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Abstract This tutorial provides a pragmatic introduction to specifying, estimating and interpret-

ing single-level and hierarchical linear regression models in the Bayesian framework. We start by

summarizing why one should consider the Bayesian approach to the most common forms of regres-

sion. Next we introduce the R package rstanarm for Bayesian applied regression modeling. An
overview of rstanarm fundamentals accompanies step-by-step guidance for fitting a single-level
regression model with the stan_glm function, and fitting hierarchical regression models with the
stan_lmer function, illustrated with data from an experience sampling study on changes in af-
fective states. Exploration of the results is facilitated by the intuitive and user-friendly shinystan
package. Data and scripts are available on the Open Science Framework page of the project. For

readers unfamiliar with R, this tutorial is self-contained to enable all researchers who apply regres-

sion techniques to try these methods with their own data. Regression modeling with the functions

in the rstanarm package will be a straightforward transition for researchers familiar with their
frequentist counterparts, lm (or glm) and lmer.
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Introduction
This self-contained tutorial demonstrates how the R pack-

age rstanarm (Gabry & Goodrich, 2017b) can be used

to fit single-level and hierarchical regression models in

the Bayesian statistical framework. rstanarm is a Stan-
based package (Stan Development Team, 2017; Carpenter

et al., 2017) that mimics the high-level syntax of R’s pop-

ular functions lm and lmer (Bates, Mächler, Bolker, &
Walker, 2015), making the Bayesian model specification

more succinct than relying on JAGS (Plummer, 2003) or

Stan alone (for a tutorial for modeling in Stan alone see

e.g., Sorensen, Hohenstein, & Vasishth, 2016). In addition,

the graphical user interface based shinystan R package
(Gabry, 2017) complements rstanarm, and provides intu-
itive ways of assessing model convergence, fit, and results.

We will demonstrate these tools via fitting single-level and

hierarchical linear regression models, which are typically

used to answer common questions in social and behavioral

research. For instance, our applied example centers on

self-reported affective states, more specifically on the link

between daily self-reports of valence (pleasantness) and

arousal (activation) levels. First we will use a single-level

regression to predict valence levels (pleasantness) from

arousal (activation) levels. We will improve on this model

by nesting the valence and arousal data in persons and

casting the problem in a hierarchical, or multilevel, mod-

eling framework. The hierarchical regression model si-

multaneously measures person-level and population-level

trends, with the two-levels informing each other and im-

proving estimation accuracy.

While in social and behavioral sciences regression

models are most often estimated in the frequentist statis-

tical framework (see e.g., Cohen, Cohen, West, & Aiken,

2013), casting them in the Bayesian statistical framework

offers unique advantages, for example in terms of inter-

pretability of estimates and the flexibility of fitting increas-

ingly complexmodels (Korner-Nievergelt et al., 2015; McEl-
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reath, 2016). Bayesian regression modeling has become in-

creasingly accessible and efficient due to advances in sta-

tistical software, including generic estimation engines such

as Stan (Stan Development Team, 2017; Carpenter et al.,

2017) and JAGS (Plummer, 2003), and packaged software

such as MPlus (Muthén & Muthén, 2008).

This tutorial shows how to specify and compute the

most common regression models in the Bayesian frame-

work. To guide the reader through the fundamentals of

single-level and hierarchical linear regression modeling,

we give step-by-step instructions for how to fit such mod-

els using the rstanarm R package (Gabry & Goodrich,
2017b). The code included in the tutorial and supplemen-

tal files are free and open-source. Moreover, we also high-

light the advantages of Bayesian regression methods. We

provide both 1) a concise non-technical introduction to the

key statistical concepts behind Bayesian inference and re-

gression modeling; and 2) step-by-step guides to interpret-

ing the results of applied examples with rstanarm — a

simple regression with stan_glm, and a hierarchical re-
gression with stan_lmer. Our goal is to ease researchers
into Bayesian regression modeling, while preventing the

researcher from any harmful shortcuts or oversights. Our

intended audience for this tutorial includes applied re-

searchers and graduate-level students who are interested

in non-technical discussions of new quantitative method-

ologies. Moreover, the content is ideally suited for class-

rooms of learners who come from awide range of research

areas – both quantitative and substantive. Researchers fa-

miliar with regressionmodeling in Rwill be pleased to find

a seamless transition from the R functions lm and lmer to
the rstanarm functions stan_glm and stan_lmer.
First, the principles and fundamentals of the Bayesian

statistical framework are provided. Second, the experi-

ence sampling study of (Csikszentmihalyi & Larson, 1987)

on affective states is introduced to preface our two didactic

empirical applications. Third, the fundamentals of single-

level regression modeling in the Bayesian framework are

presented, with step-by step guidance for fitting a single-

level regression model to the data. Fourth, the extension

of the single-level model to a Bayesian hierarchical linear

model is also presented with fundamentals and step-by-

step guidance on how to specify, run, and assess the model.

Lastly, the tutorial concludes by summarizing Bayesian re-

gression modeling.

The Bayesian statistical framework
This section briefly reviews the key components of

Bayesian data analysis. We encourage the reader to fur-

ther explore the literature on Bayesian methods, for exam-

ple via (Gelman & Hill, 2007; Gelman et al., 2013; Kruschke,

2015; McElreath, 2016).

The Bayesian approach entails using a full probabil-

ity model that describes not only our uncertainty in the

value of an outcome variable y conditional on some un-
known parameter(s) θ, but also our a priori uncertainty
about the parameter(s) θ themselves. When it comes to re-
gression models, besides the outcome variable y, we also
have predictor variables, denoted x. The goal is to update
our beliefs about the parameters θ (e.g., the coefficients in
a regression model) using our model and data (x and y).
The relationship between our prior beliefs about the pa-

rameters (before observing the data) and our posterior be-

liefs about the parameters (after observing the data) is de-

scribed by Bayes’ theorem,

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (1)

which states that the posterior probability distribution,

p(θ|y), of parameter(s) θ given data y equals the product of
a likelihood function p(y|θ) and prior distribution p(θ), di-
vided by themarginal distribution of the data p(y). The de-
nominator p(y) is the marginal likelihood: that is the like-
lihood averaged over the model parameters, weighted by

their prior probabilities. It is often referred to as the nor-

malizing constant. It does not depend on the parameter(s)

θ and therefore provides no information about which val-
ues of θ are more or less probable (since it is averaged over
all possible values of θ). Therefore to update our knowl-
edge about θ based on the data y, we need only focus on
the numerator p(y|θ)p(θ). For this reason it is common to
see Equation 1 written as

p(θ|y) ∝ p(y|θ)p(θ),

where∝ indicates proportionality.
For regression models we can be more explicit in our

statement of Bayes’ theorem by including the predictors

(regressors) x. We then have

p(θ|y, x) ∝ p(y|θ, x)p(θ|x), (2)

which is the same as before except everything is now con-

ditional on x. In some situations we need to worry about
the potential for nontrivial dependence between x and θ,
for instance if we are concerned about the potential for

sample selection bias (i.e., the sample is not representative

in the sense that some people with a particular attribute

are systematically excluded). However, in standard regres-

sion settings it is assumed that x and θ are independent
and so p(θ|x) simplifies to p(θ), meaning our prior beliefs
about the parameters do not depend on information pro-

vided by the predictors. The components of Bayes’ theo-

rem introduced above are the fundamental mathematical

objects we need to be familiar with when doing Bayesian

inference:
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• The likelihood, p(y|θ, x), is a quantity proportional to
the probability of the observed data, or more precisely

the joint probability of the data y for all possible val-

ues of the parameter(s) θ (and given the observed pre-
dictors x). For each yi, p(yi|θ, xi) represents the data
generating process that is assumed to have produced

the observation. If the observations are conditionally

independent given the parameters (i.e., once we know

the value of the parameter, the value of one observa-

tion no longer improves our prediction of another ob-

servation) then the likelihood is the product of individ-

ual likelihood contributions from each individual data

point. With respect to the parameters, the likelihood

does not integrate to 1 and is not a probability density

function.

• The prior, p(θ), is a probability distribution that de-
scribes our uncertainty about the parameters θ before
observing the data y. Typically we have at least a mini-
mal level of prior information. For example, if all vari-

ables (outcome and predictors) are scaled reasonably

in relation to each other then we generally know a pri-

ori that we should not expect extreme estimates of re-

gression coefficients. Previous research can also be a

valuable source of prior information that can be used

to develop a so-called informative prior distribution.

For further reading on the use of informative priors,

and how specifically to incorporate information from

previous research into the prior distribution, see for ex-

ample Korner-Nievergelt et al. (2015).

• The posterior, p(θ|y, x), is the joint probability distribu-
tion of all parameters θ reflecting our updated knowl-
edge about the parameters after we have observed y.
The posterior can be thought of as a compromise be-

tween the data model (likelihood) and the prior, and

describes the relative plausibility of all parameter val-

ues conditional on the model. This is the target esti-

mate whenwe fit a Bayesianmodel, and facilitatesmul-

tifaceted and intuitive probabilistic inference.

A fundamental difference between the Bayesian and

the frequentist frameworks lies in which quantities are

assumed to be fixed, and whether we are allowed to de-

scribe uncertainty about parameters using probability the-

ory. The frequentist paradigm is concerned with the prob-

ability of the observed data given fixed parameters (i.e., θ
does not have a probability distribution) and frequentist

inference pertains to a sequence of hypothetical datasets

(y vectors) that could have been observed. On the other
hand, Bayesian inference pertains to the particular set of

N observations that were observed and Bayesians are in-

terested in the probability distribution of the parameters

given this fixed (observed) data.

One of the most important implications of this distinc-

tion is that, although the frequentist approach can provide

point estimates (and sometimes standard errors) based on

long-run properties of estimators, it does not permit mak-

ing probability statements about parameters. In the fre-

quentist frameworkwe cannot answer questions likeWhat
is the probability that θ is positive? On the other hand, de-
scribing parameter uncertainty using probability theory is

fundamental to Bayesian inference. Instead of point esti-

mates we obtain a posterior probability distribution over

all possible parameter values conditional on themodel and

observed data. Using the posterior distribution we can eas-

ily make probabilistic statements about parameters (and

functions of parameters) of interest, including, if we want,

the probability that the parameter value lies in any given

interval.

Modeling in the Bayesian framework: four key steps
We summarize the Bayesian approach to data analysis in

four key steps:

Step 1. Specify the data model and prior. The model is
a collection of probability distributions conditional on dif-

ferent values for the parameters. The prior provides the a

priori plausibility of the different parameter values. The

product of the prior and the likelihood is proportional to

the posterior distribution of the parameters (Equation 1).

Step 2. Estimate the model parameters. Bayes’ theorem
as presented in Equation 1 is used to update beliefs about

the parameters based on knowledge obtained from observ-

ing the data. Estimating regression models in the Bayesian

framework typically involves using a numerical algorithm

to draw a representative sample from the posterior distri-

bution.

Step 3. Check sampling quality and model fit. 1 Graphi-
cal and numerical checks are necessary to confirm that the

sample obtained in the previous step adequately describes

the posterior and that the observed data is plausible under

the model. If not, the model needs to be revised, and we

might want to explore alternative model formulations.

Step 4. Summarize and interpret results. We assess es-
timates, interpret results, and make posterior predictions.

Compared to frequentist approaches, which typically

only require likelihood specification, Step 1 can be more

involved for Bayesian inference. As mentioned earlier,

the most unfamiliar task for a researcher first studying

Bayesian modeling is specifying a prior distribution for

all unknown parameters. As for the rest of the steps,

the algorithms and model checks presented in this tuto-

rial are unique to the Bayesian framework, but while these

1
In addition, it is good practice to generate datasets with different parameter settings, based on the proposed model, and to check how well the

parameter values can be recovered. See more details in Stan Development Team (2017), section 65.6. (Fit Simulated Data).
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specifics may be unfamiliar, the approach is conceptually

straightforward. Bayesian parameter estimation is based

on learning about the posterior distribution of the param-

eters. For some simplemodels, posterior distributions (and

quantities of interest based on posterior distributions) can

be calculated analytically (closed-form solutions), but for

almost all non-trivial models the full posterior has to be

approximated numerically by sampling (simulating draws)

from the posterior distribution. Based on the Monte Carlo

principle (Metropolis & Ulam, 1949), if we draw a large

enough sample from any probability distribution we can

use it to accurately describe the distribution and compute

quantities of interest, such as point estimates or intervals

of any kind. Before moving to our instructive regression

applications, we first review the main concepts that a re-

searcher should understand about the sampling compo-

nent of Bayesian estimation – in this case, sampling with

Stan.

Estimating models using Stan and rstanarm
Stan was designed to be efficient and reliable for com-

plex models with high dimensional posterior distributions

while also capable of fitting simpler models easily (Hoff-

man & Gelman, 2014; Carpenter et al., 2017; Stan Devel-

opment Team, 2017). Stan is available through a variety

of interfaces including RStan in R and PyStan in Python,

but using these interfaces requires knowledge not only

of R or Python but also the Stan modeling language.
2
In

contrast, in this tutorial we show how to fit models via

rstanarm, an R package written by Stan developers that
makes a subset of Stan’s functionality available using only

programming techniques already familiar to R users. With

rstanarm, it is easy to use Stan to fit many commonly
applied regression models, and rstanarm users are at an

advantage over other programmers for various reasons.

Firstly, rstanarm is user-friendly: although the model fit-

ting relies on the Stan estimation engine, rstanarm is
generally more easy-to-use than Stan and offers compre-

hensive default settings that allow the user to easily spec-

ify models. In addition to its ease of use, rstanarm offers

the huge benefit of Stan’s estimation power: compared

to Bayesian estimation engines such as JAGS and BUGS

(Spiegelhalter, Thomas, Best, & Gilks, 1996), the estima-

tion algorithms in Stan were developed to handle sampling

from the posterior of high-dimensional multilevel mod-

els. Compared to the user-friendly, graphical user interface

based JASP (JASP Team, 2017), rstanarm can fit a wider
range of models, including hierarchical models; however

it does not calculate the Bayes Factor by default. Lastly,

rstanarm has the advantage of being freely accessible,
in contrast to other generic software engines with intuitive

syntax, such as MPlus (Muthén & Muthén, 2008) and Amos

(Arbuckle, 1999).

Most commonly, Bayesian software packages employ

simulation techniques such as Markov chain Monte Carlo

(MCMC) to obtain a sample consisting of many draws from

the target posterior distribution. An MCMC algorithm uses

a Markov chain – a sequence of states in which the loca-

tion of the next state depends on the current state of the

chain – to explore the shape of the desired posterior dis-

tribution. The most powerful algorithm available in Stan

is the Hamiltonian Monte Carlo algorithm (see, e.g., Betan-

court, 2017, for an accessible conceptual introduction).

In theory the time a chain spends in any region of the

parameter space will be proportional to its posterior prob-

ability, in which case a sufficiently long and well behaved

chainwill nicely approximate the posterior distribution. In

order to check that the algorithm is behaving properly, and

because in practice we can only run a chain for a finite

number of iterations, we run multiple chains and check

that they all converge to the same distribution even if ini-

tialized at different starting values.

To adequately estimate Bayesian models via MCMC, we

need a sample that contains reliable information about the

posterior distribution. In the subsequent sections, we in-

troduce several diagnostics that help investigate whether

the MCMC algorithm successfully obtained a sample from

the target posterior distribution and whether that sam-

ple is sufficiently informative for the particular inference

tasks of interest to the user. Several important MCMC

diagnostic checks are implemented in the R packages

rstanarm and shinystan (discussed later). For a more
formal and thorough treatment, see Gelman et al. (2013)

and Stan Development Team (2017).

Assessing convergence. First, we should check whether
the chains converge to the same area. Recommended con-

vergence checks include monitoring the R̂ statistic and vi-
sual checks Gelman et al. (2013, Chapter 11). The R̂ statistic
(also referred to as the potential scale reduction factor) is

based on comparing the variation between the chains to

the variation within the chains. If all chains converge to

the same region and behave similarly, then the variance

between the chains should be approximately equal to the

average variancewithin chains and the estimated R̂will be
close to 1. An example of converged chains is shown in Fig-

ure 1. The different colors indicate different chains, each

of which started at a randomly selected initial value. This

type of plot is called a trace plot. The trace plot in Figure 1

is for the regression coefficient (slope) of the arousal vari-

able. The chains appear to be indistinguishable except for

random noise and the R̂ value is close to 1. In practice, a
commonly used heuristic is that R̂ <1.1 for all parameters

2
See http://mc-stan.org/users/interfaces/ for details on the many available interfaces to Stan.

The Quantitative Methods for Psychology 1022

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.2.p099
http://mc-stan.org/users/interfaces/


¦ 2018 Vol. 14 no. 2

Figure 1 Post-warmup trace plot for the regression coefficient (slope) on Arousal. The four chains appear to be the same

except for noise with no discernible pattern, a strong sign of convergence.
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is a strong (though not infallible) indicator of convergence.

Before we interpret results and make inferences, it is nec-

essary to make sure that all R̂ values are below 1.1. We can
also examine trace plots, although this becomes imprac-

tical for models that have a large number of parameters.

Many other types of MCMC visualizations are available in

the bayesplot R package (Gabry & Mahr, 2017), which is
easy to use with rstanarmmodels.3Effective posterior sample size (ESS). Because MCMC
does not return independent draws, the chains will exhibit

some degree of autocorrelation. The strength of this de-

pendence varies depending on the model as well as prop-

erties of the particular algorithm used. The lower the au-

tocorrelation, the more independent pieces of information

we have about the posterior. The approximate number of

independent draws with the same estimation accuracy as

our sample of correlated draws is referred to as the effec-

tive sample size (or neff ). How large of an effective sample
size a researcher needs depends on the amount of preci-

sion required for the inferential goals at hand. ESS larger

than 1000 is generally more than sufficient for the types of

problems studied by many social scientists.Monte Carlo standard error (MCSE). Another way of as-
sessing the error introduced by the MCMC approximation

to the posterior is by calculating the Monte Carlo standard

error. This diagnostic is also reported in the summary out-

put from rstanarm. MCSE relates to ESS, and can be ap-
proximated by dividing the posterior standard deviation

by the square root of the ESS. A lowMCSE relative to the es-

timated posterior standard deviation will result in higher

number of effective samples, which is desired. If the MCSE

is large relative to the posterior standard deviation, then

this sampling error variation masks the posterior standard

deviation that is used to quantify the uncertainty in our es-

timate.

Posterior predictive checking (PPC). It is also important
to evaluate whether our model adequately fits the data.

Posterior predictive checking is the process of simulating

data according to the fitted model and comparing the sim-

ulations to the observed data to look for important dis-

crepancies. If the model fits the data well we should be

able to replicate important features of the observed data

in the simulations. To generate these simulations, we need

to sample from the posterior predictive distribution, which

is the distribution of the outcome variable implied by the

posterior distribution of the model parameters. Each time

theMCMC draws from the posterior distribution, we gener-

ate a new dataset according to the data generating process

used in our model. When we fit models later in the tutorial

we will demonstrate some of the various useful compar-

isons that can be made between the observed data and the

posterior predictive simulations.
4

Now that we have reviewed the fundamentals of the

Bayesian framework and estimation via Stan, we proceed

to Bayesian regression modeling. What follows is a didac-

3
In fact, the plotting functions included with rstanarm also use bayesplot internally. We also recommend the bayesplot vignettes at http:

//mc-stan.org/bayesplot, which provide many worked examples of using visualization for MCMC diagnostics and in other stages of a Bayesian anal-

ysis.

4
Posterior predictive checking is useful for assessing the fitted model in terms of predicting the observed data set (in-sample prediction). For out-of-

sample prediction we also use the posterior predictive distribution but with new values of the predictor variables.
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tic introduction to the basics of Bayesian regression – of-

fering both conceptual review and practical step-by-step

guidance for both single-level and hierarchical models –

through two applied examples using rstanarm.

Application: Changes in levels of pleasantness and ac-
tivation in everyday life
For our demonstration of Bayesian regression and hierar-

chical modeling, we take as a running example an experi-

ence sampling study on well-being, in which participants

reported on their momentary levels of valence (pleasant

feelings) and arousal (level of activation) for two weeks.

This study sought to gain insight into multiple elements

and dynamics of well-being at the population-level, as well

as at the person-specific level. The momentary experience

of valence and arousal is defined as one’s core affect (Rus-

sell, 2003). In this tutorial, we take the core affect data as a

toy example for demonstrating various aspects of Bayesian

applied regressionmodeling, with less emphasis on explor-

ing substantive implications.

Subjects in this dataset are 20 individuals who partic-

ipated in a 14-day study, reporting on their valence and

arousal levels (and other items related to their well-being)

via six daily smartphone surveys. Participants were re-

cruited at an east coast university in the United States and

were mainly undergraduate students (8 male, 12 female,

mean age 22.1 years). All participant interactions were

overseen by the Institutional Review Board of the Penn-

sylvania State University (STUDY00001017). Participants

were asked to indicate how active they feel ‘right now’

on a 0-100 continuous sliding scale, labeled as Not at all

and Very much at the two endpoints. We transform this

data into daily aggregates of valence and arousal levels,

and model 272 self-reports of valence and arousal scores

(20 subjects, each measured on 14 occasions, 8 data points

missing). While this approach is sufficient as a toy exam-

ple for fitting the basic simple and hierarchical regression

models showcased in this tutorial, note that the richness

of such intensive longitudinal data would normally call for

advanced models that can dynamically capture the change

over time (e.g., stochastic differential equation models).

The following applications incorporate step-by-step

guidelines and computer scripts to fit a single-level linear

regression and a two-level hierarchical linearmodel (HLM)

in the Bayesian framework using R and rstanarm. With
the single-level regression, we simply predict valence lev-

els from arousal levels; in the hierarchical model, we do so

while also nesting valence and arousal levels in persons.

We provide commentary to guide the reader through the

4 steps for Bayesian estimation for both models, as well

as code chunks with the necessary rstanarm commands.

We also show and interpret the output obtained from both

models. The reader can copy our code from this paper

directly and/or access the corresponding R files and data

set via the Open Science Framework (OSF) website of the

project.
5

Fitting a Bayesian single-level regression to predict va-
lence from arousal
A single-level linear regression model describes how an

outcome variable is related to a linear function of one

or more predictor variables. We can use the coefficients

from a fitted regressionmodel to help study to what degree

changes in one variable are associated with changes in an-

other. As noted earlier, this first, single-level model serves

as a didactic example that is sufficient to demonstrate sim-

ple regression, but it performs a statistical error by ignor-

ing the within-person dependency in the data. Later we

will improve on this model when we introduce hierarchi-

cal regression.

In what follows we introduce the basic mathematical

formulation of the single-level regressionmodel, first using

entirely mathematical notation, and then with the particu-

lar variables from our empirical example. The single-level

regression model is specified as

yi = β0 +Xiβ + εi. (3)

In this representation,Xi is the ith row of theN byK ma-
trix of predictors X (N = sample size, K = number of pre-

dictors), and the outcome for the ith observation yi is pre-
dicted by β0 + Xiβ = β0 + β1Xi1 + β2Xi2 . . . + βKXiK .

The parameters β0 and β are the intercept and vector of
K regression coefficients, respectively. The errors εi are
normally distributed with mean 0 and variance σ2

, that is

εi ∼ Normal(0, σ2). The parameter σ2
represents the vari-

ability with which the outcomes deviate from their predic-

tions based on the model. This model may also be writ-

ten as yi ∼ Normal(β0 + Xiβ, σ
2), where all terms are

the same as defined above. In our example, this equation

translates to

Valencei ∼ Normal(β0 + β1Arousali, σ
2). (4)

The outcome Valencei is linearly predicted by the com-

bination of an overall mean β0, the intercept, and a coef-
ficient (slope) β1 multiplied by the value of the predictor
variable Arousali. In the single-level regression model β0
and β1 do not vary by person. This model addresses the
question: on average, do people report feeling more pleas-
ant if they report feeling more active?

5
https://osf.io/ebz2f/?view_only=3fe201fd40d34fbfaf4a3e801c40df5e

The Quantitative Methods for Psychology 1042

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.2.p099
https://osf.io/ebz2f/?view_only=3fe201fd40d34fbfaf4a3e801c40df5e


¦ 2018 Vol. 14 no. 2

stan_glmmodel fitting in four steps
The stan_glm function in rstanarm can be used to eas-
ily fit Bayesian linear or generalized linear regressionmod-

els. Models specified with stan_glm use syntax similar to
the lm and glm functions in R, however stan_glm mod-
els are fit using MCMC instead of variants of least squares

estimation.

Step 0. Install software and prepare data.
First install R and optionally RStudio, as a user friendly

environment to use R (though code provided below can

also be executed in R).
6
Then install the necessary R pack-

ages, including rstanarm and accompanying packages
for plotting and tidying output. The installations using the

install.packages function are only required the first
time you run the code.

install.packages(c("rstanarm",
"bayesplot", "ggplot2", "broom"))

library("rstanarm")
library("bayesplot")
library("ggplot2")
library("broom")

Next, set the working directory to where the provided

example dataset “sampledata.csv” is located and load the

data.

# Set directory and read in data
setwd(’~/work/RSTANARM/Tutorial’)
dat <- read.csv("sampledata.csv",

header=TRUE)

It is also useful to plot the data to check that there were

no errors reading the external file. An example is shown in

Figure 2. R code to reproduce all figures in the paper can

be find in the accompanying R script on the OSF project

page. Once the data is loaded, we are ready to specify the

model.

Step 1. Specify the model
The rstanarm code for the single-level Bayesian regres-
sion from Equation 4, with default prior specification, is:

SingleLevelModel <- stan_glm(
valence ~ arousal, data = dat)

stan_glm syntax. The first part of the call to stan_glm
specifies the outcome and predictors in the familiar lm for-
mula syntax, with the outcome Valence to the left of the
‘∼’ symbol and the predictor Arousal on the right-hand

side. An intercept is included by default. Unless the ‘fam-

ily’ argument is specified, stan_glm assumes that the
likelihood is normal (Gaussian) with an identity link func-

tion.
7

stan_glm priors. All parameters in a Bayesian model
need prior distributions that approximately describe the

researcher’s uncertainty in the parameters before observ-

ing the data. Uninformative priors place equal or nearly

equal prior weight on all possible values of a parameter.

Weakly informative priors provide some information on

the relative a priori plausibility of the possible parame-

ter values, for example when we know enough about the

variables in our model that we can essentially rule out

extreme positive or negative values. Relative to uninfor-

mative priors, weakly informative priors can reduce our

posterior uncertainty (which is desirable whenwarranted)

and also help stabilize computations. If we have a lot of

prior knowledge to bring to a problem, for instance from

previous research, then we can use an informative prior.

The default priors in rstanarm are intended to be
weakly informative and, in general, unless a lot of prior

information is available, we recommend weakly informa-

tive priors for the parameters of a regression model. A

weakly informative prior that reflects the expected magni-

tude of the parameters based on the scales of the variables

will not strongly impact the posterior, but will provide

regularization to stabilize computation and avoid overfit-

ting, while still allowing for extreme values when war-

ranted by the data (Gelman, Jakulin, Pittau, & Su, 2008;

Stan Development Team, 2017). The weakly regulariz-

ing default priors currently used by stan_glm are tai-
lored to each parameter type. In the Bayesian frame-

work the priors are part of the model specification and

should be reported. After fitting a model, the priors

used in the analysis can be viewed using the command

prior_summary(SingleLevelModel):

Priors for model ’SingleLevelModel’
------
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)

**adjusted scale = 212.68

Coefficients
~ normal(location = 0, scale = 2.5)

**adjusted scale = 3.29

Auxiliary (sigma)
~ half-cauchy(location = 0, scale = 5)

6
See r-project.org and rstudio.com, respectively

7
With stan_glm, like glm, the functional form of the likelihood and the link function can be changed using the ‘family’ argument. The default is

equivalent to setting family=gaussian(link=’identity’), which results in a linear regression. The rstanarm package vignettes and help
pages have many examples of fitting models with different settings for the ’family’ argument.
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Figure 2 Visual summary of the data, with each subplot corresponding to each person’s observed data.
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**adjusted scale = 106.34
------
See help(’prior_summary.stanreg’) for

more details

As priors are integral parts of Bayesian models, it is

good practice to include information on the prior settings

in research papers, based on the above output. We can

see that normal distributions are set as priors for the re-

gression parameters β0 and β1, with the argument loca-
tion corresponding to the mean, and the argument scale to
the standard deviation. The default prior for the intercept

has location 0 and standard deviation 10, but by default

rstanarm rescales the standard deviation to ensure that
a weakly informative prior is loosely based on the actual

range of the outcome variable. In this case the actual prior

used for the intercept ends up being normal with mean 0

and standard deviation roughly 250. The prior standard

deviation for the slope coefficient and the prior scale of

the half-Cauchy prior on σ were also rescaled.8 If the user
wants to set informative priors, the rescaling can be turned

off and specific location and scale values can be specified,

an example is provided below in the Changing the default
settings section.
Step 2. Estimate the model parameters
To estimate themodel parameters, we need to run the code

from Step 1. By default, rstanarm uses four Markov chains
with 2000 iterations each, half of which are discarded as

“warm-up”. A warm-up sampling phase is used to give

the algorithm time to find the target posterior area, and

generally produces non-representative samples. If neces-

8
For details on the exact computations involved and for how to turn off the default rescaling the user can consult help(”priors”, package = ”rstan-

arm”) and also the Prior Distributions for rstanarmModels vignette at http://mc-stan.org/rstanarm/articles/index.html. In the next release ofrstanarm
the default prior on sigma will be an exponential distribution rather than a half-Cauchy, which is also demonstrated in the vignette.
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sary, these defaults may be modified using the chains
and iter arguments. For situations in which the estima-
tion algorithm does not converge (e.g., Rhat > 1.1) due to
an insufficient number of samples, it may be necessary to

drawmore samples by increasing the iter argument. For
some complex models, we may need to do more iterations

than the default to get a sufficient number of effective sam-

ples (e.g., n_eff > 1000), which can be done also by in-
creasing the number of iterations or the number of chains

(chains argument). Increasing the number of chains to
get more samples is especially efficient if these chains can

be in run parallel.
9
For our example, and in many cases,

the default settings work well. When we execute the code

from Step 1, the R console monitors the progress of sam-

pling, and any errors or warnings regarding problemswith

the sampling will be displayed. If a warning about non-

convergence is produced (e.g., ’Markov chains did not con-

verge’), users can increase the number of iterations and re-

fit the model. In general, models fit using MCMC may take

longer than users are accustomed to; however the current

example took around 1 second (the precise timing depends

on the user’s system). The single-level model is a simple

model and runs quickly without warnings.

Changing the default settings. When using stan_glm,
the prior for the intercept and regression coefficients can

be changed for example via the prior_intercept
and prior arguments, respectively. Specifying

autoscale=FALSE in the call to normal() disables
the default rescaling of the standard deviation parame-

ters. This is most useful when we want to use an infor-

mative prior based on problem-specific knowledge. In the

code below we give an example of setting a tighter prior

on the intercept (with a smaller standard deviation) that

is centered around the middle of the scale (50) and the

slope coefficient is set to have a standard normal prior.

When encountering convergence warnings, it is often suf-

ficient to increase the number of iterations (e.g., from the

default of 2000 to 4000), which can be done via the iter
argument. In addition, rstanarm may suggest that the
user increase the parameter controlling the sampler step

size, which can be done via the adapt_delta argument,
which accepts a proportion in (0,1) as its input (the default

depends on the prior but it’s typically 0.95). As a result of

increasing adapt_delta, the MCMC algorithm will take
smaller steps and be better able to maneuver through the

posterior geometry. The following code shows an example

of adjusting the prior specifications for the slope and inter-

cept parameters, increasing the number of iterations, and

increasing adapt_delta:

# Example of adapting priors and sampler settings
SingleLevelModelMod <- stan_glm(

valence ~ arousal,data = dat,
prior = normal(0,1,autoscale=FALSE),
prior_intercept=normal(50,100,
autoscale=FALSE),
iter = 4000, adapt_delta = 0.99)

Step 3. Check sampling quality
After estimation, researchers should look for signs that the

chains might not have converged and check that there is

a large enough effective sample size for the analysis. The

summary function provides both a summary of parameter
estimates as well as diagnostic information about the sam-

pling quality. The output consists of a short description of

the analysis that was carried out followed by a summary of

the parameter estimates (interpreted in Step 4) and the log-

posterior, and finally three quantities related to the perfor-

mance of the sampler: Monte Carlo standard error (MCSE),
R̂ (Rhat) and effective sample size (n_eff).10

summarySingleLevelModel <- summary(
SingleLevelModel)

print(summarySingleLevelModel)

The output of this command is seen in Listing 1.

Numerical checks. For numerical checks of sampling
quality, we reference rstanarm summary tables, called
via the summary function as illustrated above. The Rhat
and n_eff columns of the table show that R̂ is less than
1.1 and the effective sample size is larger than 2000 for all

parameters. This is good evidence in favor of convergence

and typically a sufficiently large effective sample size.

Visual checks. Using the SingleLevelModel object
we created to store the results from stan_glm, the code
below draws the trace plot for β1:

plot(SingleLevelModel, "trace",
pars = "Valence")

This is the plot displayed in Figure 1 (shown earlier), in

which we can see that the chains seem to have converged

to the same distribution.

Exploring the posterior with shinystan
The user can easily explore the posterior further through

the shinystan R package, which provides a graphical
user interface for interactively exploring rstanarmmod-

9
The following lines can be executed for allowing parallel computation:

rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
10
The log-posterior represents the logarithm of the prior times the likelihood, up to a constant. This value may interpreted, similar to likelihood

values, for evaluating predictive accuracy
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Listing 1 Output from the print summary command.

Model Info:

function: stan_glm
family: gaussian [identity]
formula: valence ~ arousal
algorithm: sampling
priors: see help(’prior_summary’)
sample: 4000 (posterior sample size)
num obs: 272

Estimates:
mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) 14.7 3.7 7.4 12.2 14.7 17.1 22.0
arousal 0.8 0.1 0.7 0.8 0.8 0.8 0.9
sigma 16.9 0.7 15.6 16.4 16.9 17.4 18.4
mean_PPD 59.7 1.4 56.9 58.7 59.7 60.6 62.4
log-posterior -1164.8 1.2 -1167.8 -1165.4 -1164.5 -1164.0 -1163.5

Diagnostics:
mcse Rhat n_eff

(Intercept) 0.1 1.0 3687
arousal 0.0 1.0 3721
sigma 0.0 1.0 3932
mean_PPD 0.0 1.0 4000
log-posterior 0.0 1.0 1929

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude
measure of effective sample size, and Rhat is the potential scale reduction
factor on split chains (at convergence Rhat=1).

els (or any other models fit using MCMC). Visual and nu-

meric checks are both available from shinystan via a
user-friendly graphical user interface. With shinystan
researchers can look at both estimates and diagnostics,

and it is easy to customize exportable tables and graphics.

shinystan provides a wide variety of tools for visualiz-
ing and summarizing the posterior distribution and diag-

nosing MCMC problems. Demonstrating the full capability

of shinystan is not possible here because of space lim-
itations, therefore here we only highlight its most impor-

tant features. If the shinystan is installed and loaded, to
open the interface in the default web browser simply run

the following code.

launch_shinystan(SingleLevelModel)

The summary statistics shown earlier are displayed in

an easily readable format in shinystan, as shown in Fig-
ure 3. The table can be exported in many useful formats.

Figure 4 shows several visual assessments of the slope

parameter. At the top there is a small table with numerical

summaries of the selected parameter. In the second row,

the plot on the left shows the posterior distribution of the

slope parameter (see more detail on a similar plot in Step

4). The plot on the right summarizes how autocorrelation

among the samples at different lags decreases: the value

is already rather low at lag 1, which means the effective

sample size should be large. The plot under these two is a

stretched out version of the trace plot in Figure 1.

Posterior predictive checks. To visually assess the fit of
the model to the data, we can compare the observed data

to datasets simulated according to our assumed data gen-

erating process and the posterior draws of the model pa-

rameters. The code below uses the pp_check function
to plot a smoothed kernel density estimate of the original

data, overlaying the density estimates from 100 generated

data sets from the posterior predictive distribution:

pp_check(SingleLevelModel, nreps = 100)
+ xlab("valence")

The resulting plot is displayed in Figure 5, left side (the
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Figure 3 Posterior summary statistics from shinystan.

same plot for the hierarchical model is displayed on the

right, see later). Note that the second part of the code

that reads as xlab("valence") labels the x-axis as “va-
lence”. For models that fit the data well, this type of

plot will show that the draws from the posterior predic-

tive distribution (thin light blue lines) and the observed

data (thick dark blue line) have similar distributions. In

this case, it looks like the model does reasonably well (the

dark blue line stays in the region designated by the light

blue lines), but there is some room for improvement, espe-

cially for predicting valence values between 50 and 70. The

shinystan package can also be used to perform various
posterior predictive checks.

Step 4. Summarize and interpret results
After assessing convergence and sampling quality via di-

agnostics of R̂, ESS, and MCSE, and checking the model fit
with posterior predictive model, we can focus on interpret-

ing the estimates. As shown before, these can be obtained

via the summary function or the graphical user interface

in the shinystan package. Table 1 shows a summary of
these results.

Point estimates. A point estimate is a single value, most
often a measure of central tendency (e.g., mean, median),

chosen to summarize a posterior distribution. In contrast

to the maximum likelihood approach, in which the point

estimate (the mode) is the focus, in the Bayesian frame-

work we are interested in the entire posterior distribution.

A point estimate is merely one of many ways of summariz-

ing the posterior, and rarely is it the most useful way.

Posterior intervals (PI) and posterior standard devia-
tion (SD). Posterior intervals, also called posterior uncer-

tainty intervals or credible intervals, describe the likely

range of the model parameters in probabilistic terms. The

2.5 % and 97.5 % columns in Table 1 show the bounds

of the central 95% interval, representing the central 95%

of the posterior probability distribution of the parameter.

Given our observed data, chosen priors, and assumed data

generating process (specified in the likelihood), we can say

that the probability that the parameter value lies within

the 95% PI is 95%. The posterior standard deviation (SD

column in Table 1) is an alternative summary of the uncer-

tainty around the point estimate.

We can see from Table 1 that the point estimate (in

this case the mean of the posterior distribution) for the

intercept (β0) is 14.7, with 95 % PI = [7.4, 22.0]. The es-
timate for the slope parameter (β1) indicates that a one-
unit change in self-reported arousal values is associated

with an increase of 0.8 (95 % PI = [0.7, 0.9]) in self-reported

valence values (recall that both variables are on a 0-100

scale). Looking back at Figure 4, the middle plot of the

(smoothed) posterior probability distribution of the slope

shows that all of the probability mass for the slope param-

eter is on positive values, suggesting that arousal level is

remarkably associated with valence. This means that peo-

ple reporting higher levels of arousal are expected to have

higher levels of valence, or put it another way people who

report feeling more active also tend to report feeling more

pleasant.

It can sometimes be useful to extract the posterior

draws from the fitted model object. For this purpose

rstanarm provides as.matrix, as.data.frame,
and as.array methods that return the draws in various
formats. For example, if we wanted to estimate the proba-
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Figure 4 Visual and numerical summary of the slope parameter from shinystan. Comprehensive visual diagnostics
include: table of numerical summaries (top), posterior distribution of parameter (middle left), autocorrelation among

parameter samples (middle right), and trace plot of sample chains (bottom).

Table 1 Diagnostics and posterior summary statistics of the estimated parameters from the single-level model.

Parameter R̂ ESS mean SD MCSE 2.5% 97.5%

Intercept (β0) 1.0 3687 14.7 3.7 0.1 7.4 22.0

Slope (β1) 1.0 3721 0.8 0.1 0.0 0.7 0.9

Error SD (σ) 1.0 3932 16.9 0.7 0.0 15.6 18.4

bility that the slope (arousal) is greater than some value x
we can do this by computing the proportion of draws that

are greater than x:

posteriorSamples <- as.matrix(
singleLevelModel, pars = "arousal")

mean(posteriorSamples > 0.7)

which will return 0.956.
This result tells us that the posterior probability that

the slope coefficient is larger than 0.7 is about 96%. By

this we illustrate how we can answer questions about pa-

rameters or functions of parameters by working directly

with the posterior sample, although much of the post-

estimation functionality provided by rstanarm circum-
vents the need for the researcher to directly manipulate

the draws.

The plot in Figure 6 illustrates the model’s prediction

of how valence and arousal levels are linked: the blue dots

are the data points, the black regression line is based on the

posterior mean estimate of the intercept and slope param-

eters, and the blue regression lines are computed from a

random subset of the posterior draws of these two parame-

ters. The black line shows the positive association between

valence and arousal (β1 ≈ 0.8), while the blue lines illus-
trate how much uncertainty there is around this average

regression line. The spread of the blue lines is somewhat

wider at the left of the graph than in the middle, which

means that we are a bit less certain about the predictions

of valence at low levels of arousal than at medium lev-

els of arousal. The main reason for this is that we have

fewer data points that represent the relationship between

low arousal values and valence. Withmore observations at

medium arousal levels, the spread (uncertainty) decreases

in the middle region of the graph.

Overall, the single-level model captures the positive lin-

ear relation between people’s valence and arousal scores
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Figure 5 Graphical posterior predictive check comparing the observed distribution of valence scores (dark blue line) to

100 simulated datasets from the posterior predictive distribution (light blue lines), in the single level (left side) and in the

hierarchical (right side) models.
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well, but there is room for improvement. We are mostly

skeptical about the performance of this model because it

does not account for the fact that observations are nested

in persons. Next we move to hierarchical Bayesian regres-

sion, which allows us to better handle this type of nested

data.

Fitting a Bayesian two-level model to predict pleasant-
ness from arousal
A hierarchical linear model (HLM) is an extension of

single-level linear regression that allows for coefficients to

vary by grouping variables. For example, in our case an

HLM will let us account for how the link between arousal

and time of day varies by person. We introduce Bayesian

HLMs by first considering the nature of our data, model,

and estimation method in the hierarchical context.

Nested data and nested models. Social scientists often
work with nested data, which is to say data that have some

form of relevant hierarchical structure. For instance, con-

sider a data set from subjects who report their sleeping

hours repeatedly over a couple of days, or subjects who

complete several test items measuring the same underly-

ing construct such as the reading ability of first grade stu-

dents. In the latter example, the repeated measures are

nested within students, while students could be nested in a

higher-order group like classrooms or schools, which can

in turn be nested in school districts or states, and so on. In

many cases, it can be important to account for this type of

structure when we develop a model because data with an

underlying nested structure are not exchangeable at the

individual measurement level (Gelman & Hill, 2007). If

we expect observations from the same group to be similar

to some extent, then that structure should be encoded in

the model (Raudenbush & Bryk, 2002). When a hierarchi-

cal/multilevel model is formulated for this type of nested

data, it both (1) accounts for correlation among observa-

tions within the same group, and (2) specifies relations be-

tween groups (Littell, Milliken, Stroup, Wolfinger, & Sch-

abenberger, 2006).

In the experience sampling study on affective states,

groups (higher level units) correspond to participants, be-

cause repeatedmeasures are grouped within person. Mov-

ing from a single-level regression model to a hierarchical

model is a straightforward extension: the single-level re-

gression specification will be used for the observations of

the outcome variable y within a person, and we will add a
hierarchical structure to tie the person-specific regression

coefficients together with a joint distribution at level-2. Let

us denote by yij the outcome for measure i = 1, . . . , Ij for
person j = 1, . . . , J , with person j having Ij total obser-
vations. For a single predictor x, the model can be written
as:

yij ∼ Normal(β0j + β1jXij , σ
2), (5)[

β0j
β1j

]
∼ Normal

([
µβ0

µβ1

]
,

[
σ2
β0

ρσβ0σβ1

ρσβ0
σβ1

σ2
β1

])
. (6)

At level-2, Equation 6, the person-specific parameters are

assigned a joint distribution with population-level hyper-

parameters (i.e., parameters of the prior distribution for
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Figure 6 Observed data (blue dots) and average predicted linear relation between arousal and time of day (dark line).

Uncertainty is visualized by also plotting the regression lines computed from 100 of the draws from the posterior distri-

bution (thin lines).
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the person-specific parameters): a bivariate normal distri-

butionwithmeans (µβ0
, µβ1

), variances (σ2
β0
, σ2
β1
), and cor-

relation (ρ) that are common across all groups at the popu-
lation level. In terms of our applied example, the two-level

model, the measurement level of the HLM with person-

level grouping, Equation 5, can be written as

Valenceij ∼ Normal(β0j + β1jArousalij , σ
2), (7)

which expresses that we are predicting average levels of

valence from average levels of arousal, with measure-

ments nested in persons. The errors at this level now

represent within-person variation Valence unexplained
by Arousal. At the second level of the model, which is
identical to Equation 6, the variance parameters represent

between-person variation and the correlation parameter is

the correlation between person-specific slopes and inter-

cepts in the population. Various additional structures of

interest for the reader’s particular regression applications

(e.g., multivariate modeling, latent variable assessment,

item response theory; Carpenter et al., 2017; Kruschke,

2015) can already be flexibly specified with rstanarm or
will become available in future releases.

11

Bayesian HLM advantages. Hierarchical models allow us
to incorporate more information than single-level regres-

sion by explicitly accounting for both within- and between-

group structure and variation. The nested structure of

HLMs leads to partial pooling, which is a compromise be-

tween the extremes of complete pooling (one single-level

regression model combining data from all groups) and no

pooling (a separate regression for each group). Partial

pooling occurs when the estimates for group-specific pa-

rameters inform the shared population-level parameters,

and vice versa. Estimates for groups with small sample

sizes and a lot of variability are affected most by partial

pooling; they are shrunk toward the population mean to

a greater degree than are the estimates for larger groups

with less variation. This feature of partial pooling helps

buffer outlier effects and avoid overfitting, that is, it helps

avoid learning characteristics of the sample that are ar-

tifacts of measurement noise. In the Bayesian frame-

work when a prior itself depends on higher-order pri-

ors, the higher-order prior is referred to as a regulariz-

ing prior (McElreath, 2016). Making distributional assump-

tions about parameters (priors) allows for optimal hierar-

chical pooling across groups. Group-specific estimates are

shrunk more towards population estimates after learning

from the prior distribution from other groups via shared

hyperparameters. Being able to set prior distributions on

the population parameters provides additional shrinkage,

this way improving parameter estimation.

Shrinkage is most beneficial for small samples, and

simulation studies show that small sample models provide

11
There are currently 11 vignettes at http://mc-stan.org/rstanarm/articles/index.html that demonstrate how to fit the various models included in

rstanarm.
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more robust estimates in the Bayesian framework than

when estimated with frequentist estimation techniques

(Kruschke, 2015), as they fully account for the uncertainty

at each level, this way improving the accuracy of esti-

mates and predictions. By modeling all parameters in a

probabilistic framework, full Bayesian inference appropri-

ately propagates our uncertainty through each level of the

model and the resulting posterior distributions give a full

picture of our uncertainty in each parameter. In contrast,

maximum marginal likelihood approaches to estimating

these models often underestimate standard errors for the

regression coefficients because they only condition on a

point estimate of the so-called “random effects" parame-

ters rather than a full probability distribution.

Fitting a two-level hierarchical model with
stan_lmer in four steps
The stan_lmer function in rstanarm can be used to
estimate linear models with intercepts and slopes that

are allowed to vary across groups (Gabry & Goodrich,

2017a). Models specified with stan_lmer use syntax
similar to the lmer function in R’s lme4 package, how-
ever rstanarm uses Stan’s MCMC algorithm to draw from
the posterior distribution of the model parameters rather

than estimating them via the frequentist approach taken

by lme4.

Step 0. Prepare data
We assume here that the necessary software is already in-

stalled. We load the packages and data the same way as

for the previous example but this time we will use an ex-

tra variable that is in the same dataset, which specifies

the within-person nesting structure (person identification,

PID, variable). This step is identical to the one described

for the single-level model, therefore not repeated here.

Step 1. Specify likelihood and prior distributions
The two-level model is specified in Equations 5 and 6 (with

variable names explicitly stated in Equation 7). Using the

same dataset as for the previousmodel, we specify the two-

level model as follows:

TwoLevelModel <- stan_lmer(valence ~
arousal + (1 + arousal | PID), data=
dat)

stan_lmer syntax. The first part of the stan_lmer
function specifies a model formula that indicates the out-

come variable, predictors, and which coefficients are al-

lowed to vary according to levels of the predictors. For

stan_lmer a normal (Gaussian) likelihood is the only

option and is implied.
12
In the model formula, in addi-

tion to the single-level formula valence ∼ arousal we
now also have a second component (1 + arousal |
PID) that specifies that both the intercept and the coef-
ficient on the arousal variable are to vary by person,
that is, by level of the PID variable. The model formula
for stan_lmer is written using the exact same syntax as
the formula for the lmer function from the lme4 package
(Bates et al., 2015) that does maximummarginal likelihood

inference.

stan_lmer priors. To complete the Bayesian model
specification, we must specify priors for all model param-

eters. For the two-level model this means priors for the

varying regression parameters (β0j , β1j), the non-varying
regression parameters (µβ0

, µβ1
), the covariance matrixΣ,

and the measurement level error variance σ2
. Equation 6

serves as the prior for the varying regression parameters,

in our case the person-specific intercept and slope param-

eters β0j and β1j : this formulation specifies that our un-
certainty in the parameters β0j and β1j is described by a
bivariate normal distribution with hyperparameters µβ0

,

µβ1
, and Σ, the population means and covariance matrix.
Like stan_glm, by default stan_lmer sets weakly

informative priors if the user does not specify other-

wise. The default weakly informative priors for the pa-

rameters in Equation 7 can be viewed by running the

prior_summary(TwoLevelModel) command.

Priors for model ’TwoLevelModel’
------
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)

**adjusted scale = 212.68

Coefficients
~ normal(location = 0, scale = 2.5)

**adjusted scale = 3.29

Auxiliary (sigma)
~ half-cauchy(location = 0, scale = 5)

**adjusted scale = 106.34

Covariance
~ decov(reg. = 1, conc. = 1, shape = 1,

scale = 1)
------
See help(’prior_summary.stanreg’) for

more details

Similarly to the output for the single-level model, the

default and adjusted priors are reported for the intercept

12 rstanarm also provides the stan_glmer function with additional options for the form of the likelihood and link function for multilevel gener-
alized linear models.
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and coefficients. For the hierarchical model, a prior must

also be specified for the level-two covariance matrix of

the person-specific regression terms. To reiterate with

our example, the covariance matrix shown in Equation 6

quantifies between-person (population-level) variation in

the person-specific intercept (σ2
β0
) and slope (σ2

β1
) along

the diagonal, and their covariation (ρσβ0
σβ1
) in the off-

diagonals. rstanarm uses a prior on covariance matri-
ces that has been developed to be robust for common ap-

plied regression problems. Here we note the unique value

of the covariation between intercept and slope: this mea-

sure describes how average starting values relate to av-

erage trajectories, which may be illustrative for person-

specific inference. For example, a negative covariation be-

tween person-specific intercepts and person-specific slopes

suggests that if a person has a low valence on average, its

level will likely be strongly associated with arousal levels.

The covariance matrix is decomposed into a vector of vari-

ances (σ2
β0
, σ2
β1
) and a correlation matrix. The correlation

matrix summarizes the covariation of the slopes and in-

tercepts in a standardized form and allows us to specify a

general setting for these parameters that does not depend

on the size of the variance parameters. For the variances

themselves, rstanarm decomposes them into the product
of the trace of the implied covariance matrix (representing

the total variance at this level of the model) and a simplex

vector (representing the proportion of that total variance

attributable to each of the variables). The trace itself is

then set equal to the product of the square of an estimated

scale parameter and the known order of the matrix. The

last line of the output above shows the default settings used

for this prior (the decov prior). A more thorough descrip-
tion of this prior is beyond the scope of this tutorial but

the reader can consult the rstanarm package vignettes
(Gabry & Goodrich, 2017a) for full details. Modifying this

prior on the covariance structure can be done using the

prior_covariance argument to stan_lmer, but the
default settings result in a moderately regularizing prior

that works very well in most settings. We recommend

keeping the defaults for prior_covariance when us-
ingstan_lmer unless the user is comfortablewith the ex-
planation of this prior in the documentation and vignettes

and has reason to believe that the default settings are in-

appropriate for the particular application at hand, which

should be somewhat rare.

Step 2. Estimate model parameters
To estimate the two-level Bayesian HLM, simply run

code from Step 1 above, which will create the object

TwoLevelModel in the R global environment. Again, the
sampling progress will be printed to the console and any

errors or warnings from Stan will be displayed, which may

recommend increasing the number of iterations or other

actions if necessary. Due to the increased complexity of the

two-level model compared to the single-level model, the

sampling process will be more computationally demand-

ing and the run time will be a bit longer. We expect less

than 5 minutes total, although the precise timing depends

on the user’s hardware.

Step 3. Check sampling quality
Numerical checks. Before assessing the results of the
estimation, we assess sampling quality. The two-level

model uses rstanarm’s default settings for MCMC and
runs without warnings. For numerical checks of sam-

pling quality, we call the summary function (note that

the output reported below is truncated to include person-

specific estimates for only the first two and the last par-

ticipants; below we only show a few lines.). As for

the single-level model, additional summary tables are

accessible through shinystan ’s following commande
summary(TwoLevelModel) as well. The results of this
command are seen in Listing 2.

Again there are no red flags in the summary output for

the two-level model. We see low R̂ values (close to 1), large
effective sample sizes, and Monte Carlo standard errors

that are much smaller than the posterior standard devia-

tions.

Visual checks. By using the plot function we can again
create trace plots that visualize the Markov chains in the

style of time series plots for a few of the model parame-

ters (example provided in the online R script). We also en-

courage the user to call shinystan for various options
for convergence plots. For the two-level model the trace

plots of the MCMC chains (not shown here) exhibited good

mixing and show no signs of convergence problems. The

numerical and visual convergence diagnostics look satis-

factory for this model.

Posterior predictive checks. We can again draw 100

samples from the posterior predictive distribution so that

we can compare the predictions from the two-level model

against the actual data.

pp_check(TwoLevelModel, nreps=100) +
xlab("Arousal")

Results are shown in the right panel of Figure 5. Both

plots depict the original data and smoothed kernels based

on 100 generated data sets (light purple lines) from the pos-

terior predictive distribution. Notice that when we move

from the plot for the single-level model to the plot for the

two-level model the small white gaps shrink and the lines

better match the height of the smoothed data. Many other

graphical posterior predictive checks are also available via

the pp_check function.
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Listing 2 Output from the summary command.

Model Info:

function: stan_lmer
family: gaussian [identity]
formula: valence ~ arousal + (1 + arousal | PID)
algorithm: sampling
priors: see help(’prior_summary’)
sample: 4000 (posterior sample size)
num obs: 272
groups: PID (20)

Estimates:
mean sd 2.5% 25% 50% 75% 97.5%

(Intercept) 29.8 5.8 18.1 26.1 30.0 33.5 41.2
arousal 0.5 0.1 0.4 0.5 0.5 0.6 0.7
b[(Intercept) PID:1] 37.5 11.0 17.2 29.9 37.1 44.7 60.3
b[arousal PID:1] -0.2 0.2 -0.5 -0.3 -0.2 -0.1 0.1
b[(Intercept) PID:2] 18.1 13.1 -6.4 9.2 17.4 26.3 45.5
b[arousal PID:2] -0.1 0.2 -0.5 -0.2 -0.1 0.0 0.2
...
b[(Intercept) PID:20] 11.6 7.3 -2.3 6.8 11.5 16.2 26.3
b[arousal PID:20] -0.1 0.2 -0.4 -0.2 -0.1 0.1 0.3
sigma 9.3 0.4 8.5 9.0 9.3 9.6 10.2
Sigma[PID:(Intercept),(Intercept)]

420.2 200.6 140.9 281.1 382.3 519.3 897.2
Sigma[PID:arousal,(Intercept)] -3.2 2.5 -9.4 -4.4 -2.7 -1.4 0.2
Sigma[PID:arousal,arousal] 0.1 0.0 0.0 0.0 0.0 0.1 0.2
mean_PPD 59.7 0.8 58.2 59.2 59.7 60.2 61.2
log-posterior -1075.4 7.0 -1090.2 -1079.9 -1074.8 -1070.4 -1063.2

Diagnostics:
mcse Rhat n_eff

(Intercept) 0.2 1.0 1442
arousal 0.0 1.0 2364
b[(Intercept) PID:1] 0.2 1.0 4000
b[arousal PID:1] 0.0 1.0 4000
b[(Intercept) PID:2] 0.2 1.0 4000
b[arousal PID:2] 0.0 1.0 4000
...
b[(Intercept) PID:20] 0.1 1.0 2372
b[arousal PID:20] 0.0 1.0 4000
sigma 0.0 1.0 4000
Sigma[PID:(Intercept),(Intercept)] 5.4 1.0 1360
Sigma[PID:arousal,(Intercept)] 0.1 1.0 1168
Sigma[PID:arousal,arousal] 0.0 1.0 1121
mean_PPD 0.0 1.0 4000
log-posterior 0.3 1.0 710

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude
measure of effective sample size, and Rhat is the potential scale reduction
factor on split chains (at convergence Rhat=1).
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Step 4. Summarize and interpret results
Model parameter estimates. Compared to the single-
level model, the two-level model has many more parame-

ters because we have slopes and intercepts for each person

in the sample. When dealingwith such a large output, sum-

mary tables can be tailored to extract only the estimates of

interest to the researcher. This can be done with the sum-

mary method defined in rstanarm itself and/or using the
tidy function in the broom package, which now has func-

tionality specifically for rstanarm models and makes it
easy to group the estimates by parameter type or as be-

fore. The shinystan package may be called to interac-
tively explore the rstanarm model. In Listing 3, we re-
port the three levels of tidy summaries (to conserve space,

note that the person-specific tidy summary is truncated to

six lines).

Table 2 shows parameter estimates from the two-level

model, based on a table generated by shinystan. Note
that shinystan summarizes the level-two spread esti-
mates in terms of variances and covariances, while the

output above uses standard deviations and correlation.

In terms of our research questions, we consider relations

of valence and arousal (both measured on a continuous

scale between 0 and 100) at the person-specific and pop-

ulation levels. The population intercept (µβ0
) is 29.9 (95%

PI =

[
18.7, 41.0

]
) and the person-specific intercepts vary

around this mean with variance (σ2
β0
) of 425.6. At the

population level a one-unit change in arousal is associ-

ated with a .5 increase (µβ1 ) in valence (95% PI =

[
0.4,

0.7

]
), which is slightly smaller in magnitude than the point

estimate of the slope from model 1 (β1=0.8), and there
is some between-person variation in these values (σ2

β1
=

0.1). Lastly, the two-level model captures negative covaria-

tion between person-specific intercept and person-specific

slopes (ρσβ0
σβ1

= -3.3), meaning that people with lower

levels of valence, on average, have higher associations be-

tween valence and arousal, on average.

Compared to single-level model, the two-level model

has a lower standard deviation (σ) due to its ability to ac-
count for multiple levels of information. The level-1 stan-

dard deviation quantifies the variability with which the

outcomes deviate from themodel’s predictions, and its pos-

terior mean was 16.9 in the single-level model and has de-

creased to 9.3 in the two-level model (its posterior stan-

dard deviation dropped from 0.7 to 0.4). The decrease in

standard deviation reflects the additional information ac-

counted for in the nested, 2-level structure.

Moreover, the two-level model’s population-level vari-

ance estimates help us learn the degree to which there is

variation between people. Figure 7 illustrates the varia-

tion in the estimated valence-arousal relations across the

20 individuals in the sample. Here the points are the ob-

served data for each person, the dark blue lines are poste-

rior mean estimates of the person-specific regression lines,

and the light blue lines are based on a random sample of

100 of the posterior draws. The dashed line is the mean

regression line from the single-level model and is the same

in each panel. The light blue lines help convey the uncer-

tainty we have surrounding the person-specific estimates.

The spread of the lines is different for each person because

our uncertainty in a person-specific prediction depends on

the sample size and variability in that person’s data. For

instance, because most of the observations for Participant

14 are concentrated at arousal levels around 45, we have

very little uncertainty in our predictions for Participant 7

in that range and much greater uncertainty at lower or

higher levels of arousal. For other participants (e.g., Par-

ticipant 13) the pattern is reversed and we have less uncer-

tainty at larger values of arousal.

Overall, both the single-level model and the two-level

model capture a positive relation between valence and

arousal but only the two-level model adequately accounts

for the information contained in the person-specific varia-

tion. Consequently, with the two-level model, we can more

precisely describe how the average person reports feeling

more pleasant when they report greater activity, as well as

how individuals tend to differ from that average. And de-

spite the increase in complexity, nuanced posterior infer-

ence from the Bayesian HLM is nearly as straightforward

as it is for the single-level model.

Discussion
In this tutorial we introduced the R package rstanarm,
which is a user-friendly tool to fit single-level and hier-

archical Bayesian regression models. Bayesian methods

are becoming more and more popular for statistical in-

ference, and for communicating current software develop-

ments to applied researchers. Users familiar with R will

find it much easier to use the rstanarm package, com-
pared to Stan’s original R interface RStan, because the lat-

ter presumes knowledge of Stan’s unique modeling lan-

guage while rstanarm uses similar syntax as R’s popu-
lar functions glm and lmer. Switching directly to Stan
as a modeling language may be a barrier for many re-

searchers, because its syntax may be unintuitive for those

without a coding background. Thus, rstanarm serves
as a valuable stepping-stone for researchers to enter the

realm of Bayesian inference while still being able to use

familiar software and syntax tools. As an added bonus,

rstanarm works with shinystan, which provides rich
opportunities of assessing model convergence, fit, and re-

sults. We also note that alternative to rstanarm is brsm
(Burkner, 2017), which also uses simplified syntax to carry

The Quantitative Methods for Psychology 1162

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.2.p099


¦ 2018 Vol. 14 no. 2

Listing 3 Commands to obtain three levels tidy summaries and their results.

# Population−level estimates
summaryTwoLevelModelPop <- tidy(TwoLevelModel, intervals=TRUE, prob=.95,

parameters = "non-varying")
print(summaryTwoLevelModelPop, digits = 2)

term estimate std.error lower upper
1 (Intercept) 29.85 5.341 18.72 41.0
2 arousal 0.54 0.077 0.39 0.7

# Variance estimates
summaryTwoLevelModelVar<- tidy(twoLevelModel, intervals=TRUE, prob=.95,

parameters = "hierarchical")
print(summaryTwoLevelModelVar, digits = 2)

term group estimate
1 sd_(Intercept).PID PID 20.63
2 sd_arousal.PID PID 0.24
3 cor_(Intercept).arousal.PID PID -0.65
4 sd_Observation.Residual Residual 9.29

# Person−specific estimates
summaryTwoLevelModelPerson <- tidy(TwoLevelModel, intervals=TRUE, prob=.95,

parameters = "varying")
print(summaryTwoLevelModelPerson, digits = 2)

level group term estimate std.error lower upper
1 1 PID (Intercept) 36.752 10.87 17.611 59.51
2 1 PID arousal -0.161 0.17 -0.500 0.14
3 2 PID (Intercept) 16.860 12.24 -5.952 45.72
4 2 PID arousal -0.077 0.17 -0.479 0.25
...
39 20 PID (Intercept) 11.504 7.09 -2.376 26.22
40 20 PID arousal -0.047 0.16 -0.422 0.30

out Bayesian parameter estimation in Stan.

Using the rstanarm package, we presented Bayesian
estimation of single-level and two-level hierarchical linear

regression modeling and we used simple applied examples

to highlight some of the advantages of multilevel model-

ing. In terms of broader impact, we hope that this tuto-

rial will encourage researchers to use Bayesian modeling

in their work and help facilitate the transition from soft-

ware packages implementing frequentist methods to new

packages like rstanarm that make applied Bayesian re-
gressionmodelingmore accessible than ever before. While

model specification in rstanarm is straightforward, we
caution the reader to always carefully consider how the

model specifications translate to the applied problem to

avoid mechanically fitting models to data.

For readers new to Bayesian methodology, learning to

work in this unfamiliar statistical framework entails learn-

ing a new set of foundational principles that pertain to

model specification, estimation, and inference. We think

this fundamental shift is worthwhile formany reasons that

include: the introduction of prior distributions allows for

valuable structure to be incorporated at each level of a

model and regularization helps manage extreme estimates

and avoid overfitting; the posterior distribution is a com-

plete representation of our uncertainty in the model pa-

rameters, given the data and modeling assumptions; the

posterior predictive distribution is easy to work with and

correctly propagates parameter uncertainty into predic-

tions; and the language with which we can describe our

inferences is intuitive and permits probability statements

about parameters of interest. Finally, in addition to learn-

ing new concepts, in order to begin using Bayesian meth-
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Table 2 Level-2 parameter estimates from the two-level model.

Parameter R̂ ESS mean SD MCSE 2.5% 97.5%

Intercept (µβ0
) 1.0 2056 29.9 5.6 0.1 18.7 41.0

Slope (µβ1 ) 1.0 2809 0.5 0.1 0.0 0.4 0.7

Error SD (σ) 1.0 4000 9.3 0.4 0.0 8.5 10.2

Between-person VAR Intercept (σ2
β0
) 1.0 2094 425.6 207.6 4.5 140.6 927.1

Covariance Intercept-Slope (ρσβ0
σβ1
) 1.0 1719 -3.3 2.6 0.1 -9.3 0.2

Between-person VAR Slope (σ2
β1
) 1.0 1495 0.1 0.0 0.0 0.0 0.2

ods a researcher must also become familiar with a new set

of software tools. For R users, rstanarm makes the tran-
sition straightforward.

13
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Figure 7 Graphical illustration of the person-specific results: observed data (dots), posterior mean regression lines (dark

lines), and uncertainty (light lines).
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