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Abstract Neurons are complex cells that require a lot of time and resources to model completely.

In spiking neural networks (SNN) though, not all that complexity is required. Therefore simple,

abstract models are often used. Thesemodels save time, use less computer resources, and are easier

to understand. This tutorial presents two such models: Izhikevich’s model, which is biologically

realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire

(LIF) model which is not biologically realistic but does quickly and easily integrate input to produce

spikes. Izhikevich’s model is based on Hodgkin-Huxley’s model but simplified such that it uses only

two differentiation equations and four parameters to produce various realistic spike patterns. LIF

is based on a standard electrical circuit and contains one equation. Either of these two models,

or any of the many other models in literature can be used in a SNN. Choosing a neural model is

an important task that depends on the goal of the research and the resources available. Once a

model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made.

Understanding neural models and how they are incorporated into the network is the first step in

creating a SNN.
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Introduction
This paper extends the first tutorial on neural models

(Johnson & Chartier, 2017) by describing models from the

remaining two categories of spiking neural network nodes:

1) general representation neural model, and 2) generic

threshold-fire neural model. Because both these categories

are abstractions of a biologically-based model, one might

ask why we would want abstract models: shouldn’t mod-

els be as biologically accurate as possible? This is a le-

gitimate question, especially considering projects like the

Human Brain Project (http://www.humanbrainproject.eu/)

which is trying to simulate the entire human brain in a su-

per computer.

Pragmatic reasons for abstraction include: limited

time, money, and computational resources, and lack of

knowledge (Levy & Bechtel, 2013, 2; Kaplan, 2011). Time,

money, and computational resources are all interrelated

and need to be taken into consideration during the de-

sign phase. System type affects speed of simulations, but

money affects the system type one can afford. Biologi-

cal detail adds complexity which makes simulations take

longer to run, regardless of the computer system. There-

fore considerations of the budget, current equipment, and

the time allotted for the simulation may make it necessary

to sacrifice biological realism for abstraction. As for lack

of knowledge, there are functions performed by neurons

for which the mechanisms are not know; yet these func-

tions are still modelled. For example, Hodgkin and Huxley

did not know about ion channels when developing their

model. The workings of these channels were abstracted

into the differential equations used in themodel. While ion

channels are known now; other information, such as how

glial cells influence learning and cognition is not (Fields et

al., 2014); but their influence is still part of the function

of the neuron model. While these pragmatic reasons are

widely recognized reasons for abstractions, there are other

reasons that make abstraction beneficial, and necessary, in
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modelling.

SNNs can look at specific biological and cognitive ques-

tions such as how signals are transmitted or how learn-

ing is possible, without incorporating every biological de-

tail of neurons into the network. In fact, trying to cre-

ate a completely biologically realistic SNN may be impos-

sible because the complexity of the model would be too

overwhelming to be understood and impossible to analysis

(Chirimuuta, 2014). When biological details are abstracted,

the resulting models can also be generalized beyond just

the one specific situation. The Hodgkin-Huxley model is

fitted precisely to the giant squid neuron, but while that

neuron has one specific firing pattern, different neurons

have different patterns. Abstracting some of the precise fit-

ting allows the Hodgkin-Huxley model to display these dif-

ferent neuron firing patterns (Guckenheimer & Labouriau,

1993) such as the distinct class of pyramidal neurons that

have a “chattering” pattern (Gray & McCormick, 1996).

Neural models have been generalized into type I and

type II models. Type I models are integrators; their out-

put frequency is directly related to the input frequency.

For these models, the higher the frequency of input, the

higher the frequency of output. Type II models are res-

onators; they only fire once a certain frequency of input is

reached. Both these categories can be generalized into spe-

cific properties and mathematical equations, and are one

of the best means of understanding the brain (Chirimuuta,

2014). This tutorial focuses specifically on type I models

but for more information on type I and type II models see

St-Hilaire and Longtin (2004) or Gerstner, Kistler, Naud,

and Paninski (2014).

No matter the model used for simulating neurons,

a good understanding of the model, its uses and short-

comings, is necessary. In the first tutorial, the biolog-

ically based Hodgkin-Huxley (HH) model was discussed.

In this tutorial, two other models are presented: Izhike-

vich’s model and the Leaky Integrate and Fire (LIF) model.

Izhikevich’smodel is part of the general representation cat-

egory so while it does model biological behaviours, the pa-

rameters have no biological basis. The LIF model is part of

the generic threshold-fire category so it is not biologically

realistic in any way except that it can integrate input and

fire at some threshold. These two neural model sections

are followed with a brief introduction to SNN and how the

neural models fit into the network. All Matlab code used in

this tutorial and the integration of the LIF model are pre-

sented in the appendices.

Izhikevich’s Model
There is a lot of information in explicit models which may

not be necessary for a given simulation. If accurate ac-

tion potentials are necessary but how they are derived is

not, a general representation model is more efficient and

less complicated. General representation models preserve

the functionality but lose the biological realism. One such

model is Izhikevich’s model (Izhikevich, 2003).

Izhikevich’s model is based on the bifurcation and nor-

mal form reduction of the Hodgkin-Huxley model.
1
The

computation used to derive Izhikevich’s model is beyond

the scope of this paper, but for more information on bifur-

cation of the Hodgkins-Huxley model, see Guckenheimer

and Labouriau (1993). A defining characteristic of Izhike-

vich’s model is its ability to show the different firing dy-

namics, such as chattering (described shortly), while still

being a simple two-dimensional model. Izhikevich’s model

contains two ordinary differential equations (Eq. 1 and 2)

and an auxiliary equation (Eq. 3).

dv

dt
= 0.04v2 + 5v + 140− u+ I (1)

du

dt
= a (bv − u) (2)

if v ≥ 30 mV, then

{
v ← c

u← u+ d
(3)

In these equations, v represents the membrane poten-
tial and u represents membrane recovery. These two vari-
ables are intertwined so that v is dependent on u to pro-
duce a spike train but the value of u is dependent on the
value of v to determine how fast the membrane recovers.
The values of v and u are influenced by the parameters
a, b, c, and d which describe respectively: the time scale
of the recovery variable, the sensitivity of the recovery to

subthreshold fluctuations of the membrane potential, the

after-spike reset value of the membrane potential, and the

after-spike reset of the recovery variable. The constants in

equations 1, 2, and 3 (e.g. 0.04, 5, and 140 in Eq. 1) were

obtained by fitting the equations to the spike initiation dy-

namics of the cortical neuron (Izhikevich, 2003).

The different firing patterns (see Figure 1) are produce

by the interplay between the parameters a, b, c, and d. Reg-
ular spiking is the most common firing pattern and is de-

fined as spiking at regular but increasingly distant inter-

vals with constant input; this is the firing pattern displayed

by the Hodgkin-Huxley model. Intrinsically bursting and

chattering neurons are other types of excitatory neuron

firing patterns while fast spiking and low-threshold spik-

ing are patterns that cortical inhibitory interneurons pro-

1
Bifurcation is the study of how the flow, or behaviour, changes in dynamic systems as parameters change. For example, how u in Equation 1 affects

how the voltage produces spikes. There are whole books on this topic such as Kuznetsov (2013).
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Figure 1 Different types of spiking patterns based on varying the parameters a, b, c, and d. Input is set to 10 mV in all
cases.

duce. The model can also duplicate the firing patterns of

the thalamo-cortical neuron.

To understand how the model is able to produce the

different firing patterns, one needs to understand the role

of the v and u and how the parameters a, b, c, and d af-
fect v and u. The membrane potential and the parameter c
are the easiest to understand. The membrane potential is

simply the voltage across the membrane; when this value

reaches a pre-determined threshold, a spike is said to oc-

cur. The membrane potential is graphed in spike trains, as

seen in Figure 1. The parameter c is the reset value, or the
value the membrane potential returns to after a spike oc-

curs. In the Hodgkin-Huxley model an explicit reset value

was not needed because resetting the membrane potential

after an action potential happens via ionic currents. In

Izhikevich’s model there is no implicit reset mechanism.

The auxiliary equation (Eq. 3) explicitly resets the voltage

after a spike occurs so that the membrane potential does

not continue to increase. For example, in Figure 1, imme-

diately after a spike, Chattering resets to -50 mV while Fast

Spiking resets to -65 mV, which are the values of c for those
two spike patterns.

When the membrane potential increases, the recovery

parameter decreases (see Figure 2). The recovery param-

eter is important to make sure that there is a refractory

period after a spike and to affect timing between action

potentials. Parameter d plays a role in changing the possi-
ble timing between spikes. After a spike, when the neuron

needs that recovery period, u is increased again via Equa-
tion 3. This increase in u is done by adding parameter d
to u. The smaller the parameter d, the shorter the recov-
ery time. Note that d should never be negative or it means
that recovery reduces constantly, eventually making it au-

tomatically increase v and the neuron will always spike.
This will be discussed more in the “Parameters” subsection

of “Working with a Model”.

Parameters a and b both affect how the recovery pa-
rameter changes. The parameter a is amultiplicative value
for whatever the change is, allowing the recovery parame-

ter to change faster or slower depending on its value. How

the recovery changes is determined by the interaction be-

tween u, v, and b. If bv > u, then the change of u will be
positive and when bv < u, the change is negative. Assum-
ing v and u are negative, u actually provides help in spiking
– the larger the negative, the more it will increase v to po-
tential spiking criteria. Therefore, a large b means a large
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Figure 2 Changes of membrane potential (v) and membrane recovery (u). Parameters are: a = 0.02, b = 0.2, c = −65,
and d = 2 with a constant input of 5 mV over 100 ms.

negative change to the recovery, recovery is quicker and

spikes occur closer together (see Figure 3). Note though,

that this dynamic can change if voltage is not negative (see

the subsection “Parameters” in the section “Working with

a Model”). Overall, the larger the parameters a and b are,
the quicker the model will be able to produce spikes again

after firing.

Izhikevich’s model is a simple model capable of com-

plex spike patterns. This makes it an excellent choice when

the spike dynamics are important. It is also fairly easy to

understand and fast to run in a simulation, but there is still

complexity in parameter selection and understanding how

the parameters work together.

Leaky Integrate and Fire
The simplest models are those from the third category of

neural models: generic threshold models. Generic models

don’t mimic biological neurons but display basic voltage

change of the membrane potential as it builds to action po-

tentials or reduces back to resting value. The LIFmodel be-

longs to this category and is one of the most used models in

the literature (Mihalas & Niebur, 2009). The popularity of

the LIF rests on the fact that the model is very simple and

quick to use yet still shows membrane potential changes

dependent on input and time. Because of its simplicity, LIF

is also very easy to modify to get the exact functionality

needed for the task (Gerstner & Naud, 2009).

Despite its use, the LIF has many issues. For one, it is

not actually a spiking model because it never spikes. In the

model, a spike is assumed to occur once voltage reaches

a certain value, the spike threshold. Some simulations

explicitly display the spike via modifications to the code;

these spikes are manually built in for visual display pur-

poses only and are not the product of the equation. The

LIF Matlab code in Appendix B provides the option for dis-

playing the spike or not depending on one’s preference (see

Figure 4 for the different display options).

Another important neuron function that is missing in

LIF is adaptation – the increasing interval between spikes

seen in the regular spiking pattern. In the LIF model, if

the input current is constant then spiking will occur at a

constant interval (see Figure 4).

The LIF model is based on the basic electric circuit

which has a linear resistor (IR) and a capacitor (IC ). This
means that the input current is split into two components:

I (t) = IR (t) + IC (t) (4)

where t is time. Based on Ohm’s law,

IR (t) =
v (t)

R
(5)

where v(t) is the voltage as a function of time as the volt-
age travels across the resistor andR is the resistance from
the resistor.
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Figure 3 Changes to recovery and membrane potential for different values of b. The other parameters are a = −0.02,
c = −65, d = 8; the input current is 5 mV.

Ic can be rewritten based on the definition of a capacity

IC (t) = C
dv (t)

dt
(6)

where
dv(t)
dt is the change in voltage with regard to time.

In terms of LIF, v(t) is the membrane potential, therefore
dv(t)
dt is the change in membrane potential over time. C is
a multiplicative value of the change to represent the capac-

itance, or the effect of the capacitor.

Using Equations 5 and 6, Equation 4 can be written as:

RC
dv (t)

dt
= RI (t)− v (t) (7)

BothR and C are constants and together,RC , is the mem-
brane time constant, τup.

τ
dv (t)

dt
= RI (t)− v (t) (8)

In the previous neural models, the differential equa-

tions were too difficult to integrate so the Matlab code

in the appendices uses Euler’s method (see Johnson &

Chartier, 2017, for information on Euler’s method), but

the LIF is a single ordinary derivative equation (ODE) and

therefore can be integrated to yield a precise result (see

Appendix C). The integration of Equation 8 yields

v (t) = vreste
−
t−tf
τ +

R

τ

t−tf
∫
0
e−

s
τ I (t− s) ds (9)

where t is the current time and tf is the time the model
last reached threshold (or “fired”). There is an auxiliary

equation to force the reset of the membrane potential after

firing:

if v ≥ ϑ, then v = vreset (10)

where vreset is a reset value. The reset value does not
have to be the same as the resting value, vrest. For exam-
ple, to show hyperpolarization after spike this reset value

is lower than the resting potential.

In many cases, including the code used in this tutorial,

the input, I(t), is not a continuous function but discrete
time constants representing either “spiking” or “not spik-

ing”. This difference allows for further integration of the

equation via piecewise integration (see Appendix C). Using

piecewise integration, the final equation actually requires

the previous membrane potential and the time difference

since then to calculate the new membrane difference. The

final integration for a discrete time constant input is:

v (t) = vrest + RI (t) + (vt−1 − (vrest +RI (t))) e−
dt
τ

(11)

Notice the inclusion of dt (the time step); this repre-
sents the time difference between the last time the voltage

was checked and the current time, and replaces the differ-

ence between current time and last firing (t− tf ). The final
parameters in the LIF equation are the resting value, resis-

tance and membrane time constant; which are normally

set to 1, input; which is a function of time, and the time

step used in the calculations. The auxiliary equation may

also use the resting value instead of a reset value.

To overcome some of the missing features of neurons,

there have been many modifications to the simple LIF. For

example, there is the adaptive LIF which adjusts the fre-

quency of firing so that spikes don’t occur at equal inter-

vals but slowly increasing intervals (Liu & Wang, 2001).
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Figure 4 LIF with and without spikes; there is no adaptation to the voltage, therefore spikes are equal distance apart.

Time set to 200 ms, input current 1.6 mV,R = 10, τ = 10, resting potential=reset=-65, threshold=-50

There are also many different integrate and fire models,

such as the exponential model and the quadratic model;

these models use the same premise of integrating input un-

til a threshold to fire (see Chapter 5 in Vogels, Rajan, &

Abbott, 2005). These models can both spike and produce

more realistic timing. There is a lot of room for modifica-

tions, adaptations, and fitting in this category because of its

simplicity.

Working with a Model
Three distinct models have been presented in two tutori-

als: Hodgkin-Huxley in tutorial I, and now Izhikevich’s and

LIF. When designing a simulation, the researcher needs to

choose a model that is appropriate for the research but

without unnecessary complexity that would limit under-

standability, replicability, and resource availability. Mod-

els must be carefully chosen at the onset of the network

development. Models also have parameters that need to be

optimized for the simulation; selecting parameters that are

too big, too small, or incorrect, can lead to issues with your

simulation. Finally, all the models discussed use differen-

tial equations, therefore methods to solve these equations

need to be considered before coding the simulation.

Choosing the Correct Model

The three models discussed in these two tutorials are just

meant to give a general understanding of how models

work; there are many different neuron models in the lit-

erature. Choosing a model that is a good fit for the re-

search requires understanding what the research is trying

to show, understanding computational and time limits, and

understanding the neural model.

The first thing to consider is what the research is trying

to determine. For example, if the point of the model is to

see howneurochemicals affect size of the spike, amore bio-

logical model is necessary. Modelling spike time dependent

plasticity (STDP) just needs action potentials so a generic

threshold and fire model will suffice. For more informa-

tion on choosing a models see (Izhikevich, 2004).

Computational resources and run time are also consid-

erations that need to be addressed. The more complex the

neuron, the more equations used, the more computational

resources are needed and therefore the longer it will take

to run the simulation. For example, as mentioned in Tuto-

rial I, on my basic laptop, running the code for Hodgkin-

Huxley, simulating 200 ms takes approximately 0.27 sec-

onds (longer than the time being simulated), Izhikevich’s

model takes approximately 0.004 seconds, and LIF takes

approximately 0.0007 seconds. While that might appear to

be quite fast, that is a single neuron for 200ms; simulations

can have hundreds of neurons and run formuch longer pe-

riods of time. The time needed to run the whole simulation

can be a factor. Keeping the simulation simple is not only

easier to program, but also means getting results quicker.

Parameters

Quick results are important, but accurate and useful re-

sults are more important. The parameters selected for use

in the equations can have a huge effect on the final results.

For example, in Izhikevich’s model, the values of the pa-

rameters a, b, c, and d produce drastically different spike
patterns, and while Figure 1 shows some accurate results,

not all possible results are useful. For example, what hap-

pens if the parameter d is set as negative or the reset is set
to 0? As seen in Figure 5, both these cases produce the un-

wanted result of perpetual spiking. This result is not useful
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Figure 5 Incorrectly selecting parameters in Izhikevich’s model. Parameters are: a = 0.02, b = 0.2, c = −65 (left) or
c = 0 (right), and d = −1 (left) or d = 2 (right). Left has constant input of 5mV of input while right has no input.

and would make the simulation meaningless. Understand-

ing what the model’s parameters mean and do will reduce

the risk of producing inaccurate results.

Another important parameter that is often used in

modelling but has not been explicitly discussed here is

the time step, dt. Because of the difficulty in integrating
Hodgkin-Huxley and Izhikevich’s models, some form of in-

tegration estimation is required, which comes with its own

parameter decisions. Frequently, Euler’s method is used

(see Johnson & Chartier, 2017), which, while having its lim-

its is often sufficient compared to more precise, and com-

plex, methods. In Euler’s method, the time step, dt, deter-
mines how accurate the solution is. If the value for dt is too
large, information is lost, but if the value of dt is too small
the simulation takes a long time to run. In Figure ??, the dt
parameter is modified to show how it affects Izhikevich’s

model. The dt parameter affects the∆v and∆u variables
such that the larger the change in time, the more informa-

tion is lost in the parameter changes. This in turn affects

the voltage and the recovery variables, how they change,

and how the neuron model functions.

Even in simple models parameter selection is impor-

tant to avoid unintended consequences culminating into

bad results. For example, in LIF, if the spike threshold, ϑ, is
too large, the model will never spike (see Figure 7). These

are just some of the problems that incorrect parameters

can produce. All parameters need to be tested carefully

before running the full simulation.

Spiking Neural Networks
Most research considers how neurons work together. To

get results from groups of neurons, they need to be able

to interact, which is where the network part of the neural

network is important. While the network part of SNNs is

beyond the scope of this paper, there are a few things to

consider.

Neurons are connected to each other, but not necessar-

ily every neuron to every neuron. In some cases, neurons

may have low connectivity, or sparse connectivity, where

the neuron is only connected to a few other neurons. In

other cases, neurons may have high connectivity, or be

densely connected, such that they are connected to many

other neurons. A network can include both the dense and

sparse conditions at the same time. When a network has

both conditions, the neurons with high connectivity are of-

ten considered “hubs” and are important for traversing the

network in an efficient manner.

As with the neuron models, these connections are not

physical but values and equations. For example, in Table

1, when the 6
th
presynaptic neuron in the network (N61)

spikes, it affects the postsynaptic neuron N32 but no other

neurons. Conversely, presynaptic neuronN31 affects post-

synaptic neuronsN22,N42, andN62.

Table 1 shows all excitatory connections, but in the

brain there are both inhibitory and excitatory neurons:

is this going to be reflected in the network? Inhibitory

and excitatory differences could be shown by using posi-

tive and negative numbers in the connection matrix. Ta-

ble 1 also contains only zeros and ones, but not all con-

nections are the same strength. N11 might have a larger
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Figure 6 Regular spiking pattern for Izhikevich’s model with different time step selections: 0.1 (top left), 1.1 (top right),

and 2.1 (bottom). Graphs show how voltage and recovery (top) and the change of their respective differential equation

used in calculating voltage and recovery (bottom) depending on the time step used.

Table 1 Example table of possible connections between neurons. Presynpatic neurons fire, and their action potential

affects postsynpatic neurons.

Postsynaptic Neurons

Presynaptic

Neuron

N12 N22 N32 N42 N52 N62

N11 0 1 0 0 1 0

N21 1 0 1 0 1 0

N31 0 1 0 1 0 1

N41 0 0 1 0 1 1

N51 1 1 0 1 0 0

N61 0 0 1 0 0 0

effect on N22 than on N52. How are these strengths go-

ing to be taken into consideration and represented? Are

the strengths between neurons changing over time, and if

so, how? Changes in network connections are often done

following Hebb’s rule which is paraphrased as “what fires

together wires together” (Markram, Gerstner, & Sjöström,

2011). This means that if N11 fires than N22 fires their

connection strength should increase. How neural connec-

tion strength increases (or decreases) is often a logarithmic

function with its own rules and equations. As mentioned

in tutorial 1, these tutorials are only looking at point neu-

rons; but there are other more complex features that could

be modelled to produce interesting behaviours. One such

feature is axon length which can produce time differences,

or delays, between when the presynaptic neuron fires and

when the postsynaptic neuron receives the action poten-

tial (Maass, 1996). Because neurons have different axon

length, it is possible that a presynaptic neuron that fires

slightly after another neuron reaches the postsynaptic be-

forehand; or that a presynaptic neuron that fires before

the postsynaptic fires reaches the postsynaptic neuron af-

terwards.

All the models covered here are spiking models, but

what does the spike mean? Height and frequency may be

important for coding information in the brain, along with

spike pattern, but how that coding is achieved is still under

debate in the neuroscience community (Ainsworth et al.,

2012). There are two overall coding methods: rate coding

which includes spike-count rate and time-dependent rate,

and temporal coding which includes not only the rate as-

pect but the time aspect of coding (see Brette, 2015; Borst &

Theunissen, 1999, for more information).

Considering all the above issues, SNNs models can

become overwhelming and complex very quickly. With

all the computations needed because of the nodes, the

connections between nodes, and changing of connection

strengths, simulations can take a long time to run. Picking

an appropriate model of a neuron is an important step in

developing the network.
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Figure 7 LIF with spike threshold of -45 mV, resting & reset at -65 mV, and a constant input of 1.6 mV will never spike.

Conclusion
The first tutorial covered how neural models are classified,

how biological neurons work, and the Hodgkin-Huxley

model. This tutorial reviews why neural models are often

abstraction of biological models, Izhikevich’s model, LIF

model, parameter selection, and the basics of how neural

networks are assembled. There is still a lot of work to do in

spiking neuron models and related networks, but having a

basic understanding of the neuron and how to model them

is the first step in creating networks.
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Appendix A: Matlab code for Izhikevich Model
While it is generally recommended that one codes with functions and procedures, because of the simplicity of Izhikevich’s

model, and to save space, time, and make it easier to follow, that was not done in the below code. Instead, the code can

be written as follows in one Matlab script.

First, parameters and initial variables are declared, including Izhikevich’s models parameters, length of time, time

step, and input:

% Parameters a, b, c , and d are based on Izhikevich ’ s work
% Change these to display different spike patterns .
spikeType = ’Regular spiking’; % Just used for a heading of a graph and a reminder of what is being graphed

.
a = 0.02; % change these 4 lines to produce the different spike patterns ; see Figure 1 for different values .
b = 0.2;
c = -65;
d = 8;
maxTime = 200; %ms; how long to run the program
dt = 0.1; % time step
t = [0:dt:maxTime]; % vector of all time steps to run
Input = ones(1,length(t))*10; %mV; input, to change the constant input, change the multiplication number

(10); or change all values to produce non−constant input
% setting the initial to values of membrane potential and recovery
v(1) = c % using auxiliary, after spike voltage is c
u(1) = v(1)*b % recovery is equal to the sensitivity (b) of the voltage (v)
With all the variables initialized, the next step is to calculate the membrane potential and recovery using Euler’s

method. This is done in a loop for all the time set in maxTime.

% Euler ’ s method; for each time step , use differential equations
for i = 1:length(t)

v(i+1) = v(i) + (0.04*v(i)^2 + 5*v(i) + 140 - u(i) + Input(i))*dt ; % equation 1
u(i+1) = u(i) + (a*(b*v(i+1)-u(i)))*dt; % equation 2
% equation 3 ( auxiliary )
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if v(i+1) $>$= 30
v(i+1) = c;
u(i+1) = u(i)+d;

end;
end

At this point, the vector v contains all the voltage values over time, and the vector u contains recovery values over
time. These are used for the different graphs produced in this tutorial.

Figure 1 shows how the membrane changes over time and can be graphed with the following code:

figure(’Color’, ’white’)
plot(t,v(1:end-1))
xlabel(’Time (ms)’, ‘fontsize’, 12);
ylabel(’Membrane Potential (mV)’, ‘fontsize’, 12);
title(spikeType, ‘fontsize’, 14);

Most of the graphs show both membrane potential and recovery.

figure(’Color’, ’white’)
plot(t,v(1:end-1), ’b’, t,u(1:end-1), ’r’) % the voltage is set to blue−− ‘b’, while the recovery is red

−− ‘r’
legend(’Membrane Potential’, ’Recovery’);
xlabel(’Time (ms)’, ’fontsize’, 12);
ylabel(’mV’, ’fontsize’, 12);
title(’Membrane potential vs Recovery’, ’fontsize’, 14);

Finally, Figure ?? is a plot that shows multiple parameters side by side for the same time period.
figure(’Color’, ’white’)
subplot(2,2,1)
plot(t,v(1:end-1))
xlabel(’Time (ms)’, ’fontsize’, 12);
ylabel(’mV’, ’fontsize’, 12);
title(‘Potential, v, (dt=0.1)’, ’fontsize’, 14);
subplot(2,2,2)
plot(t,u(1:end-1))
xlabel(’Time (ms)’, ’fontsize’, 12);
ylabel(’mV’, ’fontsize’, 12);
title(‘Recovery, u, (dt=0.1)’, ’fontsize’, 14);
subplot(2,2,3)
plot(t,deltav*dt)
xlabel(’Time (ms)’, ’fontsize’, 12);
ylabel(’mV’, ’fontsize’, 12);
title(’\Delta v’, ’fontsize’, 14);
subplot(2,2,4)
plot(t, deltau)
xlabel(’Time (ms)’, ’fontsize’, 12);
ylabel(’mV’, ’fontsize’, 12);
title(’\Delta u’, ’fontsize’, 14);

Appendix B: Matlab code for Leaky Integrate & Fire
Like Izhikevich’s model, LIF is a simple model that can be easily written in one script file. The first step is to initialize all

the parameters being used.

dt = 0.1; %ms; time step
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endTime = 100; %ms; amount of time that is shown in the graphs
t = [0:dt:endTime]; %ms vector; time points
Input = ones(1,length(t))*1.6; %mv; input from presynaptic spikes and/or electrode
% membrane info
R = 10; %MOhm; membrane resistance
tau = 10; %ms; membrane time constant; RC
% spike info
uresting = -65; %mV; resting membrane potential
ureset = -65; %mV; reset after spike; normally lower than resting
threshold = -55; %mV; spike threshold
spike = NaN; %mV; LIF doesn’t actually fire; this forces it . Set to NaN to not force spike , otherwise set

it to a value higher than threshold
v(1) = uresting; % Initial voltage value
Once the values are initialized, loop though the time to get the new voltage value based on Equation 11.

i = 2; % i is each change in time; the first time is initial values set above
while i $<$= length(t)

v(i) = uresting + Input(i).*R + (v(i-1)-(uresting + Input(i).*R))*exp(-dt/tau); %
Equation 11

% if potential is higher than threshold , spike and reset voltage (Equation 10)
if (v(i) $>$ threshold)
if ~(isnan(spike)) % this if statement just displays the spike when requested

v(i) = spike;
i = i + 1;

end
v(i) = ureset; % auxiliary from Equation 10
end

i = i + 1;
end % while i
The only plot of LIF was the basic voltage over time plot.

set(gcf,’color’,’w’);
plot(t,v)
title(’LIF’, ’fontsize’, 14)
xlabel(’Time (ms)’, ’fontsize’, 12);
ylabel(’Membrane Potential (mV)’, ’fontsize’, 12)

Appendix C: Integrating LIF
When reading about the LIF model, there seem to be many different equations which can be confusing. The reason for

the different equations is because the final integration is affected by the input. This appendix will cover how to derive

the final equation based on three different types of input: constant input, continuous input, and spiking input.

Please note that in the LIF model, the function resets after firing. This means that while time, t, is a continuous
increasing function, within the model it is not; it gets reset to 0 at firing, or is shown as t− tf – time since last fire as seen

in equation 9. For the sake of comprehension, the work below assumes last fire occurred at tf = 0. This assumption
makes no difference to the final solution. For readability, the functions v(t) and I(t) are written with their parameters
beside as subscript, vt and It. This helps to avoid confusion between brackets used in the equation and brackets for
functions.

Before looking at the three different input types, there are a few steps that are always done. From Equation 8:

τ
dv

dt
= RIt − vt
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This is a first-order linear differential equation (ODE), and can be put into the form
dy
dx + P (x) y = Q (x)

dv

dt
+

1

τ
vt =

1

τ
Rvt

At this point, an integrating factor,N (t) = e∫ P (x)dx
, is needed.

2

N (t) = e∫
1
τ dt

N (t) = e
t
τ

Multiple both sides of the ODE by the integrating factor

e
t
τ
dv

dt
+ e

t
τ

1

τ
vt = e

t
τ

1

τ
RIt

Let

f (t) = e
t
τ and g′ (t) =

dv

dt

Therefore

f ′ (t) =
1

τ
e
t
τ and g (t) = vt

Using integration by parts (f (t) g (t))
′

= f (x) g′ (x) + f ′ (x) g (x)

d

dt

(
e
t
τ vt

)
= e

t
τ

1

τ
RIt

The above equation is the starting point for the following LIF solutions.

Constant Input

Constant input is the easiest solution and the least useful – it is very rare that there is a constant input going into neurons.

But, constant input does provide a nice base for understanding the math.

d

dt

(
e
t
τ vt

)
= e

t
τ

1

τ
RIt

Assuming constant input means that It = I for all time.

d

dt

(
e
t
τ vt

)
= e

t
τ

1

τ
RI

Note: For the integration, we want to go from when the neuron last fired (tf = 0) to current time t. Because of the
use of the symbol t inside and outside the integration, there is a potential for confusion over what is bounded and what
is not. Therefore, for integration, the variable s replaces the bounded t. This is particularly important when looking at
continuous input.

e
t
τ vt =

t

∫
0
e
s
τ
RI

τ
ds+ C

Properties of integrals states: ∫ kf (x) dx = k ∫ f (x) dx where k is a constant

e
t
τ vt =

RI

τ

t

∫
0
e
s
τ ds+ C

e
t
τ vt =

RI

τ

[
τe

s
τ

]t
0

+ C

2
Integrating factor is normally designated by I(x) but the function I is already used for input and our formula is based on time, t. Therefore we are

usingN(t) to designate the integrating factor.
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e
t
τ vt = RI

[
e
s
τ

]t
0

+ C

e
t
τ vt = RI

(
e
t
τ − e 0

τ

)
+ C

e
t
τ vt = RI

(
e
t
τ − 1

)
+ C

vt = e−
t
τ RI

(
e
t
τ − 1

)
+ Ce−

t
τ

vt = RI
(

1− e− t
τ

)
+ Ce−

t
τ

To solve for C, we know that the starting value, v(0), without input, is vrest.

vrest = RI
(

1− e− 0
τ

)
+ Ce−

0
τ

vrest = C

Therefore, the final solution when input is constant is

vt = vreste
− t
τ +RI

(
1− e− t

τ

)
To account for different firing times, this can be written as:

vt = vreste
−
t−tf
τ +RI

(
1− e−

t−tf
τ

)
Continuous Input

In simulations and experimentations, input might be a function of time such as I(t) = cos(t). Equation 8 can still be
integrated, to a point, even if the input function is not known. This solution is what is most commonly seen in books and

articles on LIF (Gerstner et al., 2014, for example ). Starting with Equation 8:

τ
dv

dt
= RIt − vt

After the integrating factor is applied

d

dt

(
e
t
τ vt

)
= e

t
τ

1

τ
RIt

e
t
τ vt =

t

∫
0
e
s
τ
RIs
τ
ds+ C

In the above, to make sure the bounded integrating variable is not confused with the variable t, the bounded variable
is changed to s.

e
t
τ vt =

R

τ

t

∫
0
e
s
τ Isds+ C

vt =
R

τ
e−

t
τ

t

∫
0
e
s
τ Isds+ Ce−

t
τ

This is where it was really important to change the bounded (integrating) variable from t to s. Note here that e−
t
τ

is a constant because t is a constant value. Therefore, by properties of integrals: ∫ kf (x) dx = k ∫ f (x) dx where k is a
constant

vt =
R

τ

t

∫
0
e
s
τ e−

t
τ Isds+ Ce−

t
τ

vt =
R

τ

t

∫
0
e
s−t
τ Isds+ Ce−

t
τ

The Quantitative Methods for Psychology 142

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.1.p001


¦ 2018 Vol. 14 no. 1

Now consider that s is bound between 0 and t, yet t is always a constant value regardless of s. Therefore s− t = −s.

vt =
R

τ

t

∫
0
e
−s
τ It−sds+ Ce−

t
τ

We cannot simplify any further because the input function I(t) is unknown.
To solve for C, we assume that at v(0) = vrest.

vrest =
R

τ

0

∫
0
e
−s
τ I0ds+ Ce−

0
τ

By properties of integrals

a

∫
a
f (x) = 0

vrest =
R

τ
(0) + C

vrest = C

Therefore,

vt = vreste
− t
τ +

R

τ

t

∫
0
e
−s
τ It−sds

To get solution shown in equation 9, which accounts for time being continuous and spike firing happens during time

t, replace t with t− tf for everything except input (which does not reset).

vt = vreste
−
t−tf
τ +

R

τ

t−tf
∫
0
e−

s
τ It−sds

Spiking Input

The above continuous input is not often programmed for simulations. Instead, input is usually discrete values to repre-

sent spikes (or not spiking). In this case, input is constant for small periods of time, represented in the code as dt. So,
from 0 to dt, input is a constant value I(dt), from time dt to 2dt, input is a constant value I(2dt). This allows the ODE to
be solved using piecewise integration. From original equation 8:

τ
dv

dt
= RIt − vt

Applying integration factor to get:

d

dt

(
e
t
τ vt

)
= e

t
τ

1

τ
RIt

Piecewise integration looks specifically at the bound range; area under the curve from a to b (0 to t). This means that
the integration is always the difference from 0. In reality though, the difference is adjusted by the resting value. This

means that using piecewise integration, to get the final solution, vt will be wrong by vrest. To account for a starting value,
vrest, we need to replace vt with vt − vrest.

e
t
τ (vt − vrest) =

t

∫
0
e
s
τ
RIs
τ
ds

e
t
τ (vt − vrest) =

R

τ

t

∫
0
e
s
τ Isds

Note: this is the solution for time t.
Based on our discrete input, we actually have:

e
t
τ (vt − vrest) =



R
τ

t

∫
0
e
s
τ Idtds 0 < t ≤ dt

R
τ

t

∫
0
e
s
τ I2dtds dt < t ≤ 2dt

.

.

.

R
τ

t

∫
0
e
s
τ I(k+1)dtds

.

.

.

k dt < t ≤ (k + 1) dt
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where each input, It, is a constant value for the time period lasting length dt. Because there are an infinite amount of
time periods, to solve this integration, we use the same trick that proofs by induction use: assume we have solved the

integration for up to time t (equation above); then solve for the next time step, t + dt, where from t to dt we know that
the input is constant.

e
t+dt
τ (vt+dt − vrest) =

R

τ

t+dt

∫
0
e
s
τ Isds

By properties of integrals:

c

∫
a
f (x) =

b

∫
a
f (x) +

c

∫
b
f (x) where a < b < c

e
t+dt
τ (vt+dt − vrest) =

R

τ

(
t

∫
0
e
s
τ Isds+

t+dt

∫
t
e
s
τ Isds

)

From above we know that e
t
τ (vt − vrest) = R

τ

t

∫
0
e
s
τ Isds

e
t+dt
τ (vt+dt − vrest) = e

t
τ (vt − vo) +

R

τ

t+dt

∫
t
e
s
τ Isds

We know I(s) is constant from t to t+ dt, therefore let that value equal I(s) = I(t+ dt)

e
t+dt
τ (vt+dt − vrest) = e

t
τ (vt − vo) +

R

τ

t+dt

∫
t
e
s
τ It+dtds

e
t+dt
τ (vt+dt − vrest) = e

t
τ (vt − vo) +

RIt+dt
τ

t+dt

∫
t
e
s
τ ds

e
t+dt
τ (vt+dt − vrest) = e

t
τ (vt − vo) +

RIt+dt
τ

[
τe

s
τ

]t+dt
t

e
t+dt
τ (vt+dt − vrest) = e

t
τ (vt − vo) +RIt+dt

[
e
s
τ

]t+dt
t

e
t+dt
τ (vt+dt − vrest) = e

t
τ (vt − vo) +RIt+dt

(
e
t+dt
τ − e tτ

)
(vt+dt − vrest) = e

t
τ e−

t+dt
τ (vt − vo) +RIt+dt

(
e
t+dt
τ − e tτ

)
e−

t+dt
τ

(vt+dt − vrest) = e−
dt
τ vt − e−

dt
τ vo +RIt+dt −RIt+dte−

dt
τ

vt+dt = e−
dt
τ vt − e−

dt
τ vo +RIt+dt −RIt+dte−

dt
τ + vo

vt+dt = vrest +RIt+dt + (vt − (vo +RIt+dt))e
− dtτ

which is equivalent to Equation 11 by replacing t by t− 1 and t+ dtwith t (instead of assuming current step, solve next;
assume previous, solve current).

vt = vrest + RIt + (vt−1 − (v0 +RIt)) e
− dt

τ
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