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Is intermediately inspecting statistical data necessarily a

bad research practice?
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Abstract Intermediately inspecting the statistical data of a running experiment is justifiably re-

ferred to as a bad research practice. With only a few intermediate inspections, Type I error rates

inflate to a multiple of the previously defined critical alpha. On the other hand, there are research

areas where intermediately inspecting data is extremely desirable if not even necessary. For this

reason, in medical research, mathematical methods are known as “group-sequential testing”which

compensate Type I error cumulation by adjusting critical alpha. In the field of psychological re-

search, these methods are widely unknown or at least used very rarely. One reason may be that

group-sequential tests focus on test statistics based on the normal distribution, mainly the t-test,

while in psychological research often more complex experimental designs are used. The computer

program APriot has been developed to enable the user to conduct Monte-Carlo simulations of
what happens when intermediately inspecting the data of an ANOVA. The simulations show clearly

how bad a research practice intermediately inspecting data (without adjusting alpha) is. Further,

it is shown that in many cases adjusted values of alpha can be found by simulations such that

the ANOVA can be used together with group-sequential testing similarly as the t-test. A last set

of demonstrations shows how the power and the required number of participants of a group-

sequential test can be estimated and that group-sequential testing can be favorable from an eco-

nomic point of view.
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Introduction

In 2011, Simmons and his collegues published an article

in which they described an “undisclosed flexibility in data

collection and analysis” that “allows presenting anything

as significant” (Simmons, Nelson, & Simonsohn, 2011, p.

1359). Simmons et al. (2011) describe frequent mistakes

made by researchers in the field of behavioral sciences that

lead to an unacceptably high rate of false positive results.

One of these errors—which Simmons et al. (2011) refer to

as “flexibility in sample size”—is intermediately inspecting

the data of a running experiment and then deciding to ei-

ther add further participants or to end the experiment de-

pending on whether the intermediately conducted statisti-

cal test shows statistical significance or not. John, Loewen-

stein, and Prelec (2012) conducted a survey based on ques-

tionnaires sent to scientists to investigate the prevalence of

“questionable research practices”; special questions were

used to estimate the true prevalence beyond the tendency

to cheat. According to this study, the estimated percentage

of scientists who (at least once) intermediately inspected

their data is about 70%. From a mathematical point of

view, the problem with intermediately inspecting data is

obvious. When intermediately inspecting data, not one sta-

tistical test is conducted but multiple. This means, that if

critical alpha is set to .05 for each inspection, the cumu-

lated Type I error for all tests will be greater than .05. This

is the main reason why intermediately inspecting data is
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often referred to as a bad research practice that must be

avoided (there are other concerns, for more details, see the

discussion at the end of this article).

There are however research areas where intermedi-

ately inspecting data is extremely desirable or even essen-

tial. This is most obvious for clinical research. If a new

drug is tested longer than necessary to prove its superior-

ity over an older drug, patients may be treated in a subopti-

mal way. On the other hand, if the new medicament is not

tested long enough, possible adverse effects or other neg-

ative consequences could be overseen (Proschan, Lan, &

Wittes, 2006). What is needed, is a way to inspect the data

of an experiment in sufficiently small intervals such that

evidence for both, superiority over an older drug and nega-

tive consequences are detected as early as possible without

decreasing the validity of the statistical test used. For this

reason, so called “group-sequential trials” are a common

practice in medical research. With group-sequential tests,

data are inspected intermediately and the acquisition of

new data is aborted as soon as the statistical test shows sta-

tistical significance. In order to avoid a cumulation of the

Type I error, critical alpha of each intermediate statistical

test is adjusted such that the overall alpha error probability

does not exceed a predefined value, e. g., .05. In principle,

the problem is similar to the problem occurring if multi-

ple t-tests are conducted. The more t-tests are conducted,

the larger is the probability that at least one test reaches

statistical significance by chance. With the methods pro-

posed by Bonferroni (Abdi, 2007) and Holm (1979), critical

alpha of each t-test can be adjusted so that the Type I error

rate does not inflate. Analogously, the Type I error rate can

be kept from inflating if data are inspected intermediately

by mathematical methods developed for group-sequential

testing (for an overview, see Proschan et al., 2006).

While sequential testing is a common practice in med-

ical research, it is virtually not used in many other sci-

entific areas like psychology. This is true despite the fact

that the huge percentage of scientists involved in the “bad

research practice” of intermediately inspecting data (John

et al., 2012) suggests that there is a need for applying se-

quential designs. One example where a sequential design

would be useful in psychology is trying to detect an effect

of unknown size. The classical procedure of planning a

psychological experiment is to specify an effect size of in-

terest with respect to the object of investigation and con-

duct an a-priori sample size analysis. Then, the required

number of participants is tested “in one block”. The prob-

lem with a-priori sample size analyses lies in determining

a well-founded value for the effect size of interest. This

may be feasible in application-oriented research such as

when testing the ergonomics of a new computer system. In

this case, theminimum effect sizemay be specifiedwith re-

spect to the costs of development of the new system. How-

ever, in basic research fields like perception or memory, it

is often difficult or even impossible to specify a reasonable

effect size a priori. The starting point in a new research

area often is the question whether an effect—of whatever

size—does exist or not. Thus, one would have to specify an

effect size as small as possible or, in other words, choose a

sample size as large as affordable. This approach may end

up in a huge dissipation of time andmoney if with the com-

pletion of the experiment, the effect turns out to be large

enough to be shown with a smaller sample size. With in-

termediate inspections of the data, an effect of large size

would be detected early. Then, as more participants are

added, the power of the experiment would raise such that

effects of smaller and smaller size could be shown.

So why is sequential testing widely unknown in re-

search areas like psychology while it is common prac-

tice in medical research? There are exact mathematical

procedures for group-sequential testing (see Proschan et

al., 2006) and there are multiple computer programs with

which group-sequential tests can be calculated (e. g., Pahl,

2015; Reboussin, DeMets, Kim, & Lan, 2014).

One reason why group-sequential tests are rarely used

in psychology could be that the typical experimental de-

signs used in psychological research differ from those used

in medical research. One of the most common questions

of medical research is whether a new drug is more effec-

tive than an older drug. There is a treatment group of pa-

tients receiving the new drug and a control group receiv-

ing the older drug or a placebo. A t-test would be applied

for this design. In psychology, experimental designs often

are more complex; there are multiple factors expected to

have an influence on a dependent variable. Thus, main

effects and interactions have to be computed. One of the

most common statistical tests for such designs is the anal-

ysis of variance (ANOVA) since it offers a great flexibility

making it possible to be applied to a large number of dif-

ferent questions. Most mathematical approaches to group-

sequential testing, however, only deal with test statistics

based on the normal distribution. Thus, they can be ap-

plied to designs based on the t-test if the number of partici-

pants is large enough since with a growing number of par-

ticipants, the t-distribution approximates the normal dis-

tribution. However, these approaches cannot be used with

designs based on the ANOVA since the ANOVA is based on

the F-distribution. This must not be confused with the fact

that normality is a prerequisite for the ANOVA; the point

is that the F-statistic used with the ANOVA is not normally

distributed.

For the reasons mentioned above, the question arises

whether and to what extent the methods for sequential de-

signs used in medical research are applicable in psychol-
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ogy. While it remains a challenge for mathematics to con-

tinue developing further methods that cover a growing va-

riety of statistical tests, Monte-Carlo simulations may be

helpful to see what happens if an ANOVA is used with se-

quential testing and whether alpha can be adjusted simi-

larly aswith the t-test. The computer programAPriot has
been developed to enable the user to conduct Monte-Carlo

simulations of the ANOVA with the possibility to simulate

the effects of intermediate inspections on Type I error rate

and power. The aim of developing APriotwas to answer
two questions: The first question concerns intermediately

inspecting data as a bad research practice. How large is the

cumulative Type I error probability if data are inspected

intermediately? The second question tries to figure out

whether and to what extend the ANOVA can be used with

sequential testing. If data are inspected intermediately, is it

possible to find a critical alpha value such that the cumula-

tive Type I error probability does not exceed a predefined

value?

APriot has been developed to make Monte-Carlo sim-
ulations accessible to a large number of users. A graph-

ical user interface is provided helping the user to enter

data as in other statistical software. There is no need to

enter matrices of mean values, standard deviations, or a

variance-covariance matrix of residuals. The user can en-

ter the raw data of a pilot study; APriot will use the raw
data to compute the matrices necessary for the simula-

tion. APriot has been designed for simulating all effects
of the ANOVA, including interactions of an arbitrary order

and both, the univariate and the multivariate approach to

repeated-measures analyses.

After an introduction to APriot, simulations with
varying numbers of simulation runs will be used to answer

the question of how precisely simulations estimate proba-

bilities. In the subsequent section, it will be demonstrated

that intermediately inspecting data leads to highly-inflated

Type I errors even with relatively few inspections. In the

subsequent section, I tried to find adjusted values for al-

pha such that the overall Type I error rate does not exceed

a predefined value. The last section shows how the power

of a sequential test can be estimated by simulations. Fur-

ther, I tried to give a first answer to the question whether

more or less intermediate inspections are preferable from

an economic point of view.

Description of APriot

The computations conducted during a simulation

APriot simulates the effects of repeatedly inspecting sta-
tistical data on the alpha error probability and the power.

For the simulations, random numbers are generated that

have the distributional properties—assuming a normal

distribution—estimated from the raw data the user en-

ters into APriot. For this reason, APriot computes the
matrices of means, standard deviations, and—for within-

subject designs—correlations.

Let us consider a simple example. If the user enters the

raw data for a between-subjects ANOVA with 1 factor of 3

levels, APriot computes the matrices of means (e. g., 3, 4,
5 for the 3 factor levels) and standard deviations (e. g., 1.0,

1.8, and 1.5). If “simulate alpha” is selected by the user, the

procedure continues as follows: Alpha is the probability of

detecting an effect while this effect does not exist in the un-

derlying population. Thus, in the “virtual population” from

which the random numbers for the subsequent simulation

are drawn the effect does not exist. In the case of our 1

factor – 3 levels example, ‘the effect does not exist’ means

that the means of all three levels are equal. Thus, APriot
computes the mean of the three means (in our example:

4) and uses this mean as the basis for generating the ran-

dom numbers for all three factor levels. Further, the user

can choose whether homogeneity of variances should be

assumed. Depending on the user’s selection, APriot com-
putes the variance (standard deviation) for each of the 3

levels independently or computes one variance (standard

deviation) for all 3 levels together.

When the simulation is started, APriot generates ran-
dom numbers drawn from a normal distribution with

mean = 0 and sd = 1. These random numbers are con-

verted into numbers with the means and standard devi-

ations given by the previously computed matrices. If a re-

peated measures variable is contained in the effect to be

simulated, the matrix of random numbers is additionally

multiplied by the result of a Cholesky decomposition of the

correlationmatrix computed from the raw data entered by

the user to obtain correlated data.

To continue our example, let us assume that the user

chose to conduct one ANOVA with 10 participants and to

add a maximum of 4 × 10 participants if statistical signifi-
cance is not reached. Further, the user selected to “Replace

the original matrix”. Thus, APriot generates 10 (partici-
pants)× 3 (levels) randomnumbers according to the distri-
butional properties described above. With these random

numbers, a 1 factor – 3 levels ANOVA is computed. If the

result is “significant” the simulation pass is marked as a

‘hit’ and the next simulation pass is started. If the result

is not significant, additional 10 × 3 random numbers are
generated and a new ANOVA is computed. This ANOVA is

computed with all participants available so far, that is, 20

× 3 random numbers in our example. If the result now
is significant, the pass is marked as a “hit” and the next

pass is started. If the result is not significant, further 10

× 3 random numbers are generated. This procedure is re-
peated for a maximum of 4 times. If the last ANOVA does
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not show significance, this simulation pass is marked as a

‘miss’; then, the next simulation pass is started. At the end,

the number of hits is divided by the number of simulation

passes, and the result is displayed.

If the user chooses not to replace the original matrix,

the matrix of the raw data the user entered is used as the

initial block of participants and only the additional blocks

of participants are simulated with random numbers. This

may be useful if the user has already started the experi-

ment and wants to simulate the cumulated Type one error

when adding participants to the existing dataset.

If “Simulate power” is selected instead of “Simulate al-

pha error probability”, there is no need to compute the

distributional properties, as they were if the effect did not

exist in the underlying population, since the power is the

probability to detect an effect if it really exists in the under-

lying population. Thus, the means matrix computed from

the raw data is left unchanged. All other aspects of the sim-

ulation are the same as described before.

The handling of APriot

Figure 1 shows the main window of APriot. The exam-
ple used in this introduction is part of the software instal-

lation of APriot; after the installation, it can be found on
the user’s desktop (“APriot example.apr”). The first step for

conducting a Monte-Carlo simulation with APriot is en-
tering raw data, for example, from a pilot study. Data are

entered as would be done with other statistical software.

In the data area (left side of the window), each between-

subjects variable and each combination of within-subject

variables is entered into a separate column. The levels

of between-subjects variables are marked by distinct ar-

bitrary numbers (in the example, ‘1’ and ‘2’). The second

step is to declare the within-subject variables in the right

area of themainwindow. For eachwithin-subject variable,

a name and the number of levels are specified. Depend-

ing on how many within-subject variables and levels have

been declared by the user, the pull-down menus in the

first row of the data area will contain the entries necessary

to declare each column as containing a between-subjects

variable or a particular combination of the within-subject

variables. In the example, there are two within-subject

variables named ‘W1’ and ‘W2’ with two levels each. In

the data area, columns 2 to 5 are denoted to each facto-

rial combination of the within-subject variables (‘1, 1’, ‘1,

2’, ‘2, 1’, and ‘2, 2’). The first column is denoted to the only

between-subjects variable of the data set, hence “between”

is chosen in the pull-down menu of the first column. Row

2 (green) of the data area is used to specify names for the

variables and variable combinations. If a researcherwants

to add further participants, clicking on the ‘+’ button below

the data area will add further rows at the end of the data

set, where new data can be entered.

A click on the button “Compute statistics” shows the

ANOVA’s results on the bottom of the main window. Analy-

ses of all variables are listed with F-values, degrees of free-

dom, empirical alpha error probabilities, and noncentral-

ity parameters. For within-subject variables (and interac-

tions with within-subject variables), the result of the un-

corrected univariate approach to the repeated measures

ANOVA is available as well as the result with Greenhouse-

Geisser corrected degrees of freedom. Further, the multi-

variate test criteria Pillai-V, Wilks Lambda, and Hoteling’s

T 2
are shown.

The third step is mandatory before simulations can be-

gin: The rightmost column of the results area contains

check boxes allowing the user to choose the analysis which

will be the basis for the subsequent simulation. Only one

analysis may be chosen at one time. With a click onto the

“Simulation window” button, a new window appears that

permits to specify all parameters of interest for the sub-

sequent Monte-Carlo simulation (Figure 2). The following

parameters can be specified:

• Number of simulation passes. This is the number of

“virtual experiments” done during the simulation.

• Critical alpha. This is the alpha value needed to count

a single simulation run as “significant”.

• Simulate alpha error probability/power. The user can

choose whether the alpha error probability or the

power (1 - beta) will be subject to the simulation.

• Max. number of additional inspections. Here the user

can specify how often the sample size will be simulated

to be enlarged if a test is not significant.

• Number of participants added per inspection. The

number of participants added after each inspection is

specified here.

• Assume homogeneity of variances. The variance of

each variable combination is estimated from the raw

data entered in the main window. The user can specify

whether APriot should assume that all variances are
equal

1
in the underlying population.

• Replace original matrix. If “No” is chosen, the raw data

entered in the main window are kept and only the data

of the participants added are simulated with random

numbers. If “Yes” is chosen, the raw data are replaced

by random numbers with identical distributional prop-

erties. In this case, the user can choose how many

participants per group the randomly generated initial

block of samples will have.

After the simulation parameters have been specified, the

1
Homogeneity of variances is a precondition for conducting an ANOVA. However, the ANOVA is considered to be relatively “robust” against a viola-

tion of this precondition (e.g., see Diehl & Arbinger, 1990, , p. 214).
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Figure 1 The main window of APriot. On the left side, there is the data area where the variables and variable combi-
nations are entered; on the right side, the names and numbers of levels of the within-subject variables are specified. The

results of the ANOVA are displayed on the bottom of the window. The example shows a design with one between-subjects

variable (“B”) with 2 levels and 2 within-subjects variables (“W1” and “W2”) with 2 levels each.

Monte-Carlo simulation is started by clicking on the button

“Start simulation”. On the top of the window, one progress

indicator is displayed for each thread of APriot.2 When
the simulation is finished, the “Actual number of simula-

tion passes” is displayed which is in most cases slightly

higher than the number specified by the user due to round-

ing up when the simulation passes are allocated to differ-

ent threads. In the field “Simulation result”, the result of

the simulation (alpha error probability or power) is shown.

Precision of estimated probabilities with APriot

Before performing the simulations, the question should

be answered of how precise estimating probabilities using

Monte-Carlo simulations is, or in other words, how many

simulation runs are necessary to obtain a reliable result.

To answer this question, two fictional examples were used.

In the first example, a between-subjects effect with three

levels was tested; in the second example, the multivariate

approach (Pillai-V) to a within-subject effect with three lev-

els (r = .5) was tested. Critical alpha was set to .05. Both

examples started with 10 participants (per group). The cu-

mulative Type I error probability was tested with four fur-

ther intermediate inspections, each with 10 additional par-

ticipants (per group). Monte-Carlo simulations were con-

ducted with 1,000, 10,000, 100,000, and 1,000,000 simula-

tion passes. Each of the conditions was tested 30 times in

2
By default, APriot starts as many threads as processor cores are available. However, in the “Preferences”menu, the user can specify the number of

threads manually.
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Figure 2 The simulationwindow of APriot. In this example, the user has chosen to simulate the alpha error probability
where a maximum of 4 additional inspections is performed.

order to estimate the variability of the simulation results.

Figure 3 shows the results. With 100,000 simulation runs,

the standard deviations in both cases were 0.001 which

seems to be a good value when probabilities are to be esti-

mated with a precision of two decimal places. On the test

system (Intel Core i7-4930K CPU with a core frequency of

3.9 GHz), 100,000 simulation runs took about 13 seconds

for the between-subjects example and 4 seconds for the

within-subject example. Thus, at least 100,000 simulation

runs should be used in order to get precise estimates by

simulations.

Cumulated alpha values if critical alpha is not adjusted

In this section, several examples will be discussed in which

intermediate inspections of data are simulated without ad-

justing critical alpha.

t-test

Since a two-sided t-test reveals the same alpha error prob-

ability as a one-factorial (two levels) ANOVA, the simula-

tion of a t-test offers the chance to verify the results of

APriot by comparing them with the results of programs
doing Monte-Carlo simulations for the t-test.

Method

The first example is taken from Lakens’ blog (Lakens,

2014a) who discusses the use of the R-function phack by
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Figure 3 Cumulated alpha error probabilities of two fictional examples with different numbers of simulation runs (left

panel: between-subjects, right panel: within-subject – Pillai’s V test). Error bars denote standard deviations.

Sherman (2014) which does Monte-Carlo simulations of cu-

mulated error probabilities for the t-test. The example

is about a fictional experiment in which two groups are

compared. A t-test is conducted with 50 participants (per

group). If this t-test does not reveal statistical significance,

50 additional participants are tested. This is repeated once

more if needed such that there is a maximum of 150 par-

ticipants. In this fictional experiment, the mean values of

both groupswere 0.0 and the standard deviations were 1.0.

Critical alpha for each test was set to .05; 100,000 simula-

tion runs were used.

As a next step, APriotwas used to test different num-
bers of inspections with the (maximum) total number of

participants always being 150 (1 × 150, 2 × 75, . . . , 30 ×
5). With every number of inspections, 100,000 simulation

runs were used.

Results

For the first simulation with a maximum of three inspec-

tions, phack revealed a cumulative Type I error probabil-
ity of .107. With the result being rounded to three decimal

places, APriot revealed the same result. Figure 4 shows
the results for different numbers of inspections. With only

one inspection (no intermediate inspections) the Type I er-

ror is nearly .05, as is to be expected; with 30 inspections,

the cumulated Type I error is about .29. These cumulated

error probabilities are in good agreement with the values

obtained by Proschan et al. (2006) who used numerical in-

tegration for a number of inspections <= 20 and simula-

tions for more than 20 inspections.

The results show clearly that intermediately inspecting

data (without adjusting critical alpha) is indeed a bad re-

search practice. With only three inspections, the Type I

error probability already rose to more than 10%. Maybe

many researchers are not fully aware of the large error

probability intermediately inspecting data is accompanied

with since they only see that the error probability of the

statistical test they have conducted is .05. However, they

oversee that they would have accepted H1 not only with

this test going significant (e. g., significance after having

tested 50 participants) but with multiple other tests as well

(significance after having tested 25 participants, 50 partic-

ipants, 75 participants, etc.). The probability that any of
these tests reaches statistical significance is much larger

than the probability for a single test. One can say that “pre-
senting anything as significant” (Simmons et al., 2011) is

possible with this kind of research practice, “p-hacking”

(Sherman, 2014) is another way to express the same.

ANOVA

The simulations of the t-test in the above paragraph were

conducted as a demonstration of how bad intermediately

inspecting data (without adjusting alpha) is as a research

practice and to test whether the results of APriot are in
accordance with phack. In practice, a mathematical ap-
proach would be applied to the t-test. However, for the

ANOVA, computing cumulated Type I error probabilities is

not as straightforward since the test statistic of the ANOVA

is based on the F-distribution rather than the normal dis-

tribution.

Method

The next example of a Monte-Carlo simulation is the test

of a fictional experiment using a 2 × 2 ANOVA with one
between-subjects and one within-subject variable. All

three effects were tested, that is the effect of the between-

subjects and the within-subject variable as well as the in-

teraction; for the effects containing the repeated-measures

variable, Pillai-V was used as a test statistic. The same

numbers of inspections have been simulated as for the
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Figure 4 Cumulated Type I error probabilities as a function of the number of inspections.

t-test in the preceding paragraph (1 × 150, 2 × 75, . . . ,
30 × 5 participants). The last simulation of this series is
the test of a repeated measures ANOVA (multivariate ap-

proach, Pillai-V) with four levels. Correlations of -.9, 0.0,

and .9 were used.

Results

Figure 5 shows the results of both ANOVAs. In order to

facilitate comparisons, the result of the t-test has been

replotted. Obviously—at least for the examples used

here—cumulated error probabilities for the ANOVAs are

similar to the probabilities of the t-test. However, as the

number of inspections increases, some of the ANOVA prob-

abilities get larger than the probabilities of the t-test.

Discussion

While it would be premature to draw general conclusions

from the simulations of these examples, it is neverthe-

less interesting that the results of the ANOVAs do not dif-

fer much from the result of the t-test, which can be com-

puted with a mathematical approach to sequential test-

ing. Proschan et al. (2006) describe a similar phenomenon.

With the mathematical approach, the boundaries for the

interim analyses of the data are usually not computed as

critical alpha values but as critical values on the normal

distribution (z-values). As mentioned before, with small

sample sizes, the approximation of the normal distribu-

tion by the t-distribution is inexact and thus, mathemat-

ical methods cannot be applied with small sample sizes.

Proschan et al. (2006) however found that when using p-

boundaries instead of z-boundaries, the calculations are

rather exact even for small sample sizes. Thus, maybe the

p-boundaries computed for the normal distribution are a

good approximation for (some) statistical tests not based

on the normal distribution. To answer this question reli-

ably, simulations with many different scenarios or a math-

ematical proof will be necessary.

Adjusting critical alpha within sequential testing

As discussed before, sequential testing—with adjusting al-

pha—is something completely different than (illegally) in-

specting data within interim analyses. As we have seen

in the introduction, there are good reasons for sequential

testing, for example, ethical reasons inmedical research or

the wish to find an effect of unknown size in fundamental

research. For statistical tests based on the normal distri-

bution, there are computer programs like Lan-DeMets
(Reboussin et al., 2014) or GroupSeq (Pahl, 2015) helping
the researcher to find adjusted boundaries such that the

cumulated Type I error probability does not inflate. In the

preceding section, simulations were used to see how the

cumulated Type I error probability increases with interme-

diate inspections of the data. In this section, examples are

shown in which the attempt is undertaken to use simula-
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Figure 5 Cumulated Type I errors in the simulations as a function of the total number of inspections. The curve of the

t-test is plotted a bit thicker as black line. The grey line for the “Mixed ANOVA within subject (r = .5) is covered by the

yellow line “Mixed ANOVA interaction” because these two lines are nearly identical.

tions to find an adjusted value of critical alpha such that

the cumulated Type I error does not exceed a previously

specified value.

t-test

We start with the same example by Lakens (2014a) as used

in the previous section. In this example, a t-test with amax-

imum of 3 × 50 participants was conducted. The simula-
tions showed that, with the value of critical alpha set to .05

for each interim analysis, the cumulated Type I error prob-

ability for all three inspections is .107. Now, GroupSeq
(Pahl, 2015) was used to find an adjusted value of alpha.

The analysis revealed that with critical alpha set to .022

for each test, the cumulated Type I error probability for

all three inspections is .05. The result of a simulation with

APriot is in good agreement with this. Critical alpha was
set to .022 within APriot, all other settings of the simula-
tionwere the same as in the previous section. With 100,000

simulation runs, the cumulative Type I error probability

was .049.

ANOVA

More interesting than the t-test is the questionwhether in a

similar way, a corrected value of alpha can be used to con-

trol the overall Type I error in a sequentially conducted

ANOVA. Thus, both ANOVA examples of the previous sec-

tion were computed with the adjusted alpha value just

found for the t-test (.022). For all effects of both ANOVAS,

APriot revealed values of cumulated alpha between .050
and .052. With slight modifications of critical alpha (.021

and .020), the cumulated alpha value was <= .050 for all

tests.

With the examples presented here, the adjusted al-

pha values for the ANOVA found by simulations are sim-

ilar to the adjusted alpha value for the t-test. While

further evidence is needed to decide whether the meth-
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ods applicable to the t-test are also valid for the ANOVA,

the question should be answered under which circum-

stances simulations can be used to adjust alpha in ANOVA-

designs. The obvious problem lies in the fact that in or-

der to conduct a simulation, the matrices of means, stan-

dard deviations and—in the case of repeated-measures de-

signs—correlations of residuals are necessary. Thus, the

question whether simulations can be used to find critical

alpha values for sequential testing with the ANOVA de-

pends largely on the question whether there are good es-

timates for the matrices mentioned above. If there is a

pilot study, the matrices can be estimated based on the

corresponding matrices of the pilot study. If there is no

pilot study, one could use a so called internal pilot study

(Wittes & Brittain, 1990). With an internal pilot study, a

first sample of participants taken from an intermediate in-

spection serves to estimate parameters needed for the run-

ning experiment. For example, internal pilot studies are

often used to compute the “conditional power”, that is es-

timating the effect size from an intermediate inspection in

order to compute the sample size needed for the complete

experiment (Lakens, 2014b). Analogously, one could use

the parameters found in an intermediate inspection to es-

timate the parameters needed to run a simulation.
3
It is

not completely clear until now how large the influence of

the matrices is on the value of cumulated alpha resulting

from the simulation. From the tests conducted until now,

one could presume that cumulated alpha values are rather

similar with different experimental designs and that the

simulation result is quite robust against variations of the

matrices. Thus, while having a real pilot study is ideal, in-

ternal pilot studies can be a good means of finding the pa-

rameters needed to conduct a Monte-Carlo simulation. As

with real pilot studies, it is important to keep the sample

size of an internal pilot study not too small.

Power and sample size

In the previous paragraphs, the question has been dis-

cussed of how the Type I error probability cumulates with

intermediate inspections of statistical data and how this

cumulation can be corrected. In the remainder of this ar-

ticle, we will take a closer look at how the power of a se-

quential test is compared to a classical test.

Mathematically computing and simulating the power
of a group-sequential test

In the case of a test statistic based on the normal distri-

bution, the computer programs LanDeMets (Reboussin
et al., 2014) and GroupSeq (Pahl, 2015) can be used to
compute the number of participants required to conduct

a group-sequential analysis with a given power (Proschan

et al., 2006). More precisely, a multiplier is computed with

which the number of participants needed for a conven-

tional test has to be multiplied to obtain the number of

participants needed for a group-sequential test. A fictional

between-subjects t-test served as an example. An a-priori

power analysis with G*Power (Faul, Erdfelder, Lang, &

Buchner, 2007) revealed that a total of 92 participants (46

per group) was needed to show an effect of size d = .76
with a power of .95. A simulation with APriot paral-
leled this result. With the help of LanDeMets (Reboussin
et al., 2014), a multiplier was computed with which the

number of participants needed for the conventional test

had to be multiplied for a sequential test. With a to-

tal of three inspections and Pocock bounds, this computa-

tion revealed that the number of participants needed with

the conventional test must be multiplied by 1.069 for the

group-sequential test. Thus, 46× 1.069 = 50 (rounded up to
the next integer value) participants are needed per group

with a group-sequential design with three inspections. A

simulation with APriot is in good agreement with this re-
sult. With critical alpha set to .022 (see above) the cumula-

tive power was .936. Thus, with sequential testing themax-

imum number of participants needed is larger than with a

classical test.

Is there an economical advantage of group-sequential
testing?

As seen in the previous example, the maximum sample

size of a group-sequential test has to be increased as com-

pared to an experiment with a fixed sample size in order to

achieve a comparable power. On the other hand, a sequen-

tial test may reach statistical significance before the max-

imum number of participants is reached. Thus, the ques-

tion arises whether—from an economical point of view—it

is better to do a classical a-priori sample size analysis and

then conduct the experiment with a fixed number of par-

ticipants or to conduct a sequential test with a larger max-

imum sample size but with the chance to finish with less

participants. What is needed, is an “expected” number of

participants needed when conducting a sequential test.

Method

A fictional experiment inspired by current research of

the author and his colleagues (Ignaz, Lang, & Buch-

ner, 2013) was used as a pilot study for the simulation

with APriot. The variable of interest was a within-

subject variable with 7 levels (r = .24), the sample size

was 80. The Greenhouse-Geisser-corrected effect of the

within-subject variable reached statistical significance,

3
Please note that the internal pilot study is not used in a classical way here. It is not used to compute the conditional power and adopt the overall

sample size; rather, it is used to obtain the parameters needed for a simulation.
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F (5.586, 441.309) = 3.381, ε = .931, p = .004, η2part =
.041. Based on this pilot study, the design of a follow-
up study was constructed. The “classical” variant of the

follow-up study was planned conducting an a-priori power

analysis using G*Power (Faul et al., 2007). The power anal-

ysis revealed that, given alpha = .05 and the effect size

and sphericity correction of the pilot study, 88 participants

were needed to reach a power of .95. A simulation with

APriot showed a similar result (G*Power: 1 − β = .951;
APriot: 1− β = .963).
A sequential test was planned to be conducted with

intermediate inspections after each testing of 10 partici-

pants. Simulations were used to find an adjusted value

of critical alpha and the maximum sample size required

to have a cumulated Type I error probability of not more

than .05 and a power of at least .95, as was the case with

the classical test. Thus, what was to be found, was a pair

of two parameters, a value of adjusted alpha and a max-

imum number of participants, such that the total Type I

error probability and the power met the requirements. By

successive approximation, the following pair was found:

adjusted alpha: .014, maximumnumber of participants: 10

× 10 = 100. For reasons of verification, the simulation was
repeated with the identified pair of critical alpha and num-

ber of participants with 1 million simulation runs: cumu-

lated alpha = .050; power = .950.

With the classical variant of the experiment, a fixed

sample size of 88 participants is needed to reach a power of

.95. With group-sequential testing, a maximum of 100 par-

ticipants is needed, with the chance to detect the effect with

less participants. So the question is, which variant is more

economical – testing 88 participants “in one block” or test-

ing up to 100 participants with up to 10 blocks. Since the

probability of a stochastic event can be calculated as the

sum of multiple events, provided that the events are dis-

joint, the following procedure was applied. The probabil-

ity to find an existing effect with a maximum of 10 blocks

is the power of the group-sequential test, which has been

found to be .950 by simulation. The probabilities to find the

effect with less blocks are disjoint since the experiment is

ended as soon as the criterion for critical alpha is met (ei-

ther the effect is found after the first block or after the sec-

ond block or after the 3rd . . . 10th block). Thus, the total
power of .950 is the sum of the probabilities of finding the

effect with 1, 2, . . . , and 10 blocks. Finding the probability
of the effect to occur with the first block is straightforward;

a simulation was run with 1 block of 10 participants which

resulted to a power of .019. The simulation was repeated

with 2 blocks (result: .107). .107 is the probability to find

the effect with 1 block or 2 blocks. Thus, the probability

to find the effect with exactly 2 blocks is the difference be-

tween .107 (1 block or 2 blocks) and .019 (exactly 1 block).

This procedure was applied to all numbers of blocks up to

10. Each number of blocks is not only associated with a

probability but also with a “value”. The value is the saving

of participants as compared to the classical variant of the

experiment (88). Positive values indicate that with a cer-

tain number of blocks, participants are saved as compared

to the classical experiment, negative savings indicate that

more participants are needed. As a last step, for each num-

ber of blocks the product of probability and saving was

computed and the products were summed up. This way,

an expectation value of the saving is available.

Results

In the example, the expectation value of the saving with se-

quential testing as compared to a classical design is about

34 participants. This means, if this experiment would be

repeated for an infinite number of times, on average 34

participants would be saved. Table 1 shows the results of

the simulations and the computation of the savings in de-

tail.

Of course, this test is only one example and has to be

repeated with different experimental designs. However,

from the test, it becomes plausible that group-sequential

testing can be a more economical way of detecting an ef-

fect.

How many intermediate inspections are most econom-
ical?

In the preceding paragraph, it has been shown that sequen-

tial testing can help to save a considerable number of par-

ticipants. The question unanswered until now is whether,

under economical aspects, it is better to frequently inspect

the data or whether it is preferable to use large “blocks” of

samples.

Method

The fictional experiment described in the preceding para-

graph has been repeated with different sample block sizes.

Together with the preceding experiment, 4 different block

sizes were compared: 5, 10, 20, and 40 participants. The

values of critical alpha and the maximum number of ad-

ditional inspections were adjusted so that the accumulated

Type I error was nearly identical in all four variants of the

experiment (.047 - .049) and the power was at least .95. The

savings of participants were computed the sameway as de-

scribed in the preceding paragraph.

Of course, there are multiple parameters that could af-

fect the result, for example, the effect size, variances, and

correlations. In order to test whether the effect size—or

the (maximum) number of participants—influences the re-

sult, the simulation was repeated with the effect size being

manipulated. Thus, there were simulations with three ef-

The Quantitative Methods for Psychology 1372

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.2.p127


¦ 2017 Vol. 13 no. 2

Table 1 Cumulative power depending on the number of blocks.

Number of blocks 1 2 3 4 5 6 7 8 9 10 sum

cumulative power 0.019 0.107 0.249 0.408 0.561 0.694 0.792 0.868 0.916 0.950

difference 0.019 0.087 0.143 0.159 0.153 0.132 0.099 0.075 0.049 0.034 0.950

saving 78 68 58 48 38 28 18 8 -2 -12

product 1.50 5.94 8.29 7.63 5.82 3.70 1.78 0.60 -0.10 -0.41 34.75

fect sizes, a smaller effect (η2part = 0.023, number of par-
ticipants required for classical experiment: 158), amedium

effect (the initial studywith η2part = 0.041, 88 participants),
and a larger effect (η2part = 0.101, 35 participants).

Results

Figure 6 shows the results. The left panel shows how crit-

ical alpha had to be adjusted in order to ensure that the

total Type I error probability did not exceed .05. Although

for smaller block sizes, critical alpha had to be adjusted

to lower values as compared to larger block sizes, smaller

block sizes tended to be accompanied by larger savings of

participants (right panel). Thus—at least for the current

series of simulations—medium to large numbers of inter-

mediate inspections of the data are preferable from an eco-

nomic point of view.

Discussion

The simulations demonstrate that intermediately inspect-

ing data without adjusting alpha is indeed bad. With only

a few intermediate inspections, the cumulated Type I er-

ror probability raises to a multiple of the value of critical

alpha for each single inspection. By applying this “tech-

nique”, there is an enlarged risk of effects reaching sta-

tistical significance that do not exist. On the other hand,

intermediately inspecting data is desirable in many scien-

tific contexts. In psychological research, there is often the

problem of not knowing the to-be-expected effect size a pri-

ori. This makes computing the necessary number of partic-

ipants difficult since an a-priori power analysis can only be

conducted if there is a well-founded estimate of the effect

size. Intermediately inspecting data solves this problem in

an elegant way since with each test of additional partici-

pants, the power of the experiment increases. This way,

it is possible to successively adapt the sample size to the

sample size necessary to show an effect of unknown size.

From medical research, a mathematical approach is

known as group-sequential testing. With this approach,

the shortcoming of an inflated Type I error rate is over-

come by adjusting critical alpha of the intermediate in-

spections (Proschan et al., 2006). However, most of the

mathematical methods for group-sequential testing only

deal with test statistics based on the normal distribution.

Another possibility to overcome alpha error cumulation

is applying Bayesian statistics. For a detailed description

on how conducting sequential tests with Bayesian statistics

and a discussion of the advantages and disadvantages of

Bayesian sequential testing, see Schönbrodt, Wagenmak-

ers, Zehetleitner, and Perugini (2015).

APriot has been developed to estimate cumulated
error probabilities of the ANOVA by Monte-Carlo simula-

tions. In this article, it has been demonstrated that inmany

cases, Monte-Carlo simulations can be used for planning

sequential tests with the ANOVA.With the help of APriot,
the method of adjusting critical alpha can be applied to the

ANOVA similarly as to the t-test. It is interesting that—at

least with the examples discussed in this article—themath-

ematical approach for group-sequential tests based on the

normal distribution seems to be a rather good approxima-

tion for the ANOVA. It remains to be seen whether and to

what extent these results can be generalized. If this would

be the case, sequential tests with the ANOVA would be es-

pecially easy to plan using the well-known mathematical

methods.

Simulations sometimes seem “more concrete” than

mathematical computations. So, Monte-Carlo simulations

may help within an educational context to “demonstrate”

what happens if data are inspected intermediately. This

can help researchers and students to understand both

that intermediately inspecting data without adjusting al-

pha makes it impossible to interpret the results of a sta-

tistical analysis in a meaningful manner and that with a

suitable correction value the overall Type I error does not

inflate to an unknown value but can be kept within prede-

fined bounds.

To make simulations as available as possible, APriot
has been designed to compute the matrices necessary for

simulations (means, standard deviations, and correlations

of residuals) from raw data (e. g., of a pilot study). Data

are entered as is done with other statistical software; this

helps users not so experienced with the mathematical ba-

sis of the ANOVA to conduct Monte-Carlo simulations and

“see” what (would have) happened with an actual experi-

ment.

To conclude, whether a t-test is to be conducted or an

ANOVA: Intermediately inspecting data without a correc-
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Figure 6 Critical alpha (left panel) and saving of participants relative to classical experiment (right panel) as a function

of the sample block size. Larger effects sizes go along with smaller total sample sizes; thus, not all block sizes are used

with all three effects.

tion of alpha leads to a highly inflated Type I error proba-

bility. In many cases, there are mathematical ways to ad-

just alpha and/or Monte-Carlo simulations can help to find

one. With APriot, the researcher is provided with a tool
allowingMonte-Carlo simulations of relatively complex ex-

perimental designs without much effort. The concern that

adjusting alpha may make intermediately inspecting data

uneconomical is unfounded as could be demonstrated in

the previous section. Thus, sequential testing—with adjust-

ing alpha—allows for intermediately inspecting data with-

out the shortcoming of an inflated Type I error probability

and in many cases is a more economical way to detect an

effect.

Limitations of APriot and group-sequential testing

While APriot and mathematical methods of group-

sequential testing help the researcher to adjust alpha so

that the Type I error probability does not inflate, there are

some concerns with group-sequential testing which must

be taken into account. The most important problem is that

too many effects might be reported as statistically signifi-

cant. As discussed in the introduction, if a researcher adds

more and more participants to an experiment, effects of

very small size can be detected. While this is desirable

when an effect of unknown size is to be found, there is a

risk of finding effects which are so small that they lack rel-

evance. The misleading expectation could arise that any

effect could show statistical significance just by adding fur-

ther blocks of participants. Thus, it is important for an ex-

perimenter to keep track of the effect size. At this point,

one could argue that it would be better to select aminimum

effect size and do an a-priori sample size analysis. The ad-

vantage of this method is that a clear criterion is available

when to stop the experiment and report the result as “not

significant”. However, with group-sequential testing, the

effect will be found with less participants if the effect size

is actually larger than the previously defined minimum ef-

fect size. So, group-sequential testing with strictly watch-

ing the effect size and stopping the experiment if it gets to

small can be a reasonable compromise.

At last, it must bementioned that group-sequential test-

ing and adjusting alpha is not the only possibility to de-

tect an effect of unknown size. As mentioned in the in-

troduction, defining a small minimum effect size and then

doing an a-priori sample size analysis still is an attractive

way. Further, replication studies are an important instru-

ment to find out whether an effect really exists or has been

found by chance. With repeated-measures designs, it is im-

portant to have multiple measures per subject in order to

reduce within-subject variability. Many of these and sim-

ilar techniques to enlarge the reliability of an experiment

can be used as an alternative to or together with group-

sequential testing.

Taken together, adjusting alpha with group-sequential

testing does not solve the problem of false positive results

as a whole, but it addresses one important reason for false

positive results. Adjusting alpha with group sequential

tests is an important instrument to make results reported

in literature more reliable.
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tatistik. Eschborn near Frankfurt on the Main: Klotz.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007).

G*power 3: a flexible statistical power analysis pro-

The Quantitative Methods for Psychology 1392

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.2.p127


¦ 2017 Vol. 13 no. 2

gram for the social, behavioral, and biomedical sci-

ences. Behavior research methods, 39(2), 175–191.
doi:10.3758/BF03193146

Holm, S. (1979). A simple sequentially rejective multiple

test procedure. Scandinavian Journal of Statistics, 6,
65–70. doi:10.2307/4615733

Ignaz, A., Lang, A.-G., & Buchner, A. (2013). The impact of

practice on the adjustment of interaural cues in a lat-

eralization task. The Journal of the Acoustical Society
of America, 134(2), 901–904. doi:10.1121/1.4812861

John, L. K., Loewenstein, G., & Prelec, D. (2012). Measur-

ing the prevalence of questionable research practices

with incentives for truth telling. Psychological Sci-
ence, 23(5), 524–532. doi:10.1177/0956797611430953

Lakens, D. (2014a). Data peeking without p-hacking. Re-

trieved May 1, 2017, from http : / / daniellakens .

blogspot.nl/2014/06/data-peeking-without-p-hacking.

html

Lakens, D. (2014b). Performing high-powered studies ef-

ficiently with sequential analyses. Social Science Re-
search Network, 3. doi:10.2139/ssrn.2333729

Pahl, R. (2015). Groupseq: A GUI-based program to com-

pute probabilities regarding group sequential designs

(Version 1.0). Retrieved from https:/ /cran.r- project.

org/web/packages/GroupSeq/index.html

Proschan, M. A., Lan, K. K. G., & Wittes, J. T. (2006). Statisti-
cal monitoring of clinical trials. New York: Springer.

Reboussin, D. M., DeMets, D. L., Kim, K., & Lan, K. K. G.

(2014). Lan-demets method: statistical programs for

clinical trials (Version 1.0). Retrieved from https : / /

www.biostat.wisc.edu/content/lan-demets-method-

statistical-programs-clinical-trials
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Appendix A: Program Availability

APriot has been developed to run with Windows 7, 8, and 10. There are 32-bits and 64-bits versions of the program.
APriot is a noncommercial program. It can be downloaded for free at http://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-
psychologie-und-arbeitspsychologie/apriot.html.

The program has been developed carefully and extensively tested. However, no warranty of any kind is given. Please

report bugs to albert.lang@hhu.de.
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