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Introduction

It is well established that the paired samples t-test can be

used for comparing means between two dependent sam-

ples (Zimmerman, 1997; Fradette, Keselman, Lix, Algina, &

Wilcox, 2003). The assumptions of the paired samples t-

test are that data are randomly sampled from two related

populations, and that the differences between the paired

observations are approximately normally distributed. It

is also well established that the independent samples t-

test can be used for comparing means between two inde-

pendent samples with equal variances (Rasch, Teuscher,

& Guiard, 2007; Fradette et al., 2003). When variances

are not equal, the independent samples t-test is not Type

I error robust, particularly when the sample sizes are not

equal (Ramsey, 1980). When equal variances cannot be as-

sumed, a Type I error robust alternative to the indepen-

dent samples t-test is Welch’s test (Derrick, Toher, & White,

2016; Fradette et al., 2003). For the avoidance of doubt,

here the independent samples t-test assuming equal vari-

ances is referred to as the independent samples t-test, and

the independent samples t-test not assuming equal vari-

ances is referred to as Welch’s test. The assumptions of the

independent samples t-test and Welch’s test are that data

are randomly sampled from two unrelated populations,

which are approximately normally distributed. Welch’s

test is considered Type I error robust for all but the most

extreme deviations from the normality assumption (Rux-

ton, 2006). Extensive testing of these assumptions is not

recommended (Rasch, Kubinger, & Moder, 2011; Rochon,

Gondan, & Kieser, 2012). A further assumption of these

tests is that observations within a sample are independent

of each other. This assumption is critical, violations of the

independence of observations assumption make hypothe-

sis testing invalid (Lissitz & Chardos, 1975).

Conventional teaching of statistics usually assumes a

perfect world with completely dependent samples or com-

pletely independent samples (for example, Magel, 1998).

However, a question that is often asked in research is how

to compare means between two samples that include both

paired observations and unpaired observations. These sce-

narios are referred to as ‘partially overlapping samples’
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(Derrick, Russ, Toher, & White, 2017; Derrick, Dobson-

McKittrick, Toher, & White, 2015; Martinez-Camblor, Cor-

ral, & de la Hera, 2012). Paired samples designs are often

advantageous relative to independent samples designs, be-

cause paired samples designs allow differences between

two samples to be directly compared. However, partially

overlapping samples designs are often required due to the

limited resource of paired samples, where a number of in-

dependent observations are available to compensate. This

could also occur in a matched pairs design, when pairing

individuals on certain characteristics, there may be some

additional independent observations that cannot be rea-

sonably paired on any characteristics. In addition there

are occasions where it is desired that observations from

a paired samples design, and a separate independent sam-

ples design, may be combined, resulting in a partially over-

lapping samples design.

These alternative ap-
proaches emphasise
the need for statis-
tically valid tests in
the partially overlap-
ping samples case.

The approach for analysing par-

tially overlapping samples by design

has received relatively little attention

within the literature. Consider the sce-

narios in Figure 1, which demonstrates

eight scenarios where there are two

samples, each with a different num-

ber of paired observations and indepen-

dent observations.

It is not well established how to pro-

ceed for the scenarios represented by

Figure 1 where there is partial overlap. One ‘standard’ ap-

proach if the number of pairs is large, is to perform the

paired samples t-test on only the paired observations. Con-

versely, if the number of independent samples is large a

‘standard’ approach is to perform the independent sam-

ples t-test or Welch’s test, on only the independent samples

(Looney & Jones, 2003). These standard methods discard

data which adversely impacts the power of the test. Ap-

proaches that discard data are likely to maintain adequate

power if the number of discarded observations is relatively

‘small’ and the sample sizes are relatively ‘large’. One al-

ternative approach that is commonly applied, is to per-

form the independent samples t-test on all of the available

data. However, this is less powerful than a paired sam-

ples approach and ignores the fact that there are matched

pairs. Alternative ad hoc approaches using all of the avail-

able data, but not mimicking the design structure, will not

be considered further in this paper. These alternative ap-

proaches emphasise the need for statistically valid tests in

the partially overlapping samples case.

A frequent occurrence of partially overlapping sam-

ples is a paired samples design with missing observations

(Martinez-Camblor et al., 2012). In this situation partially

overlapping samples do not occur by design, and so it is

necessary to consider why the samples are incomplete. If

data are missing completely at random (MCAR), the reason

for missing data is not related to the value of the observa-

tion itself, or other variables recorded. An example of data

that is MCAR is a question in a survey that is accidentally

missed, or data that is accidentally lost. If incomplete ob-

servations are MCAR, it is reasonable to discard the corre-

sponding paired observations without causing bias (Don-

ders, van der Heijden, Stijnen, & Moons, 2006). If data are

missing at random (MAR), data are missing based on char-

acteristics not directly measured by the missing observa-

tion itself. However, the missing data is related to another

variable in the dataset. The discarding of information that

are MAR is likely to cause bias, therefore the standard ap-

proach of pairwise or listwise deletion is not recommended

(Schafer, 1997; Donders et al., 2006). If data aremissing not

at random (MNAR), the probability of an observation be-

ing missing, directly depends on

the value of the observation being

recorded. When data are MNAR, there

is no statistical procedure that can elim-

inate potential bias (Musil, Warner,

Yobas, & Jones, 2002). This is particu-

larly of concern for analyses with miss-

ing data because it is difficult to dis-

tinguish between data that is MAR and

data that is MNAR. Nevertheless if the

amount of missing data is small, the

bias is likely to be inconsequential. The literature sug-

gests that up to 5% of observations missing is acceptable

(Graham, 2009; Schafer, 1997). Some take a more liberal

stance suggesting that up to 20% of data missing may be

acceptable (Schlomer, Bauman, & Card, 2010).

For a paired samples design with incomplete obser-

vations, researchers often attempt to impute the missing

data. Ad hoc basic imputation approaches for imputing

missing data are biased solutions (Schafer, 1997). Mean

imputation reduces the variation in the data set. Re-

gression imputation inflates the correlation between vari-

ables. More sophisticated techniques, Expected Maximisa-

tion and Multiple Imputation, minimise the bias of the pa-

rameter estimates (Musil et al., 2002; Dong & Peng, 2013).

Standard statistical software will perform the paired

samples t-test, the independent samples t-test or Welch’s

test upon command. In SAS the standard ‘proc ttest’ per-

forms the paired samples t-test, omitting cases pairwise

from calculations when any observation from a declared

paired variable is missing. Likewise in Unistat, a paired

samples t-test is performed, excluding any ‘missing val-

ues’ pairwise. Performing the paired samples t-test in SPSS

gives the options of excluding cases pairwise or exclud-

ing cases listwise, which are equivalent in the two sample
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Figure 1 Examples of ‘partially overlapping samples’. In each scenario each of two samples are represented by a cir-

cle. The paired observations are represented by the overlap and shaded black. From left to right the graphic shows a

decreasing number of paired observations. The relative sample sizes are represented by the size of the circle.

case. In all of these approaches, the unpaired observations

are excluded and the analysis is done only on the paired

data. Caution should be exercised when using SAS, SPSS

or Unistat, because users may be tempted to analyse only

the complete pairs when readily presented with the oppor-

tunity, and not realise the consequences of not using all of

the data. BothMinitab and the standard ‘t.test’ in R present

an error message when a paired samples t-test is selected

with unequal sample sizes, these software at the very least

make users aware there are considerations to take into ac-

count with the analysis they are trying to perform.

Derrick, Russ, et al. (2017) developed two partially

overlapping samples t-tests thatmake use of all of the avail-

able data, that are valid under MCAR and robust under

the assumptions of normality. These test statistics act as

a straightforward interpolation between the paired sam-

ples t-test, and either the independent samples t-test, or

Welch’s test. Using these tests for comparing two sample

means represents a more powerful alternative to discard-

ing information. In the case of a paired samples design

with incomplete observations, these test statistics also rep-

resent an alternative to the need to perform complicated

imputation techniques.

In this paper, the partially overlapping samples test

statistics that make use of all of the available data, account-

ing for the fact that there is a combination of paired obser-

vations and independent observations, are demonstrated

by use of example. It also shows how to perform these new

tests using an R package, partiallyoverlapping.
The paper concludes with a discussion on comparing the

use of traditional tests against the partially overlapping

samples t-tests.

Worked Example

In this section, an example of the partially overlapping t-

test in application is given, with a summary of the calcula-

tions and the hypothesis test procedure.

The sleep fragmentation index measures the quality of

sleep for an individual over one night. A lower sleep frag-

mentation score represents less disrupted sleep. The re-

search question is whether the genre of a movie watched

before bedtime impacts the quality of sleep. The data are

plausible fictional data used for illustrative purposes only.

Study participants are randomly allocated to either a

between subjects design (stage 1) or a repeated measures

(stage 2) part of the investigation. In the first stage of

the study, the sleep fragmentation score is taken over one

night, for two groups of individuals. A sample of na = 8
individuals watch a ‘horror’ movie before bedtime. A sep-

arate sample of nb = 8 individuals watch a ‘feel good’
movie before bedtime. This first stage is an independent

samples design. In a second stage of the study, the sleep

fragmentation index is recorded over two separate nights,

for a sample of nc = 8 individuals watching a ‘feel good’
movie and a ‘horror’ movie on two alternate nights before

bedtime (with order counterbalanced). This second stage

is a paired samples design. When the two stages of the

study are combined, the total number of individuals who

watched a ‘horror’ movie is n1 = na + nc = 16. The to-
tal number of individuals who watched a ‘feel good’ movie

is n2 = nb + nc = 16. The hypothesis being tested is
whether themean sleep fragmentation scores are the same

between individuals watching a ‘horror’ movie and indi-

viduals watching a ‘feel good’ movie. Thus the null hy-

The Quantitative Methods for Psychology 1222

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.2.p120


¦ 2017 Vol. 13 no. 2

pothesis is : H0 : µ1 = µ2. The alternative hypothesis,

assuming a two-sided test is : H1 : µ1 6= µ2. The sleep

fragmentation scores are given in Table 1.

In this scenario, from a missing data perspective it

would be reasonable to assume MCAR. There are no miss-

ing data per se; it is the design of the study that results

in partially overlapping samples. Therefore standard ap-

proaches of discarding either the paired or independent

samples are unbiased. However, performing either the

paired samples t-test or the independent samples t-test re-

quires discarding exactly half of the observations, and the

power of the test is reduced. This therefore is a good exam-

ple of where a test statistic that makes use of all available

data, taking into account both paired and independent ob-

servations could be useful.

Assuming normality and MCAR, the partially overlap-

ping samples t-test is a Type I error robust method for com-

paring means between the two samples (Derrick, Russ, et

al., 2017). To calculate elements for the partially overlap-

ping samples t-test let: x̄1 be the mean of all observations
in Sample 1 (i.e. the mean for the n1 observations for in-
dividuals watching a ‘horror’ movie), x̄2 be the mean of all
observations in Sample 2 (i.e. the mean for the n2 obser-
vations for individuals watching a ‘feel good’ movie), s1 be
the standard deviation of all observations in Sample 1, s2
be the standard deviation of all observations in Sample 2,

and r be the Pearson’s correlation coefficient for the paired
observations only (i.e. in nc). There are two forms of
the partially overlapping samples t-test; t1 for when equal
variances between the two samples can be assumed, and t2
for when equal variances between the two samples cannot

be assumed.

The partially overlapping samples t-test assuming

equal variances acts as an interpolation between the inde-

pendent samples t-test and the paired samples t-test, and is

defined by Derrick, Russ, et al. (2017) as:

t1 =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2
− 2r nc

n1n2

(1)

where

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

(n1 − 1) + (n2 − 1)
(2)

If the null hypothesis is true, the test statistic t1 follows a
t-distribution with approximate degrees of freedom given

as:

ν1 = (nc − 1) +
na + nb + nc − 1

na + nb + 2nc
(na + nb). (3)

If equal variances cannot be assumed, the partially

overlapping samples t-test which acts as an interpolation

between Welch’s test and the paired samples t-test is de-

fined by Derrick, Russ, et al. (2017) as:

t2 =
x̄1 − x̄2√

s21
n1

+
s22
n2
− 2r s1s2nc

n1n2

(4)

If the null hypothesis is true, the test statistic t2 follows
a t-distribution with degrees of freedom approximated by:

ν2 = (nc − 1) +
γ − nc + 1

na + nb + 2nc
(na + nb) (5)

and where

γ =

(
s21
n1

+
s22
n2

)2
(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

(6)

These test statistics can be viewed as a generalised form

of the two sample t-tests. When there are no independent

observations, t1 and t2 default to the paired samples t-test.
When there are no paired observations, t1 defaults to the
independent samples t-test, and t2 defaults to Welch’s test.
For either version of the partially overlapping samples

t-test, if µ1 > µ2 (i.e. the population mean score for ‘hor-

ror’ movie is greater than the population mean score for

‘feel good’ movie), then it is anticipated that this will be re-

flected in the sample values above, and the expectation is

to observe a large positive value of the test statistic. Con-

versely if µ1 < µ2, the expectation would be for a large

but negative value of the test statistic to be observed. In

absolute terms it is anticipated that large values of the test

statistic will be observed if the null hypothesis is not true.

The null hypothesis is rejected if the observed value of

the test statistic is greater than the critical value from a

t-distribution with the degrees of freedom as defined by ν1
or ν2.
The elements of the calculation of the test statistics

are
1
: n1 = 16, n2 = 16, na = 8, nb = 8, nc = 8,

x̄1 = 16.125, x̄2 = 14.125, s1 = 2.986, s2 = 2.778,
r = 0.687, sp = 2.884, γ = 29.845, t1 = 2.421, t2 = 2.419,
ν1 = 18.500, and ν2 = 18.422.
The calculated value of the test statistic t1 is 2.421. The

calculated value of the test statistic t2 is 2.419. Using the
degrees of freedom ν1 = 18.500 or ν2 = 18.422, from the
t-distribution at the 5% significance level the critical value

is 2.097. The calculated value of the test statistic is greater

than the critical value, therefore the null hypothesis is re-

jected (p=0.026).

Instead of performing the above calculations manually,

the partially overlapping samples t-tests can be easily per-

formed in R, using the package ‘Partiallyoverlapping’ (Der-

rick, 2017). In the following, let ‘a’ represent ‘horror’ movie

1
Unrounded values are used in each part of the calculation, each element displayed to 3 decimal places.
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Table 1 Sleep fragmentation scores obtained for each individual (ID)

Independent Samples Paired Samples

(Stage 1) (Stage 2)

ID Horror ID Feel good ID Horror Feel good

I1 20 I9 10 P1 14 15

I2 21 I10 16 P2 15 10

I3 16 I11 18 P3 18 15

I4 18 I12 16 P4 20 17

I5 14 I13 15 P5 11 13

I6 12 I14 14 P6 19 19

I7 14 I15 13 P7 14 12

I8 17 I16 10 P8 15 13

and ‘b’ represent ‘feel good’ movie. Example R code to en-

ter the data and perform the analyses assuming equal vari-

ances is given below:

install.packages(’Partiallyoverlapping’)
library(Partiallyoverlapping)
a.unpaired <- c(20,21,16,18,14,12,14,17)
b.unpaired <- c(10,16,18,16,15,14,13,10)
a.paired <- c(14,15,18,20,11,19,14,15)
b.paired <- c(15,10,15,17,13,19,12,13)
Partover.test(a.unpaired, b.unpaired,

a.paired, b.paired, var.equal=TRUE)
#Output: statistic =2.421 , parameter=18.500,
# p.value=0.026.

Alternatively, to perform the test when equal variances

are not assumed, the var.equal=TRUE option can be
dropped or replaced by var.equal= FALSE. The re-
sults from either test performed replicate their respective

manual calculation and show that the samples from group

‘a’ (Horrormovie) and group ‘b’ (Feel goodmovie) have sig-

nificantly different means at the 5% significance level.

When using the partially overlapping samples t-test at

the 5% significance level, there is a statistically significant

difference in the mean sleep fragmentation index between

individuals watching a ‘horror’ movie prior to bedtime,

and individuals watching a ‘feel good’ movie prior to bed-

time. The results suggest that individuals watching a ‘feel

good’movie before bedtime, have less disrupted sleep com-

pared to individuals watching a ‘horror’ movie before bed-

time.

Discussion

Further consideration is given to the choice between tra-

ditional tests that discard information, and the partially

overlapping samples t-tests. Table 2 gives a summary of

results obtained from the example in Table 1. This shows

results when performing ‘standard’ tests and results from

performing the partially overlapping samples t-tests, with

their respective statistical decisions at the 5% significance

level.

It can be seen from Table 2 that the choice of test to

apply is important because the statistical decision is not

the same. This example emphasises the lower power for

the traditional approaches. In general, the more observa-

tions used in the calculation of a test statistic, the greater

the power of the test will be. However, rare situations

may arise where the independent observations and the

paired observations have mean differences in opposing di-

rections. In these situations the partially overlapping sam-

ples t-testmay cancel out these differences, but to ignore ei-

ther the paired observations or independent observations

could create bias.

In the worked example, the two samples are partially

overlapping by design. It is also possible to encounter a

partially overlapping samples design, with incomplete ob-

servations. In these situations, the partially overlapping

samples t-test can similarly be performed on all available

observations, when the missing observations are MCAR.

To demonstrate this, consider the situation where there

are occasional errors with the machine recording sleep

fragmentation. As a result of errors, let the ‘horror’ ob-

servations for individuals ‘I1’ and ‘P1’ be missing. There

is now one missing independent ‘horror’ observation and

one missing paired observation. The resulting reduction

in sample size is further to the detriment of the paired

samples t-test, the independent samples t-test and Welch’s

test. Using the partially overlapping samples t-test, the ‘feel

good’ observation for individual ‘P1’ is not discarded, it is

treated as an independent observation. Revised elements

of the partially overlapping samples t-test are; n1 = 14,
n2 = 16, na = 7, nb = 9, nc = 7, x̄1 = 16.000,
x̄2 = 14.125, s1 = 2.961, s2 = 2.778, r = 0.736, sp =
2.864, γ = 26.903, t1 = 2.208, t2 = 2.194, ν1 = 17.733,
ν2 =17.148. Assuming equal variances and using the test
statistic t1, the p-value is 0.041. For completion, using the
test statistic t2, the p-value is 0.042. The null hypothesis is

The Quantitative Methods for Psychology 1242

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.2.p120


¦ 2017 Vol. 13 no. 2

Table 2 Summary of results for the worked example, including the calculated value of each test statistic (t), the degrees
of freedom (df), the p-value (p) and the statistical decision.

Test t df p Decision

Paired samples t-test 1.821 7.000 0.111 Fail to rejectH0

Independent samples t-test 1.667 14.000 0.118 Fail to rejectH0

Welch’s test 1.667 13.912 0.118 Fail to rejectH0

Partially overlapping samples t-test (t1) 2.421 18.500 0.026 RejectH0

Partially overlapping samples t-test with Welch’s df (t2) 2.419 18.422 0.026 RejectH0

rejected at the 5% significance level and the statistical con-

clusions are as before.

The assumptions of the partially overlapping samples

t-test (t1) match the assumptions of the independent sam-
ples t-test. The assumptions are that observations within

a sample are independent of each other, observations are

sampled from normally distributed populations and equal

variances between the two groups. The assumptions of

the partially overlapping samples t-test with Welch’s de-

grees of freedom (t2), match the assumptions of Welch’s
test. This assumes that observations within a sample are

independent of each other and observations are sampled

from normally distributed populations. Similarly as stated

for the standard tests that discard data, extensive test-

ing of these assumptions is not recommended. The par-

tially overlapping samples t-test with Welch’s degrees of

freedom is Type I error robust with equal and unequal

variances, and the power difference relative to the inde-

pendent samples t-test is negligible. Many authors advo-

cate the routine use of Welch’s test in the two indepen-

dent samples case, (for example, Ruxton, 2006; Rasch et al.,

2011). Therefore, if in doubt and normality and MCAR can

be assumed, the partially overlapping samples t-test with

Welch’s degrees of freedom can be used routinely in the

two partially overlapping samples case.

Conclusion

A common issue in psychology is a paired samples design

with incomplete observations, or a study that otherwise re-

sults in both paired observations and independent obser-

vations being observed. These scenarios are referred to in

the literature as partially overlapping samples.

In these scenarios, the discarding of observations is

common practice. However, discarding observations may

cause bias, and has a substantial impact on power when

sample sizes are small and/or if the number of discarded

observations is large. The partially overlapping samples

approach uses all available data and has appeal when the

assumption of normality has not been grossly violated, and

the MCAR assumption is reasonable. These solutions do

not detract from other analytical strategies but do provide

a simple generalisation of the standard two sample t-tests.
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