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Abstract As the importance of embodiment emerges for psychology, there is a need to advance

methodology for measuring the dynamics of movement in an open-ended fashion. Such a tool

should be versatile across contexts and track spontaneous and natural movement with minimal

constraints. We test the feasibility of a method for measuring whole-body movement over time that

attempts to meet this need. We use a motion capture system comprised of two Microsoft Kinect

version 2.0 cameras and iPiSoft Motion Capture software, and compare its estimates of magnitude

rotational velocity and whole-body movement complexity (multivariate multiscale sample entropy;

MMSE) to that of a gold standard motion capture system across a variety of movement sequences.

The candidate system satisfactorily estimated the instantaneous velocity of 13 body segments in

agreement with the gold standard system across movement sequences demonstrating initial feasi-

bility of this process. Summary calculations of velocity by sequence and MMSE calculations were

also in high agreement with the gold standard, crucially suggesting that the candidate system could

pick up on the complex dynamics of movement over time. The candidate system was feasible and

demonstrates preliminary validity for general use in the tracking of continuous human movement

for clinical and experimental psychology. We also provide R code and sample data for the importing

and processing of movement data exported from iPiSoft Motion Capture Studio.
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Introduction
Progress in the theoretical approaches to embodiment and

embodied cognition has informed much about how one’s

own movement is related to psychological phenomena

such as decision-making, semantic knowledge, and percep-

tion (Lakoff & Johnson, 1999; Gallagher, 2006). Empiri-

cal research has demonstrated the relevance of continu-

ous, dynamicmovement in directing interpersonal psycho-

logical processes, through interactional synchrony, for ex-

ample (e.g., Paxton & Dale, 2013; Tschacher, Ramseyer, &

Koole, 2017), and the relevance of these processes in psy-

chotherapy process (Ramseyer & Tschacher, 2011) and psy-

chopathology ((e.g., Galbusera, Finn, & Fuchs, 2016).

Phenomenology emphasizes the role of action in struc-

turing aspects of experience and the self (Sheets-Johnstone,

2011; Gallagher & Zahavi, 2012). Informing these ad-

vances, the phenomenologist Merleau-Ponty offered the

metaphor of human behavior as not necessarily a static

“thing” and neither as an “idea” (2006, p. 127), but as a

temporally-extended process – a kind of “kinetic melody

gifted with meaning” (Merleau-Ponty, 2006, p. 130). Like a

melody, behavior can be understood as an integrated, auto-

correlated, and potentially complex process. Gathering dy-

namic, continuous data grounded in physical terms would

allow the empirical psychologist to examine major ques-

tions related to embodiment and intersubjectivity: how

does the structure of a person’s movement reflect aspects

of their self-experience? How might aspects of interper-

sonal relation emerge as a system of moving persons? In
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order to assess these questions as naturally-occurring pro-

cesses, a measure is needed that is open to the possibilities

of human movement, capable of indexing movement dy-

namically, and flexible to different tasks.

There is considerable literature on biomechanical mea-

surement and kinesiology, which covers a whole range of

questions about the moving human body. Naturally, there

are extensive and highly advanced instrumentation for the

collection, processing, and analysis of kinetic (e.g., energy

and force) and kinematic (e.g., velocity and acceleration)

variables (Winter, 2009; Robertson, Caldwell, Hamill, Ka-

men, &Whittlesey, 2013). The physics of humanmovement

can be complex, the instrumentation advanced, and the

data processing extensive. For these reasons, if there is to

be any sustainable study of movement for the questions of

psychology, there must be a manageable and open-ended

approach that draws out the relevant features of biome-

chanics and describes a process with some confidence in

its validity.

Meeting Methodological Needs

One historic convergence of psychology and biomechanics

in tracking continuous movement lies in the study of hu-

man gait patterns (see Jaspers, 1963, for an early synthe-

sis). In the case of gait, there are various measures from

biomechanics, like inter-stride intervals, which capture as-

pects of the movement (e.g., Mentiplay et al., 2015). Like-

wise, there are specific uses of biomechanical measure-

ment of behavior, like coordination of hand movement

(e.g., Liddy et al., 2017). These approaches provide initial

confidence and validity of a more open-ended approach,

where similar instrumentation could be applied to situa-

tions where there are minimal constraints on movement

and naturally occurring, systemic dynamics of the whole

body aremore central. As such, amethod that can describe

movement of the whole body and its parts in a way that

can be used across forms of movement may be an ideal ad-

dition to the methodological toolbox in psychology.

Rotational velocity is one such index that can be used

tomeet these needs. Occurring in three-dimensional space,

rotational velocity can characterize the movement of body

segments as they rotate at joints together and navigate

space. Rotational velocity is typically described as the

change in degrees or radians per second of Euler angles,

which capture each of the three dimensions of rotation

(Robertson et al., 2013, p. 50). It can be transformed from

a three-dimensional matrix into a one-dimensional scalar

rather easily by calculating the Euclidean norm of the three

rotational dimensions. Not only does this make the inter-

pretation and computation of movement data easier, but it

would also harmonize well with neuroscientific methodol-

ogy, like EEG and fMRI, which can also be processed into

sets of scalar values over time. The feasibility of this index

would also inform the use of a similar index of movement:

kinetic energy

Dynamic structure of movement. Studies in biomechan-
ics have applied algorithms that calculate the variability of

movement over time in terms of complexity, or meaning-

ful structural richness (Newell, Deutsch, Sosnoff, & Mayer-

Kress, 2006). These approaches offer powerful tools for

characterizing complexity in natural systems, and shifting

attention toward the structural characteristics of variabil-

ity has led to progress in understanding dynamic struc-

ture of healthy, optimal performance across human sys-

tems. A line of research in this effort has demonstrated

that optimal heart rate styles are richly complex, while un-

healthy styles have been shown to either be highly pre-

dictable (e.g., highly regular beats) or highly random (e.g.,

atrial fibrillation; Costa, Goldberger, & Peng, 2002). Simi-

lar models have been applied to discover increases in the

dynamic complexity of brain activity among individuals

with schizophrenia after taking antipsychotics (Takahashi

et al., 2010), to discriminate between fMRI data of young

and elderly adults (Sokunbi, 2014), and to characterize

the difference between healthy and unhealthy human gait

and balance dynamics (Costa, Peng, Goldberger, & Haus-

dorff, 2003). While this represents a potential measure

for characterizing whole-body movement dynamics across

contexts, it needs to be explored with the chosen measure

of rotational velocity under open-ended conditions.

Instrumentation. Passive motion capture systems are
standard in the measurement of movement in biomechan-

ics. While they are extremely accurate, they require sig-

nificant preparation of a single participant with markers

and in the modeling of their morphology ‘from the bottom

up.’ These markers allow a multi-camera system to pas-

sively record location in three-dimensional space at a high

accuracy. Figure 1a shows a participant with markers at-

tached to his body. These were used only by the passive

motion capture system and are irrelevant to the candidate

active system introduced below. This process also requires

expertise on the part of the experimenter and a large, ded-

icated space for the sophisticated network of cameras in-

volved. If motion capture is to be smoothly integrated into

psychology research, finding more feasible and more in-

conspicuous instrumentation is paramount.

An active motion capture system, exemplified by the

Microsoft Kinect hardware, is a promising response to this

concern. These systems are active in the sense that they

actively fit a human figure to depth data ‘from the top

down.’ By way of active modeling, these systems introduce

an additional layer of estimation into the collection of raw

movement data, naturally introducing additional error. In-

creased error in the measurement of movement dynamics
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Figure 1 Corresponding Frame of Video, Visualization of Data Tracked from the Active Motion Capture System Rotated

to a Reverse Perspective and Video Sample (Available Online). These images are sourced solely from the active motion

capture system. The notations of “1” and “2” in part b label the cameras in global space. The image in part a was captured

from the camera 1 video. Part c is a video that can be streamed or downloaded: tiny.utk.edu/Figure1c.

by active systems may be tolerable given accessibility ad-

vantages, but only if they can be thoroughly validated. Ac-

tive systems seem well positioned for use in movement re-

search that requires the collection of three-dimensional dy-

namic data. Where large numbers of participants are fre-

quent, a markerless, active system provides a way to mea-

sure the movement of people more immediately, without

applying materials to a participant or having them wear

any specialized equipment. A frame of tracked movement

corresponding to that of the still image from the video in

Figure 1a is given in Figure 1b. Also see Figure 1c online at

tiny.utk.edu/Figure1c for a video visualization of themove-

ment data across the same sequence.

While the Kinect may not reach the accuracy needed

for fine-grained biomechanical questions achievable by

passive systems, the accuracy and rate of measure-

ment sufficiently estimate spatiotemporal characteristics

of movement. While there are several studies on the accu-

racy of the Kinect version 2.0 data (e.g., Clark et al., 2015;

Geerse, Coolen, & Roerdink, 2015; Liddy et al., 2017; Men-

tiplay et al., 2015), it remains to be establishedwhether this

system can record a general measure like magnitude rota-

tional velocity in an open-ended fashion.

Thus, a study was designed to examine the agreement

between the estimates of this active system with a passive

system onmagnitude rotational velocity in body segments.

This study also presents the development of a general pro-

cedure for processing movement data and for analyzing

the dynamic structure of movement.

Method
Participants

Three individuals completed a number of movement se-

quences for this study. Two were actors studying for their

Masters of Fine Arts (MFA) in Acting (one male, one fe-

male) who performed a series of seven varied movement

sequences. These two actors had previous coursework in

movement and corporeal mime. The other participant was

a professor of theater who specialized in movement train-

ing. He performed six sequences of corporeal mime from

the tradition of Etienne Decroux (Decroux, 1985; Leabhart,

1989). The institution’s Internal Review Board approved

all study procedures and all individuals gave written in-

formed consent for participation in the study and for sci-

entific presentation or publication of videos or images of

their participation. With such involved and rich data col-

lection, a small sample of individuals with a series of se-

quences performed each was deemed sufficient to test the

feasibility of the method at hand.

Experimental Procedure

After the calibration of instrumentation and basic prepa-

ration of participants for both movement systems, they
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Table 1 Movement Sequences Performed

Participant

Sequence Duration Limit Female MFA Actor Male MFA Actor Professor of Theater

Free treadmill 1 min x x

Paced treadmill 1 min x x

Random 1 min x x

Swaying 1 min x x

Mock stress interview 5 min x x

Ground walking None x x

The Rope None x x x

Flick of the Seahorse’s Tail None x

Actions of Agriculture

Scythe None x

Pulling a cart None x

Pitchfork None x

Sowing seeds None x

were asked to perform a series of movement sequences.

The two MFA participants each received identical instruc-

tions for movement sequences and performed them in the

same order: treadmill walking freely and governed by a

metronome, one minute sequences of random and sway-

ing movement, the simulation of an interview procedure,

a corporeal mime piece, and a brief walk through the cap-

ture area on the ground. These tasks were selected to pro-

vide a varied database of samples with widely different

properties intended to push the limits of the active system’s

movement tracking capacities. Refer to Table 1 for a sum-

mary of these movement sequences.

Movement Sequences for the MFA Students

Treadmill walking: free and paced movement. Partic-
ipants were asked to walk on a commercial-grade tread-

mill both freely andwith their steps paced by ametronome

for one minute each. Speed was held constant within the

two trails of the participants, but was set to a participant-

determined comfortable speed. The metronome, which

gave the constant indication of beats per minute (bpm) by

a “click” sound, was set at 120 bpm.

Random and recurring sequences. For further samples
of movement with varying properties, theMFA actors were

instructed to conduct two further movement sequences:

random, to move around randomly for one minute and

swaying, to sway in place for another minute. These se-

quences allowed for the exploration of validity in the con-

texts of more periodic movement and more open-ended

movement.

Mock interview. As one planned application of move-
ment measurement to psychology was through a well-

defined stress induction paradigm, the Trier Social Stress

Test (Kirschbaum, Pirke, & Hellhammer, 1993), MFA actors

were asked to undergo the administration of the test for a

5-minute duration in character. In summary, they were in-

structed to interview as a character of their choosing for a

“dream job”. The inclusion of this in our experimental pro-

cedure allowed for an even more open-ended movement

sequence, tracking natural speaking behavioral.

Corporeal mime: The Rope. MFA actors were asked to
perform a prepared corporeal mime piece. In this se-

quence, the participant moves as if they hand off a rope.

Each participant performed the sequence three times dur-

ing their recording.

Ground walking. To assess the active system’s ability to
capture kinematics at a short duration, the MFA actors

were instructed to walk from the back of the capture area

toward and through the space between the two Kinect cam-

eras.

Movement Sequences for the Professor of Theater

Themale professor of theater performed The Rope and five

additional corporeal mime sequences, including a series of

four sequences from the Etienne Decroux corporeal mime

tradition called the Actions of Agriculture. This is a series

of four movement sequences that portray features of agri-

cultural work: sowing seeds, pulling a cart, cutting crops

with a scythe, and using a pitchfork. The professor of the-

ater’s fifth movement sequence was called Flick of the Sea-

horse’s Tail, in which he portrayed the dynamics of a sea-

horse tail through bilateral arm movements. In terms of

testing the motion capture instrumentation, these corpo-

real mime sequences provided rich and varied samples of

human movement.
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Instrumentation

The gold standard: a passive motion capture system. A
9-camera MX3/T10 1000 Hz motion analysis system, a pas-

sive motion capture system, was used as the gold standard

of movement measurement in this study. This is a highly

accurate state-of-the-art motion capture system used as a

standard for biomechanical research (Windolf, Götzen, &

Morlock, 2008). Providing a three-dimensional perspective

on movement in the capture area, this allows for highly ac-

curate and reliable recording of kinematics.

Participants were outfittedwith specialized light reflec-

tors by experts in the operation of this system (see Figure

1a for an image of a participant wearing markers). These

are designed to be minimally obtrusive, so as not to distort

the participant’s natural movement. These reflectors are

also specially designed to interface with the multiple cam-

eras to produce three-dimensional location data. Before

performing themovement sequences, participants stood in

the center of the recording space for a baseline snapshot,

which this system used as a template for modeling all fu-

ture movement of this participant.

The candidate: an active motion capture system. In
2013, Microsoft released a second version of their Kinect

camera system, which involves a hardware camera and a

linked software development kit (SDK) allowing for data

collection and analysis with a personal computer running

Windows. Like its predecessor, this version measures hu-

man movement in three dimensions over time through a

markerlessmethod. That is, amethod that does not require

the placement of sensors or reflective markers on the par-

ticipant’s body. This system records depth data using in-

frared sensors. Such data contain three-dimensional infor-

mation, which can be actively modeled to a human form.

Some approaches to collecting these data use custom

programming to extract position data of the built-in skele-

tal; figure provided by the SDK (e.g., Clark et al., 2012).

Third-party software also exists (e.g., Brekelmans, 2016)

that captures this raw data directly from the Kinect record-

ing. By these systems, motion capture data of the body seg-

ments are directly written and usually only from the per-

spective of one camera. Though the data can be filtered

or cleaned for outliers, the core movement modeling is es-

sentially unalterable for these systems. Video might be

recorded incidentally, but once recorded, the movement

data are written and cannot be remodeled or resampled

after the fact.

The software system utilized in this study is made up

of iPi Recorder 3.2.5.47 (iPi Soft LLC, 2016b) and the iPi

Motion Capture Studio (Basic) 3.4.16.212 with the Biome-

chanics Add-on (iPi Soft LLC, 2016a). iPi Recorder is free

to download and use from, but iPi Motion Capture Stu-

dio is required for the modeling of movement and is nei-

ther open source nor open-access software. This software

takes a unique approach to active motion capture with the

Kinect camera (and is compatible with other cameras like

the PlayStation Eye). Rather than directly recording skele-

tal movement data, iPi Recorder first records the depth

data over time. In a second step, this video is “tracked”

in iPi Motion Capture Studio. It is only at this stage that

movement data are modeled.

For the purposes of an open-ended approach to the

measurement of movement, this step between depth data

recording andmovement tracking offers significant advan-

tages. One can supervise the movement tracking process

and multiple cameras synthesize into a more accurate pic-

ture of depth. Regarding the supervision of tracking, one

can observe the software estimating movement relative to

the observable video. Though infrequent, an active motion

capture system has the potential of misidentifying or ‘los-

ing track’ of a body segment through the course of record-

ing, compounding into massive tracking errors. In an ac-

tive motion capture system that directly records move-

ment data, it is difficult to notice this loss of the segment

tracking since there is no visual comparison from which

to supervise, and no backup of the depth recording from

which to remodel. Being able to visually compare and po-

tentially revise the model in reference to the actual video

turns out to be a huge methodological advantage toward

preserving data.

Calibration of cameras. When conducting a multi-

camera setup, the spatial relationship between the two

cameras needs to be identified by the software before the

two sets of depth data can be synthesized. See Figure 1b

for a representation of the two cameras in global space.

This was accomplished by recording a calibration video

before any movement sequences can be recorded. An ex-

perimenter traversed the capture area with a bright light

source in hand, which the iPi Motion Capture Studio soft-

ware tracks across both cameras. There need not be a strict

arrangement of the cameras relative to each other - all suc-

cessful calibrations are equivalently functional. A second

calibration video was recorded at the end of the experi-

mental session in case the camera arrangement of the pre-

session calibration was somehow altered (e.g., accidentally

bumping a camera), but ultimately went unused in this

study.

Arrangement of cameras and laptops. Two Kinect ver-
sion 2.0 cameras were stationed at the edge of the passive

system’s pre-existing recording capture area. Since the ex-

act arrangement of cameras is flexible, they were placed

approximately 3 meters apart and at different heights. The

exact values were 2.85 m apart and facing inward, form-

ing a 78° angle. The camera stage right was at a .8 m height
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over the ground with a slight, 4.26° upward tilt, with the

camera stage left at a .9 m height over the ground and a

0.48° upward tilt. While these are exact reports on the

camera positions, once the cameras are calibrated to one

another in this setup, the exact positions make little differ-

ence.

As the software requires, the two cameras were linked

to their own dedicated laptop. These two laptops were con-

nected by Ethernet cable for reliable simultaneity and data

transfer of the two recordings. One laptop-camera pair-

ing served as the master controller of the recording pro-

cess, dictating the start and stop times of the of the slave

laptop-camera pairing. Cameraswere situated on standard

video camera tripods set to the sides of a table that had the

laptops on it. iPi Recorder software made the depth data

recordings and facilitated the networking of the machines.

Recording procedure. For the active motion capture sys-
tem, participants are required to begin each movement se-

quence in a T-Pose (i.e., standing upright with arms held

outward, parallel with the ground). This allows the soft-

ware to easily initiate the modeling of the participant’s

body. Participants were instructed to hold the T-Pose for

around 2-3 seconds to gather more than enough data for

the identification of the body contours after which the par-

ticipant began the designated movement sequence. The

passive motion capture system recording began immedi-

ately following the end of the T-Pose stance.

Tracking and refining procedure with iPi Motion Cap-
ture Studio. The movement sequences were paired with
a calibration file when imported into iPi Motion Capture

Studio. A model of each participant was visually fitted to

the videos for tracking. This is a quick process requiring

no more than 30 seconds. Parameters like height, arm

length, and leg length, were adjusted to fit the still frame

of the participant standing in a T-Pose. Videos were then

tracked forward in time. Whenever a gross error of track-

ing occurred relative to the original video, the tracking

was paused, the human skeletal model manually corrected

at the erroneous moment, and the software self-corrected

tracking going forward. This was rare in our experience,

adding anywhere from one to five minutes of additional

processing time beyond the software’s tracking. After for-

ward tracking was completed, each video was backward

refined. Backward refinement essentially refits the partici-

pant’s frame-by-frame pose going backwards in time, from

the end to the beginning, providing subtle improvements

to the initial tracking.

Common Measurement Across Both Systems

Body segments and groupings. Movement of body seg-
ments were measured in both systems as Head, Chest, and

Hips, with left and right measurements of Upper Arms,

Forearms, Thighs, Shins, and Feet. For all sequences, these

body segments were also grouped by summing their re-

spective values for each frame into Upper Body (Head,

Chest, Upper Arms, and Forearms) and Lower Body (Hip,

Thighs, Shins, Feet). Finally, a Total segments group was

created by summing all body segments on their respective

values for each frame. Thus, there were 16 values created

in total for each movement sequence with 13 body seg-

ments and 3 calculated segment groupings.

Frame of reference. The kinematic data from both sys-
tems were calculated relative to the global frame of ref-

erence. Each body segment was measured relative to the

ground and described by kinematics independent of their

position relative to other body segments. This can be con-

trasted with a frame of reference where the kinematics

of each body segment is treated relative to their parent

joint, for example, the Upper Arm’s movement relative to

the Chest. Since both systems are calibrated to the global

frame of reference, it provided a uniform and identical

frame between the two motion capture systems for rota-

tional data.

Sampling rate. We proceeded with 30 hz as the standard
sampling rate for all measures. This was the fastest sam-

pling rate permitted for the active motion capture system.

The passive motion capture system was sampled at 100 hz,

whichwas transformed into 30 hz by upsampling by amag-

nitude of 3 to 300 hz and downsampling by a magnitude of

10.

Aligning data. Data were aligned to the correct frame by
first gathering an estimate of the corresponding frames be-

tween visualizations of the movement data. Second, cross-

correlation analyses were performed in R to discover the

exact active and passive system frame with maximum cor-

respondence and prepare the data accordingly for agree-

ment analyses.

Data Processing

Magnitude rotational velocity. Magnitude rotational ve-
locity captures the movement of each body segment. In

this project, it was measured as degrees per second of rota-

tion relative to the global reference system (relative to the

room). It was the primary metric under evaluation in this

study as common across the active and passive systems,

with the values of the passive system treated as a fixed gold

standard. It is also the metric from which dynamic struc-

ture calculations are calculated for further evaluation of

agreement. The degree to which the active system mea-

sures magnitude velocity accurately directly informs the

reliability of future calculations of kinetic measures, such

as kinetic energy.

Filtering data. It is common practice to filter biomechan-
ical data to better model true kinematic values, typically
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with a low-pass Butterworth filter (Winter, 2009, p. 35).

Passive system data of the markers were collected at 100

hz, and a residual analysis determined that an optimal fil-

ter was a low-pass Butterworth filter at 10 hz.

For the active system, filtering was optimized relative

to the processed passive system data as the first step in the

data analysis process. The results of this analysis informed

the filter order parameters and cut-off frequency for all fol-

lowing agreement analyses. Filtering was performed in R

using the signal package (Developers, 2014) and a cus-
tom function wrapper used to assess agreement for each

movement sequence atmany filter combinations. This pro-

cess was intended to maximize the overall performance of

the active motion capture system for this study and estab-

lish defaults for further research to work from. The values

derived from this process were then incorporated into the

default values of the R code including the supplementary

materials.

R Code and Supplementary Files. Instructions and R
code for importing and processing data into magnitude ve-

locity over time and for creating the summary values of a

movement sequence are provided in supplementary mate-

rials. One script loads the function, ipi_read, which can be

used to directly import the tab-delimited files produced by

iPi Motion Capture Studio Biomechanics Addon (exported

according to the export profile also provided). The script,

movement, loads a function that processes the imported

database into channels of magnitude velocity and sum-

mary values, exporting them as .csv files. The movement

function also has options for applying a Butterworth fil-

ter (default values being the optimal values derived in this

project), changing beginning and end frames to be pro-

cessed.

Complexity. Complexity was operationalized as sample
entropy using two closely related algorithms, multiscale

sample entropy and multivariate sample entropy. The

sample entropy calculation forms the core of these algo-

rithms, known as SampEn (Richman & Moorman, 2000).

Overall, SampEn was designed as an open-ended calcula-

tion of the degree of patterning in data over time.

The algorithm works by assessing the probability that,

over a sequence of a given m points, that m + 1 falls within

an acceptable tolerance, r, at other m + 1 samples across

the time series. Richman and Moorman summarize this al-

gorithm as “precisely the conditional probability that two

sequences within a tolerance r for m points remain within

r of each other at the next point.” ( p. H2042). T calcu-

lates the conditional probability of the number of template

matches m + 1 given the number of template matches at

m length. To give a standard scaling, the negative natural

logarithm is taken of this probability.

SampEn improves upon the approximate entropy algo-

rithm (ApEn; Pincus, 1991), which was modeled to capture

themean rate of generation of information in a time series,

or Kolmogorov-Sinai (KS) entropy. It is unbiased by not

counting templates asmatching themselves and ismore ro-

bust to differences in time series length, making it a better

estimate own complexity (Richman & Moorman, 2000).

Multiscale. Multiscale sample entropy introduces a multi-
scale advancement in measurement to this sample entropy

algorithm (MSE; Costa, Goldberger, & Peng, 2005). Whereas

its predecessors, approximate entropy and sample entropy,

consider complexity across a single time scale, Costa et al.

(2005) note that complex processes often happen at differ-

ent time scales in real-world data. This treatment helps

to preserve the entropy metric in accurately characteriz-

ing high-information variability as complex, maintaining a

guiding intuition about complexity as representing “mean-

ingful structural richness” in dynamic data (Grassberger,

1991, p. 16). The authors of MSE noticed that white noise

can often erroneously register as more complex than natu-

rally autocorrelated systems (Costa et al., 2005). By paying

attention to larger time scales, MSE can observe long-range

dynamic structures typical of living systems. Thus, rather

than one scaled value of entropy, this approach generates

a series of entropy values for an individual time series, one

for each integer increase in time scale (ε).
As an analogy to the changing time scales, consider a

digital geographical map. One can zoom in closely to the

details of a street and can, step by step, zoom out to a

neighborhood, a city, a state or country, and so on. Coarse-

graining a time series works this way, but by averaging

across bins of time-based data. The multiscale feature of

MSE does this very change in scope. For instance, ε = 10
averages bins of every 10 frames of data, ε = 20 across
bins of every 20 frames. Thus, when recording at 30 frames

per second, an MSE analysis at ε = 15 counts patterns
across half-second means.

Multivariate. The multiscale sample entropy measure
has been developed further by Ahmed and Mandic to ac-

count for complexity in multiple channels of data on the

same system 2011. This applies the multiscale approach

while considering cross-channel pattern matching within

and across subspaces of a multivariate time series. Where

sample entropy requires the fixed parameters of m, and r,

andmultiscale modification, of time scale, the multivariate

algorithm requires these as well as the specification of time

lags among the channels of data (τ ). This method general-
izes sample entropy to the multivariate case at the speci-

fied τ for the specified range of time scales. This is a rig-
orous and computationally taxing procedure to perform,

which grows more taxing as the number of channels in-

creases and the length of the data increase. MATLAB code

was publicly shared by the developers of this algorithm
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and was used in this study to assess both MMSE and MSE

(MSE being the 1-channel case of MMSE; Ahmed & Mandic,

2011).

XSEDE high performance computing system. High per-
formance computing resources were required for most ex-

haustive tests of MMSE (13-channels of movement data).

Processing of the multiscale sample entropy algorithms

was completed via an allocation of service units on the

NSF-funded Extreme Science and Engineering Discovery

Environment (XSEDE), which was started at the Univer-

sity of Illinois-Champaign (Towns et al., 2014). The re-

source that was utilized in this study was Comet, the high-

performance computing cluster based in the San Diego Su-

percomputing Center (SDSC; Moore et al., 2014). For this

project, Comet was accessed remotely, and was used to run

the MMSE algorithm on fully prepared time series from

both the active and passive systems to examine agreement

on these measures.

Data Analysis Strategy

Data analyses focused on the agreement of the active sys-

tem to the passive system. This is amatter of agreement be-

tween a gold standard measure and a trial measure where

absolute values are relevant. Additional analyses explored

trials for expected features of the multivariate multiscale

sample entropy values.

Assessing agreement. Concordance correlation coeffi-
cient (rc). Statistical analyses on agreement have advanced

to the calculation of concordance, which can be decom-

posed into accuracy and precision (Leabhart, 1989). A com-

mon measure of relatedness, Pearson correlation and its

non-parametric equivalents, do not meet the needs of ex-

amining the agreement of instrumentation methods. In

the case of agreement, it is usually known a priori that

the systems are measuring that same object. Thus, corre-

lation loses much relevance and the question becomes: to

what extent the measures are identical (Leabhart, 1989, p.

255)? It is important to know howmeasures agree in terms

of scaling (of which correlation is scale-independent); not

only whether they are related over time or between tri-

als, but whether they also return similar values of the phe-

nomenon at hand.

The concordance coefficient has been developed to deal

with variance between the measures in fixed or random

ways, depending on the question at hand. In the case of

the current study, variance was treated as fixed, consider-

ing the active system and the passive system as composing

the population of interest, in comparing a trial instrument

to a gold standard without intending to generalize this ef-

fect to a larger population (Lin, Hedayat, Sinha, & Yang,

2002, p. 258-260).

While there are no certain benchmarks for the inter-

pretation of concordance, it is scaled from -1 to 1 and op-

erates similarly to the intra-class correlation coefficient,

producing very similar values (Chen & Barnhart, 2008)

and might be roughly interpreted with the same rules of

thumb of ICC in the social sciences (Cicchetti & Sparrow,

1981). While much higher concordance values are consid-

ered necessary for the replacement of one method by an-

other, this framework gives us a rough scale as to howwell

the active system can estimate point-values of the time se-

ries.

The concordance coefficient is used throughout the cur-

rent study and is considered the primary measure of de-

gree of agreement. The R package Agreement was used to

calculate these coefficients (Yu & Lin, 2012).

The precision component of concordance is identical

to Pearson correlation, particularly a fixed effects version

of the Pearson correlation in the case of assessing concor-

dance to a fixed target (Lin et al., 2002, p. 259). Preci-

sion, then, assesses for the structural relationship between

measures of the same phenomenon in a relative fashion

while the accuracy component assesses for estimation of

the measured value in absolute terms.

Limits of agreement. A way to capture the real-world
meaning of rc is to present the high and low-bound 95%

limits of agreement (Barnhart et al., 2016). In the cur-

rent case, these would be the bounds within which one

could expect the active system values to be relative to the

gold standard. These values form guiding lines on Bland-

Altman plots, which are also generally recommended for

visually assessing the agreement of twomeasures (Bland &

Altman, 1986). These plots show the relationship between

the average of the two measures and the difference be-

tween the two measures, allowing for a depiction of any

systematic errors in measurement that might occur and

cannot be captured by a single coefficient like rc (e.g., more

extreme errors at the high end of measurement). The R

package BlandAltmanLehwas used to create these plots
and calculate the 95% limits of agreement (Lehnert, 2015).

Three Perspectives on the Validity of the Candidate Sys-
tem

In the current study, a passive system designated as a gold

standardmeasure for measuringmovement, providing the

values for an active system to estimate. Both systems con-

currently measured a series of movement sequences. The

agreement of active system estimates to the passive system

values was assessed through three perspectives: dynamic,

summary, and dynamic structure.

Dynamic. One perspective employed in this project was
the dynamic agreement between the two systems, that is,

comparing the continuous, frame-by-frame values of both

systems for each segment and for groups of segments (in-
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cluding one of all the segments summed together for each

frame) within movement sequences. These agreement in-

dices were then averaged across movement sequences for

the main results. These analyses encompass large num-

bers of observations using core measures of agreement:

the concordance coefficient (rc), precision coefficient (r),

accuracy (χa), and the 95% limits of agreement of values.

The 95% lower confidence limit (CLL) of rc is also pre-

sented along with rc values.

Summary. The second perspective was the summary
agreement, which involves the analysis of summaries of

magnitude velocity across the whole movement sequence.

That is, calculating the mean and standard deviation of

movement for each segment and segment grouping across

the whole sequence. This is more important to our ap-

proach than the dynamic results, since this technology will

be used not to estimate single values of movement, but in-

stead summarize sequences of movement.

Dynamic structure. The third perspective of analysis was
on dynamic structure agreement. This involves analyses

on sets of calculated values that reflect different elements

of time series structure: autocorrelation and complex-

ity. Autocorrelation values up to a lag of 90 frames were

calculated for body segments and segment groupings for

each movement sequence and compared using the suite of

agreement measures. Following, agreement between sys-

tems on the measures of complexity, multiscale sample en-

tropy and multivariate multiscale sample entropy was as-

sessed with the same suite of analyses. Given the relatively

short duration of these walking sequences, they were not

long enough in duration to be included in analyses of dy-

namic structure agreement.

Results
Both passive and active motion capture data for all 20

movement sequences were successfully collected with no

missing data. We present the agreement between the ac-

tive and passive systems over time inmagnitude rotational

velocity in degrees per second. Being a Euclidean-normed

scalar the three-dimensional velocity, magnitude velocity

gives simplified direct measure of general movement for

each body segment over time. That is, it reflects a gen-

eral “how much movement” recorded from a body seg-

ment over time without information about which dimen-

sion of rotation (X, Y, or Z) or which direction (positive or

negative). In this way, magnitude velocity could be char-

acterized as the omnidirectional rotational speed of a body

segment over time. Validating magnitude rotational veloc-

ity of each body segment in the whole-body system pro-

vides a foundation toward supporting accuracy kinetic en-

ergy calculations. The following analyses include all move-

ment sequences of the experiment by all three participants

(n = 20).

Optimal Filtering of the Active System Data

To proceedwith the agreement analyses and evaluations of

complexity measures, the optimal filtering procedure for

the active motion capture data needed to be established.

Maximum concordance with the passive motion captures

system across movement sequences was determined as the

criteria for selecting a specific low-pass Butterworth filter.

Optimal filter was operationalized as the filter that, across

all body segments over several movement sequences, re-

sulted in maximum frame-by-frame concordance with cor-

responding passive motion capture segments.

For this analysis, we examined the 1-minute and 5-

minute movement sequences of the two MFA actors, 10 in

total. For each movement sequence, agreement of the ac-

tive to the passive system was assessed at 30 digital fre-

quencies (.01 to .30 by .01 increments) for 6 filter orders

(1-6). In addition, the agreement of unfiltered data was

assessed for comparison. In total, 180 Butterworth filter

settings were tested for each of the 13 body segments for

10 movement sequences. We then averaged concordance

measures at each Butterworth filter across body segments

to get a value of overall performance. Following, averaged

concordance across movement sequences was used to de-

rive an optimal Butterworth filter for all subsequent data

analyses.

Among tested filters, the optimal low-pass Butterworth

filter was a second order filter at a digital filter value of .24.

See Figure 2 for a selection of five seconds of the male MFA

actor’s mock interview data in the calculated total magni-

tude velocity. The optimal filter marginally improved upon

the concordance coefficient of the unfiltered data: the op-

timal filter had a concordance coefficient of rc = .627with
a lower-bound 95% confidence limit of CLL = .619 which
is larger than the unfiltered data, rc = .600, CLU = .613.
The optimal filter made gains in precision to the passive

motion capture system over unfiltered data with an r =
.686 (CLL = .671). The unfiltered data had less precision,
r = .674 (CLU = .656), the upper-bound of which did not
reach the lower-bound of the optimal filter, demonstrating

a notable improvement in the optimal filter.

Accuracy decreased with the optimal filter (rc = .855,
CLU = .861) when compared to the unfiltered data (rc =
.870, CLL = .863). Given the overall improvement in
concordance and the relative importance of precision over

accuracy for the purposes of dynamic analyses, we pro-

ceeded with the optimal Butterworth-filtered data as the

standard for all following analyses.
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Figure 2 Five Seconds of Filtered and Unfiltered Active SystemMovement Data with Corresponding Passive System Data.

These are data of the male MFA actor’s mock interview. Units are degrees per second.

Dynamic Agreement

Agreement of the active system to the passive system over

time was assessed. This focused on the ability of the active

system to track the ongoing dynamics of movement. This

was performed for each segment and segment grouping

for each movement sequence at 30 hz. As an illustration of

the data involved in a single movement sequence, see Fig-

ure 3 for the magnitude velocity of all 13 segments through

the Scythe movement sequence performed by the profes-

sor of theater presented alongside these same data visual-

ized asmovement. Across body segments for all movement

sequences, the active motion capture system data agreed

with the passive motion capture system with an average

rc = .644 (CLL = .623). This was composed of a precision
of r = .694 (CLL = .670), and an accuracy of χa = .883
(CLL = .868). Body segments had an average rotational
magnitude velocity of 57.38 degrees/sec with an average

absolute error of 21.83 degrees/sec. The averaged 95% lim-

its of agreement ranged as follows: −59.52 ≤ −.01 ≤
59.33 degrees/sec. The three sequences with the largest av-
erage concordance were two of the movement sequences

from the Actions of Agriculture performed by the professor

of theater (Scythe and Pulling a Cart), and the male MFA

actor’s moving randomly sequence. The three sequences

with the lowest average concordance were the male and

female MFA actors’ swaying sequences and the male MFA

actor’s The Rope sequence. It seemed that sequences in-

volving segments with low levels of raw movement per-

formed most poorly. For all sequences, average concor-

dance across segments was highly significant, ps < .01.
The active system’s continuous total values tend to

underestimate the passive system’s values and there are

many observations that fall well outside of the 95% lim-

its of agreement. We can roughly label an rc = .644 as
“good” for the purposes of social science research based on

widely-accepted ICC benchmarks developed by Cicchetti

and Sparrow (1981). For our purposes, it appears that the

candidate approach was a feasible and consistent estimate

of the gold standard values.

Totals. There was more agreement between the two sys-
tems’ frame-by-frame summed totals of all segments, rc =
.676 (CLL = .661), with a much larger precision r = .835
(CLL = .819) and a somewhat lower accuracy (χa = .798,
CLL = .786). Average p values of concordance between
the active and the passive systems was statistically signif-

icant, p < .01. With an average magnitude rotational ve-
locity of 744.66 (SD = 378.20) for the active system, agree-
ment on total values had the following 95% limits of agree-

ment around mean error: −591.63 ≤ −162.98 ≤ 265.68
degrees per second. For an example of these data, see Fig-

ure 4 for the first minute of total magnitude velocity val-
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Figure 3 A Sample of Movement Data with A Visualization of the Same Data from the Professor of Theater’s Performance

of the Scythe Movement Sequence. Units for magnitude velocity are degrees per second.

ues on the female MFA actor’s mock interview. Table 2

shows the dynamic agreements of segments and segment-

groupings averaged across participants and movement se-

quences.

Summary Agreement

The agreement between systems on the calculated kine-

matic averages of body segments and segment groupings

was then assessed. Average magnitude velocity was calcu-

lated for segments and groupings for each system, agree-

ment was assessed for each movement sequence, and

agreement values were averaged across movement se-

quences. The standard deviation of magnitude velocity

was also calculated as a summary index of how much ve-

locity values varied across the sequence and subjected to

the same analysis.

Across all individual segments, the agreement between

the active and passive systems on mean magnitude veloc-

ity was extremely high, rc = .956 (CLL = .939). The
upper body and lower body segment groupings each had

extremely high agreement with the passive system (rcs =
.985 and .957), while the agreement on mean total veloc-
ity was somewhat less, rc = .878. Overall, the validity
of the active system’s mean magnitude velocity estimates

was high. See Table 3 for a report of agreement between

the two systems on segment and grouping-wise mean sum-

mary data. A Bland-Altman plot reveals a relative normal-

ity of errors with a tendency for the active motion capture

system to underestimate magnitude velocity at high veloc-

ity values (Figure 5).

Agreement on standard deviations of magnitude ve-

locity was high with an average rc = .921 (average 95%

CLL = .890) across all individual body segments. Stan-
dard deviations of magnitude velocity for body segment

groups were also in agreement between the two systems,

at or above rc = .913.

Dynamic Structure Agreement and Examination: Mul-
tivariate Multiscale Sample Entropy

Multivariate multiscale sample entropy values were calcu-

lated for all movement sequences except for the MFA ac-

tors’ short walking sequences. In general, we sought to ex-

amine the agreement of complexity values computed on

the data produced by the active motion capture system

with those produced by the gold standard. To proceed, we

first needed to fix m, τ , and r values for the MMSE algo-
rithm. Previous research has used m = 2, τ = 1, and
r = (.15×SD of z-scored time series) in the description of
human gait (Ahmed & Mandic, 2011), so these values were

carried forward for these analyses.

Agreement was explored between the two systems on

MMSE values up to ε = 20. The systems were in more
agreement for this multivariate version of the sample en-

tropy algorithm than the univariate, rc = .768 (CLL =
.711). With an average sample entropy value of .108

(SD = .120) across both systems, there was a small mean
difference between the two methods (-.003) and a 95% lim-

its of agreement of −.066 ≤ −.003 ≤ .061. On average,
concordance was significant for the dynamic structure cal-

culations, p < .01.
There were two sequences with low agreement: the

acting professor’s Flick of the Seahorse’s Tail, and the male

MFA actor’s swaying sequence. These are two sequences

where at least a few body segments had very low variabil-
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Figure 4 System Comparison of Total Magnitude Velocity in the First Minute of Female MFA Actor’s Mock Interview.

Units for magnitude velocity are degrees per second.

ity in movement during the sequence. For comparison,

when these two removed from the calculations, average

concordance increases substantially, rc = .867 (CLL =
.817).

Discussion
This project tested the validity of a way to measure move-

ment for the purposes of basic and applied psychology re-

search. This led to the specification of rotational mag-

nitude velocity of body segments and segment groupings

as a primary measure of interest given the possibility of

this measure to index movement across contexts and in an

open-ended fashion. The study also led to the development

of a data collection and processing strategy that utilized an

active motion capture system. The selected system had the

major advantage of recording movement with the oppor-

tunity to monitor for and/or correct gross errors.

The magnitude rotational velocity provided by this sys-

tem was compared in kind with gold standard instrumen-

tation in biomechanics. Mean and standard deviation sum-

maries of the movement sequence data were calculated

and compared for both systems as well, and assessed the

methods relative to the gold standard. The ability of the ac-

tive system to capture aspects of dynamic structure was as-

sessed as well, with comparisons between systems on com-

plexity calculations.

The candidate active motion capture system could

track dynamic movement - frame by frame - in moderate

agreement with a gold standard measure across a variety

of movement sequences. In addition, it could character-

ize movement across a sequence with summary measures

(mean and SD of magnitude rotational velocity) in very

high agreement with a gold standard measure. While the

active system does not track dynamic movement in such

a way that it could totally replace the gold standard mo-

tion capture system, it does seem to reliably estimate the

movement dynamics of a sequence. The active system’s

estimate of multivariate multiscale sample entropy was in

high agreement with the gold standard measure. This is a

crucial finding toward the feasibility of this approach for

psychology research: the candidate system could success-

fully track complex dynamics occurring both across chan-

nels and over time.

Limitations

There are three main limitations to the method presented

in this study. First, the movement recording and data pro-

cessing setup presented in this study does not record hand

movement. The Microsoft Xbox Kinect system is otherwise

highly developed to record hand movement, even to the

specificity of the angles of joints within fingers, so it would

in principle be possible to obtain hand movement if they

are of interest for a given research question.

Second, this study utilized only two Kinect version 2.0

cameras in the capturing of movement. At least with a pro-

fessional edition of iPi Motion Capture Studio, it is possible

to record and synthesize the depth data of up to four Kinect

version 2.0 cameras at once. This would require four dif-

ferent computers linked via a Local Area Network due to

the design of the Kinect drivers, but it seems that such a

setup would only improve the accuracy and reliability of

the Kinect recordings. Additional cameras should only im-
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Table 2 Dynamic agreement across all movement sequences

rc Components 95% Limits of Agreement

Segment or Grouping rc CLL ρ χa Mean (SD) Lower Mean Error Upper

Hip .40 .37 .48 .75 34.61 (25.42) -26.29 7.09 40.47

Chest .62 .60 .68 .86 35.02 (28.41) -22.25 3.8 29.85

Head .51 .48 .58 .80 40.27 (31.26) -35.62 8.25 52.11

Upper Arm (R) .70 .68 .72 .93 62.54 (48.01) -57.04 -0.93 55.18

Forearm (R) .74 .72 .76 .93 85.14 (66.65) -69.3 3.83 76.96

Upper Arm (L) .67 .65 .69 .94 62.74 (47.43) -57.31 0.58 58.47

Forearm (L) .73 .71 .76 .96 83.2 (63.57) -71.54 2.64 76.82

Thigh (R) .74 .72 .77 .93 47.69 (35.14) -42.47 -1.3 39.88

Shin (R) .72 .71 .78 .90 59.99 (47.45) -62.49 -4.66 53.17

Foot (R) .50 .47 .60 .79 62.17 (49.43) -115.3 -7.56 100.17

Thigh (L) .75 .73 .78 .95 48.42 (35.4) -40.22 -0.54 39.13

Shin (L) .78 .76 .82 .94 60.27 (49.48) -57.23 -3.11 51.02

Foot (L) .51 .49 .60 .80 62.59 (51.48) -116.68 -9.32 98.04

Averaged Across Segments .64 .62 .69 .88 57.28 (44.55) -59.52 -0.1 59.33

Upper Body .79 .78 .83 .92 368.92 (237.56) -176.68 18.16 212.99

Lower Body .67 .65 .77 .84 375.74 (201.58) -252.45 -19.4 213.65

Total .68 .67 .84 .80 744.66 (378.2) -591.63 -162.98 265.68

Note. Segment Groupings are first summed on magnitude velocity data for each sequence, then agreement is as-
sessed between the two systems. Upper Body is composed of Head, Chest, Upper Arms, and Forearms. Lower Body is

composed of Hip, Thighs, Shins, and Feet. (L) and (R) specify left or right side of the body from the participant’s per-

spective. Units for movement values are degrees per second. rc is concordance, CLL is lower confidence limit, ρ is
precision, and χa is accuracy.

prove the measurement of movement as rotational veloc-

ity.

Third, the current study did not directly address test-

retest reliability of the active motion capture system rela-

tive to the gold standard system. Such assessment would

lend more credence to system’s ability to measure move-

ment beyond examining its feasibility and initial sugges-

tions of validity. One caveat to this limitation is that with

the approach presented in this work, the actual movement

tracking process conducted by iPi Motion Capture Studio

can be instantaneously compared to the raw video. That

is, one can watch the system as it estimates the movement

of all body segments monitor for gross errors. In the cur-

rent study, it is an educated guess that correcting for gross

errors led to different agreement results (e.g., correcting

an arm segment tracking from being completely unhinged

from the actual video). Anecdotally, when these massive

losses of tracking occur, the motion capture systems rarely

recover or self-correct and errors only compound over

time.

Directions for Dynamic Movement Processing and
Analysis

There may be ways to improve the data processing and

analysis of movement. We review a few areas that emerge

as potential directions for the development of the data pro-

cessing and analysis of movement data. One overarching

direction in this area would be to develop ways to ease

the implementation of movement data collection in clini-

cal and experimental psychology research.

Removing low-performing segments and refining seg-
ment calculations. By refining the whole-body model to
remove low-performing segments, overall model reliabil-

ity would increase. Of course, this should be weighed

against the downside of losing a segment in the model. For

example, the feet were low-performing and may not be too

central to the success of whole-body modeling of move-

ment, while the head also be relatively low-performing,

but perhaps more theoretically important (see Ramseyer &

Tschacher, 2014). Similarly, somehow removing segments

below a certain threshold of velocity variability may dra-

matically improve reliability of measurement.

Dimension reduction with segment groupings. With a
set of data, even perhaps the data presented in this study,

one could perform an exploratory factor analysis to de-

termine whether there are prevailing subgroups of body

segments across participants and simplify the description

of whole body movement to these groups. This approach

runs the risk of oversimplifying what might be a wide di-

versity of movement patterns across participants, but may
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Table 3 Summary Agreement Across All Movement Sequences

rc Components 95% Limits of Agreement

Segment or Grouping rc CLL ρ χa Mean (SD) Lower Mean Error Upper

Hip .93 .89 .97 .96 34.61 (25.42) -21.88 -7.09 7.7

Chest .98 .96 .99 .99 35.02 (28.41) -15.23 -3.8 7.62

Head .92 .89 .97 .95 40.27 (31.26) -22.28 -8.25 5.78

Upper Arm (R) .97 .96 .99 .98 62.54 (48.01) -24.27 0.93 26.14

Forearm (R) .97 .96 .99 .98 85.14 (66.65) -34.55 -3.83 26.9

Upper Arm (L) .98 .97 .99 .99 62.74 (47.43) -22.09 -0.58 20.93

Forearm (L) .99 .98 .99 .99 83.2 (63.57) -21.56 -2.64 16.29

Thigh (R) .98 .96 .99 .99 47.69 (35.14) -14.07 1.3 16.66

Shin (R) .96 .95 .99 .97 59.99 (47.45) -22.27 4.66 31.59

Foot (R) .92 .89 .99 .93 62.17 (49.43) -35.15 7.56 50.27

Thigh (L) .98 .97 .99 .99 48.42 (35.4) -13.81 0.54 14.89

Shin (L) .98 .97 .99 .98 60.27 (49.48) -17.51 3.11 23.72

Foot (L) .90 .88 .99 .91 62.59 (51.48) -36.57 9.32 55.21

Averages Across Segments .96 .94 .99 .97 57.28 (44.55) -23.17 0.1 23.36

Upper Body .99 .99 .83 .99 368.92 (237.56) -112.07 -18.16 75.76

Lower Body .96 .99 .77 .97 375.74 (201.58) -140.08 19.4 178.9

Total .89 .99 .84 .90 744.66 (378.2) -324.6 162.98 650.6

Note. Units are degrees per second for movement values. rc is concordance, CLL is lower confidence limit, ρ is pre-
cision, and χa is accuracy.

improve the parsimony of the data. Reductions along these

lines would also aid in making computationally-intensive

data processing, like the multiscale multivariate sample

entropy calculations, possible on long duration recordings

without the need to enlist supercomputing.

Kinetic and potential energy. Since we have shown
preliminary validity of rotational velocity, one direction

for measurement is body segment rotational kinetic en-

ergy (Robertson et al., 2013). Kinetic energy provides a

scalar of movement, a one-dimensional summary of three-

dimensional movement.

The calculation of the rotational kinetic energy of a

given body segment requires a few indices for calculation:

1) segment mass, 2) segment length, and 3) rotational ve-

locity. Segment mass is estimated through models defining

segments as proportions of the total body mass (de Leva,

1996), so its reliable measurement only depends on hav-

ing the person’s overall mass, while a motion capture sys-

tem can be used to estimate segment length. Generally,

segment length is held constant for a given participant so

the results of this study suggest that the candidate system

would provide all of the data necessary for these calcula-

tions.

Conclusion

The opportunity to study whole-body movement dynamics

opens a methodological window into core problems at the

nexus of phenomenology and psychology: self-regulation,

intersubjectivity, the process of human embodiment in the

world, affective consciousness, and pre-reflective and re-

flective experience. It allows for specifying behavior con-

tinuously, through themetaphor of kineticmelodies (Luria,

1973; Merleau-Ponty, 2006), considering the ways that neu-

rological and other bodily systems interact – or form a co-

herent whole – over time.

With reliable measurement of movement dynamics,

one could investigate the integration of multiple systems

in a person over time. Movement data could be coupled

with EEG data to explore synchrony or even causal chains

between brain activity and motor behavior over time us-

ing existing statistical modeling in these areas, like dy-

namic causal modeling (Friston, Harrison, & Penny, 2003).

Neurophenomenology and phenomenological approaches

to cognition have already empirically examined questions

about temporal self-constitution to examine the process of

pre-reflective awareness (Thompson, 2007; Varela, Thomp-

son, & Rosch, 1991). To the extent that movement dynam-

ics are involved in the articulation of awareness, integra-

tionwith EEGmethodologymay be away to deeply explore

perception and action.

Similarly, the convergence of movement with heart

rate or skin conductance could be investigated to ex-

plore individual differences in sympathetic and parasym-

pathetic nervous system function with movement, for ex-

ample, with and without stress. These approaches might

specify overregulation and underregulation dynamics of
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Figure 5 Summary Agreement Between the Active and Passive Systems. On the left is a log-log plot of measurements by

the two systems with the line of identity for reference. On the right is a Bland-Altman plot.

self-regulation especially across bodily systems (Siegel,

2012).

A flexible method for the measurement of movement

in an open-ended and continuous fashion would be a use-

ful contribution to the toolbox of psychological research.

Particularly, the possibility of characterizing movement as

kinetic energy seems, at least on the surface, to have strong

correspondence with common physiological measures in

psychology. We presented a procedure that can be used

to capture and describe the dynamic structure of move-

ment across contexts. We also described some directions

that may prove useful for the development of methods and

theory for research on the animate body. This methodol-

ogy presents one possibility of measuring behavior as an

open-ended and temporal process of the body over time.
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