley model is one the simplest models in

the explicit representation of neurons category. Yet, it re-

quires 4 differential equations plus 8 other equations and

3 parameters to model just the ionic flow of a neuron. Be-

cause of the complexity of the model, an approximation
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Figure 7 Three examples of how an input current produces an action potential via ionic currents. The first 50ms had no

input current to make sure the ionic flows stabilize from the initial values used. Input current starts at 50ms as shown.

Rows vary by input current of 2 µA/cm2
, 4 µA/cm2

, and 7 µA/cm2
for top, middle, and bottom rows respectively. The

first column shows cell membrane effect based on input, second column is changes on the gating variables, while third

column is changes in conduction of K
+
and Na

+
with the action potential

method is needed to calculate the integrals of the differen-

tial equations. This approximation adds another parame-

ter that needs to be carefully reviewed since that parame-

ter affects how long the simulation takes to run and how

accurate the simulation is.
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Appendix A: Matlab code for Hodgkin-Huxley
Helper Functions

The gating variables use equations α and β (see Table 2) are separated into their own functions. These functions take as
input the current voltage and the resting membrane voltage and output the gating value. In Matlab, these functions need

to be in either their own files or at the bottom of the main file.

% calculate alpha m and beta m based on Table 2
function [alpha_m, beta_m] = m_equations(V, Vrest)

alpha_m = (2.5-0.1*(V-Vrest))/(exp(2.5-0.1*(V-Vrest))-1);
beta_m = 4*exp((Vrest-V)/18);

end
% calculate alpha n and beta n based on Table 2
function [alpha_n, beta_n] = n_equations(V, Vrest)

alpha_n = (0.1-0.01*(V-Vrest))/(exp(1-0.1*(V-Vrest))-1);
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beta_n = 0.125*exp((Vrest-V)/80);
end
% calculate alpha h and beta h based on Table 2
function [alpha_h, beta_h] = h_equations(V, Vrest)

alpha_h = 0.07*exp((Vrest-V)/20);
beta_h = 1/(1+exp(3-0.1*(V-Vrest)));

end

Main Function

Below is the main Hodgkin-Huxley function. The code integrates an input current via the differential equations to pro-

duce a vector of membrane voltage values over the time period. It is set up to allow the user to adjust the resting potential,

Vrest, to any value they want; in Hodgkin-Huxley’s papers, this is set to 0 mV but in many other papers, this is set to -65
mV. The time step, dt, is set to 0.01 which is the value used in all the graphs in this paper. The duration of the simulation

can be adjusted based on the needs of the research through the variable totalTime. Initial values for the ionic currents

are their equilibrium values and the initial values of voltage is the resting potential.

function HodgkinHuxley
Vrest = 0; %mV− change this to−65 if desired
dt = 0.01; %ms
totalTime = 150; %ms
C = 1; % uF/cm^2

% constants; values based on Table 1
E_Na = 115 + Vrest; %mV
E_K = -6 + Vrest; %mV
E_Leak = 10.6 + Vrest; %mV

g_Na = 120; %mS/cm^2
g_K = 36; %mS/cm^2
g_Leak = 0.3; %mS/cm^2

% Vector of timesteps
t = [0:dt:totalTime];

% Current input−− change this to see how different inputs affect the neuron
I_current = ones(1,length(t))*0.0;
I_current(50/dt:end) = 3; % Input of 3 microA/cm2 beginning at 50 ms and steady until end of time
period.

% initializing values
V(1) = Vrest; %membrane potential is starting at its resting state

% separate functions to get the alpha and beta values
[alphaM, betaM] = m_equations(V(1), Vrest);
[alphaN, betaN] = n_equations(V(1), Vrest);
[alphaH, betaH] = h_equations(V(1), Vrest);

% initializing gating variables to the asymptotic values when membrane potential
% is set to the membrane resting value based on equation 13
m(1) = (alphaM / (alphaM + betaM));
n(1) = (alphaN / (alphaN + betaN));
h(1) = (alphaH / (alphaH + betaH));
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% repeat for time determined in totalTime , by each dt
for i = 1:length(t)

% calculate new alpha and beta based on last known membrane potenatial
[alphaN, betaN] = n_equations(V(i), Vrest);
[alphaM, betaM] = m_equations(V(i), Vrest);
[alphaH, betaH] = h_equations(V(i), Vrest);

% conductance variables− computed separately to show how this
% changes with membrane potential in one of the graphs
conductance_K(i) = g_K*(n(i)^4);
conductance_Na(i)=g_Na*(m(i)^3)*h(i);

% retrieving ionic currents
I_Na(i) = conductance_Na(i)*(V(i)-E_Na);
I_K(i) = conductance_K(i)*(V(i)-E_K);
I_Leak(i) = g_Leak*(V(i)-E_Leak);

% Calculating the input
Input = I_current(i) - (I_Na(i) + I_K(i) + I_Leak(i));

% Calculating the new membrane potential
V(i+1) = V(i) + Input* dt*(1/C);

% getting new values for the gating variables
m(i+1) = m(i) + (alphaM *(1-m(i)) - betaM * m(i))*dt;
n(i+1) = n(i) + (alphaN *(1-n(i)) - betaN * n(i))*dt;
h(i+1) = h(i) + (alphaH *(1-h(i)) - betaH * h(i))*dt;

end
end

Graphs

All the graphs used in this paper were made using the code presented here. The code for the graphs should be in the

main function code before the last end. First graph is the Gating Parameters graph used in the middle column of Figure 7.

Input is set to begin at 50 ms, and the graph ignores the first 45 ms because this time is to allow for the voltage to stabilize

around the initial values.

figure(’Name’, ’Gating Parameters’)
plot(t(45/dt:end),m(45/dt:end-1), ’r’,t(45/dt:end), n(45/dt:end-1), ’b’,t(45/dt:end

), h(45/dt:end-1), ’g’, ’LineWidth’, 2)
legend(’m’, ’n’, ’h’)
xlabel(’Time (ms)’)
ylabel(’’)
title(’Gating Parameters’)

The second graph is the double graph of input (top) and voltage (bottom) used in Figure 7, first column. As with above,

time starts at 45 ms in, shortly before input is injected into the neuron.

figure(’Name’, ’Membrane Potential vs input’)
subplot(2,1,1)-
plot(t(45/dt:end),V(45/dt:end-1), ’LineWidth’, 2)
xlabel(’Time (ms)’)
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ylabel(’Voltage (mV)’)
title(’Action Potential’)
subplot(2,1,2)
plot(t(45/dt:end),I_current(45/dt:end), ’r’, ’LineWidth’, 2)
xlabel(’Time (ms)’)
ylabel(’Voltage (mV)’)
title(’Input’)

Figures 6 and 7 (last column) use the below graph to show conductance in relation to an actual potential.

figure(’Name’, ’Conductance’)
plot(t(45/dt:end),V(45/dt:end-1), ’r’,t(45/dt:end), conductance_Na(45/dt:end), ’b’,

t(45/dt:end), conductance_K(45/dt:end), ’g’, ’LineWidth’, 2)
legend(’Action Potential’, ’\ch{Na+} Conductance’, ’\ch{K+} Conductance’)
xlabel(’Time (ms)’)
ylabel(’Voltage (mV)’)
title(’Conduction of \ch{K+} and \ch{Na+}’)

Equilibrium (Figure 5) graph shows values needed for the grating variables to hold equilibrium over a range of voltage

values. This graph does not need the Hodgkin-Huxley function, but does need the helper functions to run. The code starts

by calculating all the equilibrium values for the voltage range (-100 mV to 100 mV) before the actually graph is created.

% Special graph to show ionic current movement
Vrest = 0;
voltage = [-100:0.01:100];
for i = 1:length(voltage)

[alphaN, betaN] = n_equations(voltage(i), Vrest);
[alphaM, betaM] = m_equations(voltage(i), Vrest);
[alphaH, betaH] = h_equations(voltage(i), Vrest);
taum(i) = 1/(alphaM+betaM);
taun(i) = 1/(alphaN+betaN);
tauh(i) = 1/(alphaH+betaH);
xm(i) = alphaM/(alphaM+betaM);
xn(i) = alphaN/(alphaN+betaN);
xh(i) = alphaH/(alphaH+betaH);

aN(i) = alphaN;
bN(i) = betaN;

aM(i) = alphaM;
bM(i) = betaM;

aH(i) = alphaH;
bH(i) = betaH;

end

figure(’Name’, ’Equilibrium Function’);
plot(voltage, xm, voltage, xn, voltage, xh, ’LineWidth’, 2);
legend(’m’, ’n’, ’h’);
title(’Equilibrium Function’);
xlabel(’mV’);
ylabel(’x(u)’);
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Table 3 Different forms that αi(V ) and βi(V ) can take (Table 2). In the first set, V = Vresting − Vcurrent. The second
set of equations has the resting potential is set to 0 mV and u is the membrane potential. The final set has the resting
potential as -65 mV and V is the membrane potential .

αi(V ) βi(V )

h 0.07e
V
20

1

e
V +30

10 + 1

m
0.1 (V + 25)

e
V +25

10 − 1
4e

V
18

n
0.01 (V + 10)

e
V +10

10 − 1
0.125eV/80

h 0.07e
−u
20

1

e3−0.1u + 1

m
2.5 − 0.1u

e2.5−0.1u − 1
4e

−u
18

n
0.1 − 0.01u

e1−0.1u − 1
0.125e−u/80

h 0.07e−0.5(V+65) 1

1 + e−0.1(V+35)

m
0.1 (V + 40)

1 − e−0.1(V+40)
4e−0.0556(V+65)

n
0.01 (V + 55)

1 − e−0.1(V+55)
0.125e−0.0125(V+65)

Appendix B: Ionic Current Equations
When researching Hodgkin-Huxley, equations in Table 2 appeared in a number of different forms. These different forms

occur because they use different resting membrane potential.

The actually formulas given by Hodgkin and Huxley (Hodgkin & Huxley, 1952a) are seen in the top part of Table 3 in

which V is the change of the membrane from its resting potential; V = Vresting −Vcurrent. The formulas used in Table 3
are the same has those above, except in the code above V is explicitly replaced with variables for the resting membrane
potential and the current membrane potential.

When the resting membrane potential is 0 mV, the variable Vresting is replaced with 0, and the formula is as shown
in the middle of Table 3.

While Hodgkin and Huxley adjusted all their constants so that the resting potential is 0 mV, in reality the resting

potential is around -65 mV for the giant squid axon. Therefore, the equations often shown are those in the bottom of

Table 3 (Abbott & Kepler, 1990).

All the above equations show the same information but in slightly different ways. Because of the overlap in variables

used and difference in variable meanings, it is important to carefully read exactly what the authors are modelling.

Depending on what the resting potential is, the reversal potential (Ei) also needs to be adjusted as shown in Table 1.

Appendix C: Euler Method
The Euler method is a quick and easy method used to estimate a function from its ordinary differential equation (ODE).

It is a step-wise calculation based on the idea that the tangents, if close enough, can provide an estimate of the unknown

function. In simple terms to solve a differential equation with the Euler method:

1. Calculate starting values based on prior knowledge

2. Calculate the differential equation, using values obtained in step 1 (or step 4 if repetition)

3. Multiple results from step 2 by a small time step, dt (often 0.1 or 0.01)

4. Add values obtained from step 3 to the starting values used in step 2

5. Repeat steps 2 to 4

As an example, let’s look at the leaky integrate and fire (LIF) model (see part 2 of this tutorial). The LIF model was

chosen because it is possible to have both the differential equation and the integrated function therefore the results of the

Euler method can be compared with the actual function. The differential equation for the LIF is: τ dv(t)dt = RI (t) − v (t)
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Figure 8 Comparison of results using the integrated function (last firing at time 0) and Euler’s method for 5 ms with time

step 0.1

which can be rewritten as:
dv(t)
dt = RI(t)−v(t)

τ The first step is to pick initial values for the functions. For convenience, let

v(0) = 0 (starting membrane potential), R = 1 and τ = 1. Let’s assume that there is a constant incoming current of 3
µA/cm2

so that I(t) = 3 for all values of t. Let the time step, dt, equal 0.1. Therefore, following the steps:
Step 1: v(0) = 0

Step 2:
RI(t)−v(t)

τ = 1(3)−0
1 = 3

Step 3: 3dt = 3 × 0.1 = 0.3
Step 4: v (1) = v (0) + step 3 = 0 + 0.3 = 0.3
Step 5 is the repetition of the previous steps. Therefore, v(2) = 0.57, v(3) = 0.813, v(4) = 1.0317, . . .
The steps can be written into one mathematic equation

v (t) = v (t− 1) +

(
RI (t) − v (t− 1)

τ

)
dt (9)

Let

F (t) =
RI (t) − v (t− 1)

τ
(10)

to obtain the generalized Euler’s method used in the code for the other neuron models.

v (t) = v (t) + F (t) dt (11)

.

While the Euler method is not an exact solution to the differential equation, but an estimate, it does a good job

provided that the time step, dt, is small enough.
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