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Introduction
Item response theory (IRT) is a modeling framework

widely used to analyze discrete data in various disciplines

such as psychology and education. IRT models explain an

observed response to a test/survey item as a function of a

respondent’s latent trait (such as ability or proficiency) and

the item’s properties (such as difficulty). IRT models typi-

cally assume that subjects are drawn from a homogeneous

population. However, this assumption is often violated in

practice due to known or unknown clustering of subjects.

If the subjects’ populationmembership is known, multiple-

group IRT models (e. g., B. Muthén & Lehman, 1985) can

be used. If the population membership is unknown, finite-

mixture, or simply mixture (or mixed) IRT models (e. g.,

Rost, 1990; von Davier & Yamamoto, 2007) are often uti-

lized.

Mixture IRT models postulate that subjects are drawn

from two or more unknown (or latent) populations that

present systematic differences in their item response be-

havior. Latent class IRT models (e. g., Vermunt, 1999; von

Davier, 2008) have a similar feature of subject heterogene-

ity. The key difference lies in the fact that latent class IRT

models posit homogeneity (or no variability) of the per-

son latent traits within a latent class; that is, all subjects

with the same latent class are assumed to have the same

latent trait level. In contrast, mixture IRT models allow

for within-class heterogeneity (or variation of person la-

tent traits within a class).

Mixture IRT models have been extended in various

ways, e. g., with item covariates (Mislevy & Verhelst, 1990),

person covariates (Vermunt & Magidson, 2005), polyto-

mous data (Bolt, Cohen, & Wollack, 2001), multilevel per-

son structures (Vermunt, 2008), and multidimensional test

structures (De Boeck, Cho, & Wilson, 2011). Various mix-

ture IRT models have been utilized to examine subjects’
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heterogeneity in depression/anxiety (Wanders et al., 2016),

extreme response styles (H.-Y. Huang, 2016), at-risk un-

healthy behaviors (Finch & Pierson, 2011), and item solving

strategies (Mislevy & Verhelst, 1990). Other applications of

mixture IRT models also exist, e. g., for studying test speed-

edness (Bolt, Cohen, & Wollack, 2002), models’ goodness of

fit (Rost, 1990), and differential item functioning (Cho & Co-

hen, 2010; Cohen & Bolt, 2005). For more information on

mixture IRT model and its applications, I refer readers to

e. g., Cho, Suh, and Lee (2016) and De Boeck et al. (2011).

Exploratory vs. Confirmatory Mixture IRT Analysis
Mixture IRT models are often used in an exploratory man-

ner, as the number of latent classes is empirically deter-

mined based on the data. To choose the optimal number

of latent classes, a model selection method is usually uti-

lized; in this case, researchers set up several competing

models with varying numbers of latent classes and com-

pare thosemodels’ goodness-of-fit statistics (such as Akaike

information criterion, AIC; Bayesian information criterion,

BIC; and Deviance information criterion, DIC) (e. g., Ny-

lund, Asparouhov, & Muthén, 2007). In addition, a pri-

ori hypotheses on the item parameters are usually not as-

sumed across latent classes; hence, the item parameters

are freely estimated for each latent class.

Although relatively less common compared to an ex-

ploratory approach, mixture IRT models have also been

used in a confirmatory fashion. When the number and na-

ture of latent classes are known prior to data analysis, the

use of a mixture IRT model is confirmatory. For example,

Mislevy and Verhelst (1990) applied a mixture IRT model

to identify test takers who adopted a guessing or ability-

based strategy to solve test items. Their model includes

two latent classes that represent ability-based and guess-

ing strategies, respectively. The ability-based strategy class

is based on a regular IRT model, while the guessing strat-

egy class is based on a modified IRT model without a per-

son (ability) parameter (since guessing rather than ability

is utilized for item solutions). The item easiness parameter

of the guessing strategy class model was set at .25 (which

is the reciprocal of the number of response options) so that

the probability of giving correct responses for the guessing

strategy class could be fixed across test items. A similar

line of research has been conducted to investigate exam-

inees’ rapid guessing strategy during speeded tests (e. g.,

Schnipke & Scrams, 1997). Recently, Molenaar, Oberski,

Vermunt, and De Boeck (2016) utilized a confirmatory mix-

ture IRT modeling approach, to investigate how examinees

utilize different types of intelligence (either slow or fast

one) depending on test items. Their model includes two

latent classes that represent slow and fast responses, re-

spectively. A two-class mixture model was applied to re-

sponse time data to determine whether a response to each

item belongs to a slow or a fast response class. A regu-

lar IRT model was then applied to analyze response accu-

racy data (correct or incorrect) for each of the two (fast and

slow response) latent classes. Tijmstra, Bolsinova, and Jeon

(2018) adopted a confirmatorymixturemodeling approach

with two pre-specified latent classes (associated with dif-

ferent response styles) to test whether/how subjects engage

in item solutions with different response styles. The au-

thors specified two latent classes where one class follows

a general partial credit model (Muraki, 1992) for polyto-

mous item responses, while the other class follows a more

complex model where choosing a mid-point response cate-

gory is associated with an additional latent trait (following

an item response tree model (e. g., Boeckenholt, 2012; De

Boeck & Partchev, 2012; Jeon & De Boeck, 2016). Jin, Chen,

and Wang (2018) utilized a confirmatory mixture IRT ap-

proach for differentiating inattentive responses from nor-

mal responses in Likert-scale data. They also assumed two

latent classes where one class is based on a regular par-

tial credit model, while the other class follows a modified

polytomous IRT model that does not include a person abil-

ity parameter (so that the class canmodel ‘inattentive’ item

responses).

A Constrained Confirmatory Mixture IRT Model
Another example of a confirmatory mixture IRT approach

is the Saltus model, which was presented in the context of

examining children’s developmental stages (Mislevy &Wil-

son, 1996; Wilson, 1989). The modeling idea is to utilize

specific sets of test items, which are specially designed to

differentiate children’s performance (based on their devel-

opmental stages) for class differentiation. This approach

is confirmatory in two senses: (1) the number/nature of

latent classes (i.e., developmental stages) is pre-specified

in advance prior to data analysis; and (2) the prior infor-

mation on test items is utilized for differentiating latent

classes of subjects. Some may argue that pre-specifying

the number/character of latent classes and using prior item

information seem somewhat restrictive. However, simi-

lar ideas have often been employed in psychometrics. An

important example is confirmatory (item) factor analysis.

Confirmatory factor analysis assumes based on prior re-

search: (1) pre-determined number/nature of factors and

(2) the membership of items to the factors (or item-factor

relationship). This is different from exploratory factor

analysis, which assumes no prior knowledge on factor

structures before data analysis. Exploratory factor anal-

ysis aims to identify an underlying factor structure (or re-

lationship between items and factors), while confirmatory

analysis is used to verify a known factor structure and ex-

amine the relationship between factors. Both confirmatory
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and exploratory factor analyses are extensively utilized in

applied research.

Another example is the linear logistic test model (Fis-

cher, 1973), which utilizes item property information as

predictors to explain item difficulties in an IRT model. This

constrained model imposes a stronger assumption than a

regular IRT model, including a smaller number of param-

eters (regression coefficients for the item characteristics).

This seemingly restrictive IRT model has been broadly ap-

plied in various areas of research (e. g., Daniel & Embret-

son, 2010; Kubinger, 2008). Hence, it may be reasonable to

utilize prior knowledge on classes and item properties in

mixture IRT modeling.

Motivation
The original Saltus model has been extended for polyto-

mous data with a partial credit model (Draney, 2007) and

with a linear logistic test model (Draney & Wilson, 2008).

However, these models do not seem to have been fully

utilized in applied research. One potential reason may

stem from the impression that the model is designed solely

for examining developmental stages. The Saltus modeling

idea, however, can successfully be applied in practice to a

variety of scenarios where a researcher would like to test

a clearly developed hypothesis on structural differences

between latent classes. For instance, suppose there is an

English test that contains a set of items that are designed

to identify students who would need extra support to im-

prove their English speaking skills. In this case, the Saltus

model may be utilized to differentiate such students who

need special needs (from students without needing further

support) and to evaluate whether the designed test items

function properly.

Another misconception that people may have is that a

specialized software package is required to estimate the

Saltus model. In fact, Draney’s (2007) Fortran code appears

to be the only available software package for fitting the

Saltus model at present. Some researchers have applied

a Bayesian approach to estimate the Saltus model (e. g.,

Draney & Jeon, 2011). In this article, I will show that the

Saltus model is actually estimable with mixture IRT mod-

els’ existing software packages, such as Mplus (L. Muthén

& Muthén, 2017).

Aims and Structure
In this paper, I will introduce the Saltus model as a con-

strained confirmatory mixture IRT model, and describe its

application, extensions, and estimation. The specific aims

of this paper are threefold: (1) to show that the Saltus

model can be parameterized as a confirmatory mixture

IRT model with linear constraints on model parameters,

(2) to present several useful extensions of the Saltus model,

and (3) to provide an empirical illustration of an extended

Saltus model with Mplus.

The remainder of this paper is structured as follows: In

Section “Models”, I will describe the original parameteri-

zation of the Saltus model and present its new parameter-

ization as a constrained mixture IRT model. Subsequently,

I will present several important extensions of the Saltus

model. In Section “Empirical Illustrations”, I will present

an empirical illustration of the extended Saltus models.

The paper ends in the “Discussion” sectionwith a summary

and discussion on future developments.

Models
Saltus Model: Original Parameterization
In its original formulation, the Saltus model was specified

as an extension of the Raschmodel in the context of model-

ing subjects’ cognitive development. Subjects are assumed

to be classified into one stage at the time of testing, while

stage membership is not directly observed (Wilson, 1989).

The number of latent stages is pre-specified and differ-

ent latent stages are presumably differentiated by the sub-

jects’ performance on specific item groups. The differences

in the performance between latent classes are quantified

with so-called “Saltus parameters”.

To specify the model, it is assumed that there are H

latent classes and H item groups. Typically, the number

of item groups is set equivalent to the number of latent

classes because each item group is supposed to represent

the performance of a corresponding latent class (Wilson,

1989). The Saltus model can then be formulated as follows:

Pr (yijk = 1| θjh) =
exp (θjh − βi +

∑
h φjhτhk)

1 + exp (θjh − βi +
∑
h φjhτhk)

,

(1)

where yijk is a binary response for subject j to item i that
belongs to item group k, θjh is the latent trait of person j in
Class h with θjh ∼ N

(
µh, σ

2
h

)
, and βi is the difficulty pa-

rameter of item i.1 Note that the parameter φjh indicates
person j’s latent group membership, with φjh = 1 if per-
son j is in group h and 0 otherwise (h = 1, . . . ,H). The
latent classes are exclusive and exhaustive so that a per-

son is classified into only one of the H latent classes. For

model identification, it was assumed that
∑
βi = 0 (so that

µh can be freely estimated); in addition, Wilson (1989) ap-
plied τ1k = 0 (for all k) and τh1 = 0 (for all h), meaning
that the first latent class (h = 1) and the first item group

1
The original specification of the Saltus model used θj , implicitly assuming that the model is a conditional model given a latent class. For clarifica-

tion, I replaced θjwith θjh in Equations (1) and (2). In addition, I replaced yij in the original specification with yijk to clarify that the model specifies
the response for person j to item i that belongs to item group k.
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(k = 1) are used as the reference latent class and the refer-
ence item group, respectively.

The Saltus parameter τhk represents the effect of item
group k on the item responses given by subjects in latent
class h. This parameter also indicates the difference in the
item difficulty parameters for item group k between a ref-
erence latent class and focal latent classes (latent classes

that are not the reference latent class). For instance, sup-

pose H = 3. Then the linear predictor of Equation (1) is
θj1 − βi + φj1τ11 (when h = 1), θj2 − βi + φj2τ22 (when
h = 2), θj3 − βi + φj3τ33 (when h = 3) (since h = k is im-
plied in the original Saltus model specification). Because

τ11 = 0 is assumed for identification, the Saltus parame-
ters to be estimated are τ22 and τ33 and they indicate the
amounts of advantage (or disadvantage) that subjects in

Class 2 (h = 2) and subjects in Class 3 (h = 3) have in solv-
ing the second item group (k = 2) and the third item group
(k = 3), respectively, compared to subjects in Class 1 (refer-
ence latent class). Note that the Saltus parameter is concep-

tually similar to the differential feature functioning (DIF;

e. g., Ackerman, 1992; Holland & Wainer, 1993) parameter

for the item groups between different latent classes. In a

standard DIF analysis, a DIF parameter represents a differ-

ence in an item parameter (e. g., difficulty parameter) be-

tween two manifest groups, such as male and female stu-

dents (after controlling for respondents’ ability levels). A

Saltus parameter represents a difference in the difficulty

levels of an item group between two latent classes (e. g.,

subjects in different developmental stages). In that sense,

the concept of the Saltus and DIF parameters may be seen

to be similar (although technical differences do exist).

A more general formulation of the Saltus model was

provided by Mislevy and Wilson (1996):

Pr (yijk = 1| θjh) =∏
h

∏
k

[
exp (θjh − βi +

∑
h φjhτhk)

1 + exp (θjh − βi +
∑
h φjhτhk)

]φjhbik

, (2)

where the new variable bik is an indicator variable that de-
notes whether or not item i belongs to item group k; that
is, bik = 1 if item i belongs to item group k and bik = 0 if
otherwise. The main difference of the new formulation (2)

from the original formulation (1) is that the Saltus parame-

ter τhk is now represented with a full matrix (that is, h = k
is no longer assumed). For instance, whenH = 3, the 3×3
full Saltus parameter matrix is specified as τ11 τ12 τ13

τ21 τ22 τ23
τ31 τ32 τ33

 . (3)

The original Saltus model, Equation (1), includes only the

diagonal elements of this matrix as Saltus parameters. For

example, when h = 2, three Saltus parameter terms are
included in the general model (i.e., θj2 − βi + φj2τ21 +
φj2τ22 + φj2τ23), while the original model includes only
one Saltus parameter term (i.e., θj2 − βi + φj2τ22).
For identification of the general Saltus model, the same

set of constraints on the Saltus parameters is imposed as

the original Saltus model (Equation 1). That is, the first la-

tent class (or one of other latent classes) and the first item

group (or one of other item groups) are used as the refer-

ence groups. That is, τ1k = τh1 = 0 for all k and all h
(k = 1, . . . ,H and h = 1, . . . ,H). As discussed earlier, the
Saltus parameter matrix (3) for the general model includes

two off-diagonal elements (τ23 and τ32), whereas the origi-
nalmodel (Equation 1) contains only the diagonal elements

of the Saltus parameter matrix. This means that the gen-

eral Saltus model allows for Class 2 and Class 3 subjects to

present a different performance level on item group 3 and

item group 2, respectively. Hereinafter, all discussions will

be based on the general Saltus model.

Re-parameterization
There has been little discussion in the literature on the re-

lationship between the Saltus model and regular mixture

IRT models. In addition, based on the formulations of the

original and general Saltus model discussed above, it is dif-

ficult to understand how the Saltus model is related to the

regular mixture IRT model. Here, it will be shown that the

Saltus model can actually be re-parameterized as a con-

strained regular mixture IRT model with a pre-specified

number of latent classes.

To this end, let us first specify a regular, one-parameter

logistic (1PL) mixture IRT model with H latent classes for

a binary response as follows:

logit (Pr (yij = 1 |θjh, Cj = h)) = θjh − βih, (4)

where Cj is a categorical latent variable (Cj = 1, ...,H)
that indicates person j’s classmembership and θjh is a con-
tinuous latent variable that indicates person j’s latent trait
in Class h with θjh ∼ N

(
µh, σ

2
h

)
. To remove the indeter-

minacy of the scale and identify the model, the 1PL mix-

ture IRT model usually assumes that the means of the la-

tent trait distribution are fixed at 0 (i.e., µh = 0 for all h),
so that the class-specific item difficulty parameters can be

freely estimated. The item parameter βih represents the
difficulty of item i in latent class h.
Equation (4) is a conditional model given a person’s la-

tent class. Amarginal probability model can be formulated

across all possible class membership as follows:

Pr (yij = 1 |θj) =
H∑
h=1

πh Pr (yij = 1 |θjh, Cj = h),

where πh indicates the probability of belonging to Class h
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or a proportion of latent class h. The parameter πh is also

referred to as a mixing proportion (with

H∑
h=1

πh = 1).

Now let us re-formulate the 1PL general Saltus model

specified in Equation (2) by using similar notation to Equa-

tion (4) as

logit (Pr (yijk = 1 |θjh, Cj = h)) = θjh − βi + τhk. (5)

In this formulation, the third term τhk implies φjhτhk
(that is, this term appears only if person j belongs to Class
h). In addition, an additional subscript k appears in Equa-
tion (5). Since item i’s group membership is known a pri-
ori, β∗

ikh = β∗
ih = βi − τhk. Thus, the following can be

obtained

logit (Pr (yijk = 1 |θjh, Cj = h)) = θjh − β∗
ih. (6)

Note that the reformulation of the general Saltus model

with Equation (6) appears equivalent to the formulation of

the 1PL mixture IRT model in Equation (4) (with the re-

placement of βih with β
∗
ih). Note, however, that there is

an important difference in the latent trait distribution as-

sumption: the Saltus model assumes that the class-specific

latent trait θjh follows a respective normal distribution,
θjh ∼ N

(
µh, σ

2
h

)
, where the mean (µh) of the distribu-

tion is fixed at zero only for one reference latent class (e. g.,

h = 1), while the latent trait means for other classes are
freely estimated. In comparison, the regular 1PL mixture

model specified in Equation (4) requires that the latent trait

means are fixed at 0 for all latent classes.

As discussed earlier, the Saltus parameter indicates the

difference in the difficulty level of a particular item group

between latent classes. To see this more clearly, suppose

H = 2 (that is, there are two latent classes and two item
groups). From Equation (5), the Saltus model for latent

class 1 (h = 1) can be written as follows:

logit (Pr (yijk = 1 |θjh, Cj = 1))

= θj1 − βi + τ11 + τ12︸ ︷︷ ︸
=β∗

i1

. (7)

Here β∗
i1 = βi − τ11 − τ12 (therefore, −β∗

i1 =
−βi + τ11 + τ12) is defined as in Equation (6). Note that
two Saltus parameter terms for both item groups 1 and 2

(k = 1, 2) appear in Equation (7), following the general
Saltus model specification (see Saltus parameter matrix of

Equation 3). Similarly, the model for latent class 2 (h = 2)
can be specified as follows:

logit (Pr (yijk = 1 |θjh, Cj = 2))

= θj2 − βi + τ21 + τ22︸ ︷︷ ︸
=β∗

i2

(8)

where β∗
i2= βi− τ21−τ22 (therefore,−β∗

i2=−βi+ τ21+τ22)
is defined.

Since τ11 = τ12 = 0 is set for identification, β∗
i1= βi

when h = 1; similarly, since τ21 = 0 for identification, β
∗
i2=

βi − τ22 with h = 2. By replacing βi with β
∗
i1 in the lat-

ter, τ22 = β
∗
i1 - β

∗
i2 is obtained. This means that the Saltus

parameter (τ22) can be defined as the difference between
the item difficulty parameters for latent class 1 (β∗

i1) and

for latent class 2 (β∗
i1) when item i belongs to item group 2

(k = 2).
Now let us consider a more complex scenario with

three latent classes (H = 3; that is, there are three latent
classes and three item groups). In this case, three class-

specific models can be specified for latent classes 1, 2 and

3. For latent class 1 (h = 1), the model can be written as

logit (Pr (yijk = 1 |θjh, Cj = 1))

= θj1 − βi + τ11 + τ12 + τ13︸ ︷︷ ︸
β∗
i1

(9)

As in Equation (7) and (8), the Saltus parameter terms

for all three item groups (k = 1, 2, 3) are specified in Equa-
tion (9). Similarly, the models for latent class 2 (h = 2) and
(h = 3) can be specified as follows:

logit (Pr (yijk = 1 |θjh, Cj = 2))

= θj2 − βi + τ21 + τ22 + τ23︸ ︷︷ ︸
β∗
i2

, (10)

logit (Pr (yijk = 1 |θjh, Cj = 3))

= θj3 − βi + τ31 + τ32 + τ33︸ ︷︷ ︸
β∗
i3

. (11)

For Equations (9) to (11), it is defined that β∗
i1 = βi −

τ11 − τ12 − τ13 , β
∗
i2 = βi − τ21 − τ22 − τ23, and β

∗
i3 =

βi − τ31 − τ32 − τ33. Since τ11 = τ12 = τ13 = 0 and
τ21 = τ31 = 0 are set for model identification, β∗

i1 = βi
when h = 1, β∗

i2 = βi − τ22 − τ23 when h = 2, and β∗
i3=

βi − τ32 − τ33 when h = 3. Accordingly, τ22 = β
∗
i[2]1 - β

∗
i[2]2,

when item i belongs to item group 2 and τ23= β
∗
i[3]1 - β

∗
i[3]2,

when item i belongs to item group 3.2 Similarly, τ33 = β
∗
i[3]1

- β∗
i[3]3, when item i belongs to item group 3, and τ32 = β

∗
i[2]1

- β∗
i[2]3, when item i belongs to item group 2.
From this exercise, it is clear that the general Saltus

model (2) can be formulated as a confirmatory mixture IRT

model with a set of linear constraints on the item param-

eters. That is, instead of freely estimating item difficulty

parameters βih for latent class h as in a regular mixture

2
Here subscript [k] in β∗

i[k]h
is used to differentiate the i-th item’s group membership (k = 1, . . . , H).
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IRT model (see Equation 4), the Saltus model estimates β∗
ih

that implies a set of constraints, which are defined as, for

instance, β∗
i1= βi when h = 1 and β∗

i2= β
∗
i1 - τ22 when h = 2

for a two-class model. This means that in the two-class

Saltus model, the item difficulty is set to equal between the

two classes (β∗
i1= βi) if item i belong to item group 1; how-

ever, if item i belongs to item group 2, its difficulty is as
large (or small) as τ22 in latent class 2 compared to latent
class 1. This means that the Saltus model can be estimated

with mixture IRT model software packages that allow for

constraints on item parameters.

Important Extensions
In the previous section it has been shown that the Saltus

model can be formulated as a constrained confirmatory

mixture IRT model. This discovery is crucial because it

implies that the Saltus model can be extended in a vari-

ety of ways and that these extended Saltus models can be

estimated without having to develop separate estimation

routines or software packages.

In this section, three important extensions of the Saltus

model will be discussed with (1) item discrimination pa-

rameters, (2) person predictors, and (3) ordinal response

data. Note that these extensions are not exhaustive and

other extensions are possible, for instance with additional

item guessing parameters.

Item Discrimination Parameters. The original Saltus
model, in its both simpler and general forms, is based

on the Rasch model. However, it is possible to extend

the Saltus model with the item discrimination (or load-

ing, slope) parameters. Such a two-parameter model ex-

tension is useful because applying a one-parameter model

to two-parameter data can lead to identifying spurious la-

tent classes (Alexeev, Templin, & Cohen, 2011). In addition,

a researcher may want to test his/her hypothesis that re-

lationships between items and the latent trait of interest

(or items’ discriminating power) may differ between latent

classes.

A two-parameter logistic (2PL) Saltus model can be

specified as follows

logit (Pr (yijk = 1 |θjh, Cj = h))

= αihθjh − βi + τ
(β)
hk , (12)

where αih is the discrimination/loading/slope parameter

for item i in Class h. The Saltus parameter τ
(β)
hk repre-

sents a systematic difference in the item difficulty param-

eters for item group k between subjects in latent class 1
and latent class h.3 With the inclusion of the class-specific
item discrimination parameters (αih), it is assumed that

θjh ∼ N
(
µh, σ

2
h

)
, where µh = 0 for one reference latent

class (e. g., h = 1) and σh = 1 for all h (so that all αih can
be freely estimated in all latent classes). To further sim-

plify the model, the item discrimination parameters can be

set to be equal across latent classes by replacing αih with
αi.
Alternatively, if a structured difference can be postu-

lated in the items’ discriminating power for a particular

item group between latent classes, the Saltus parameters

can be introduced for the item discrimination parameters

as well as the item intercept parameters. With two types of

Saltus parameters, Equation (12) can be modified as

logit (Pr (yijk = 1 |θjh, Cj = h))

=
(
αi + τ

(α)
hk

)
θjh − βi + τ

(β)
hk , (13)

where τ
(α)
hk represents the Saltus parameter for αi, which

indicates a systematic difference in the discrimination

power of item group k between subjects in latent class h
and latent class 1 (reference latent class).

Similar to τ
(β)
hk , new Saltus parameter τ

(α)
hk can be spec-

ified by imposing a set of constraints on the class-specific

item discrimination parameters. By defining α∗
ih = αi+

τ
(α)
hk ) (with τ

(α)
11 = τ

(α)
12 = τ

(α)
21 = 0 for identification), it is ob-

tained that τ
(α)
22 = α∗

i2 - α
∗
i1 (when h = 2). This means that

the item discrimination parameters for latent class 2 (α∗
i2)

is assumed to be greater or smaller by τ
(α)
22 than the item

discrimination parameters for latent class 1 (α∗
i1) when

item i belongs to item group 2.Person Predictors. For ordinary mixture IRT analysis, it
is often recommended to incorporate person covariates

in the model to predict subjects’ class membership. It

has been reported that including person predictors helps

to prevent the possible misclassification of latent classes

(G.-H. Huang & Bandeen-Roche, 2004) and to obtain more

precise model parameter estimates and standard errors

(Smit, Kelderman, & van der Flier, 2000). For similar rea-

sons, it can be useful to consider person predictors in the

Saltus model.

SupposeQ person covariates are utilized to predict the
probability of subject j’ class membership Cj . The class
membership is a latent variable that takes discrete values

(Cj = 1, . . . ,H); hence, a multinomial logit model can be
utilized as follows:

Pr (Cj = h) =
exp

(
γh0 +

∑Q
q γhqWjq

)
∑H
u=1 exp

(
γh0 +

∑Q
q γhqWjq

) , (14)

where γh0 is the intercept and γhq is the regression coeffi-
cient of the q-th covariateWjq(q = 1, . . . , Q) for person j

3
Here τ

(β)
hk is equivalent to τhk in the 1PL Saltus model. For the 2PL Saltus model, I additionally used superscript (β) to distinguish two types of

Saltus parameters for the item difficulty and discrimination parameters.
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in latent class h.

Ordinal Response Data. Next, an extension of the Saltus
model for ordinal response data is introduced based on the

graded response model (Samejima, 1969).
4
For items with

M + 1 response categories, a 2PL graded respond Saltus
model can be specified as follows:

logit (Pr (yijk ≥ m |θjh, Cj = h))

=
(
αi + τ

(α)
hk

)
θjh − δim + τ

(δ)
hk , (15)

where m indicates a response category (m = 1, . . . ,M )
and δim represents the threshold parameters for item i’s
categorym (with category 0 as the reference category). The

Saltus parameter τ
(α)
hk for the item discrimination param-

eters are defined similar to Equation (13). The Saltus pa-

rameter for the threshold parameter, τ
(δ)
hk can be defined

as τ
(δ)
hk = δ∗im1 − δ∗imh, where δ∗imh is the threshold param-

eter for the m-th category of item i (that belongs to item
group k) for the subjects in latent class h (when h = 1 is the

reference latent class). For the sake of simplicity, τ
(δ)
hk is as-

sumed to be equal across all response categoriesm (except
for the reference category) although this assumption can

be relaxed by replacing τ
(δ)
hk with τ

(δ)
hkm. In the latter case,

M Saltus parameters are estimated for the item thresholds

(except for the reference category).

Empirical Illustrations
Data
To illustrate the estimation of the Saltus model and its ex-

tensions, a verbal aggression dataset (De Boeck & Wilson,

2004; Vansteelandt, 2000) is utilized. My intention for us-

ing this well-known dataset is to show that the confirma-

tory models discussed in this paper can be used for stan-

dard psychological research. In addition, this dataset has

been frequently utilized to illustrate a variety of newly de-

veloped IRT models or procedures (e. g., Braeken, Tuer-

linckx, & De Boeck, 2007; De Boeck & Wilson, 2004; Jeon

& Rijmen, 2016), including various versions of mixture IRT

models (e. g., Cho et al., 2016; Choi & Wilson, 2015). Hence,

researchers who are interested in newmethodology devel-

opments in IRT may already be familiar with this dataset

and can easily follow the illustrations provided in this pa-

per.

In brief, the data contain responses on 24 verbal ag-

gression items obtained from 243 female and 73 male first-

year psychology students. The test items are designed to

measure the source of verbal aggression and its inhibition,

where each item presents a scenario that reflects a frus-

trating situation (‘Bus’, ‘Train’, ‘Store’, and ‘Operator’), a sit-

uation type (‘Other-to-blame’ and ‘Self-to-blame’), a type of

verbally aggressive behaviors (‘Curse’, ‘Scold’, and ‘Shout’),

and a behavioral mode (‘Want’ and ‘Do’). For instance, “A

bus fails to stop for me. I would want to curse.” is a ‘Want’

item, whereas and “A bus fails to stop for me. I would

curse” is a ‘Do’ item. Respondents are asked to decide

whether they agree to give an aggressive verbal response

in each scenario and choose one of the three response op-

tions (‘No’, ‘Perhaps’, and ‘Yes’) and they are coded 0, 1, and

2, respectively.

The Saltus model is a confirmatory model that is de-

signed to verify a researcher’s hypothesis about classes and

class differentiation. A specialized Saltus model is con-

structed for this dataset based on the following rationale

and hypotheses: First, the levels of the subjects’ angry be-

haviors elicited by frustrating situations may differ across

subjects (Vansteelandt & Van Mechelen, 2004). This means

that the subjects may come from different sub-populations

(or latent classes) that are characterized by a different or-

der of the situations (in terms of the amount of anger they

evoke). Second, there are likely substantial individual dif-

ferences in the way people express their anger (Vanstee-

landt & Van Mechelen, 2004). Behavior types, especially,

‘Do’ vs ‘Want’ behavior items are likely to create large in-

dividual differences in the item thresholds (and other item

features) because the ‘Do’ behavior implies a higher risk

of causing actual damage to the given situation compared

to the ‘Want’ behavior. Hence, the ‘Do’ items are utilized

to differentiate the levels and types of verbal aggression

that subjects manifest. Specifically, it is assumed that two

sub-populations (or latent classes) of subjects are differen-

tiable based on the thresholds and discrimination power of

the ‘Do’ (verses ‘Want’) behavior items. Third, researchers

have consistently reported gender differences in verbal ag-

gression in the literature (e. g., Archer, 2004). Thus, it is

hypothesized that there may be gender differences in sub-

jects’ verbal aggression level; especially in the way the sub-

jects react to the ‘Do’ behavior items.

Based on this reasoning and hypotheses, a 2PL ordinal

Saltus model (Equation 15) is constructed for the verbal

aggression data with male as a covariate to predict class

memberships (Equation 14). Further, this model enables

us to demonstrate how a combination of the three exten-

sions described in the “Important Extensions” Section can

be readily specified and estimated with a standard soft-

ware package.

4
In this article, I focus on the ordinal response Saltus model, but the specification of a partial credit version for polytomous item responses may also

be possible with the latest Mplus version 8 that allows for an adjacent logit link function.
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Estimation
As discussed earlier, the Saltus model and its various ex-

tensions can be estimated with software packages that per-

mit the estimation of mixture IRT models and linear con-

straints on model parameters. Here, I use Mplus version

7.4 (L. Muthén & Muthén, 2017) for the full information

maximum likelihood (ML) estimation of the discussed, ex-

tended Saltus model. Below are the details of Mplus spec-

ification for the 2PL ordinal Saltus model with a covariate

for the verbal aggression data. The full Mplus syntax for

this model is presented in the Appendix.

The initial part of the Mplus syntax includes four com-

mands: (1) TITLE:, (2) DATA:, (3) VARIABLE:, and (4)
ANALYSIS:. First, the optional command TITLE simply
specifies a title that will appear on the Mplus output file.

The DATA command specifies the name of the dataset to be
analyzed (FILE = verbal_pol.dat). The data are in
a space delimited format (with a space in between each col-

umn) where a row indicates each subject and a column in-

dicates each variable (the dataset verbal_pol.dat in-
cludes 324 rows (for 324 subjects) and 25 columns (for 24

items and one male indicator variable). The VARIABLE
command specifies the names and characteristics of the

variables in the dataset. The NAME option specifies that
the example dataset includes a person covariate (male) and

24 item dummy variables (u1-u24). The CATEGORICAL
option indicates that u1-u24 are categorical response vari-

ables (scored as 0, 1, and 2). The MISSING option indi-
cates thatmissing responses are coded as 99 in the example

dataset. The CLASSES option specifies the label and num-
ber of latent classes. Hence, c(2) denotes that c is the la-
bel for two latent classes. Lastly, the ANALYSIS command
is used to specify options for estimation. The TYPE option
indicates the type of analysis to be performed. To estimate

models that include latent classes, TYPE = MIXTURE is
needed. The ALGORITHM option specifies the estimation
algorithm to be used. ALGORITHM = INTEGRATION de-
notes that full information maximum likelihood estima-

tion with numerical integration is adopted (with the de-

fault number of integration points, 15). The STARTS op-
tion indicates the number of random starts to be used for

the analysis. STARTS = 50 10 tells Mplus to use 50 sets
of starting values in the first step of the optimization and to

pick 10 starting values that show the largest log likelihood

values (in the first optimization step) for the second step of

the optimization process. Multiple random starting values

are utilized to ensure the ML solutions are not obtained at

local maxima of the log-likelihood function.

The next part of the Mplus syntax is the MODEL com-
mand that specifies the specific model that is estimated

(see Listing 2). The heading %OVERALL% indicates that

the text that follows defines the general model that ap-

plies both latent classes. f1 BY u1-u24* indicates that
24 item responses (u1-u24) are loaded on the latent vari-
able labeled as f1. The asterisk at the end of u1-u24 de-
notes that all item loading (slope) parameters are freely es-

timated (instead of the loading of one item is fixed at 1).

f1@1s indicates that the variance of the latent variable
f1 is fixed at 1. The last term c ON male indicates that
the male covariate is regressed on the latent class c (that
is, male is used as a covariate for the multinomial regres-

sion to predict class memberships). Next, headings %c#1%
and %c#2% indicate that the text that follows defines the
model specifically for Class 1 and Class 2, respectively. Un-

der the %c#1% heading , f1 BY u1-u24* (x1-x24)
indicates that 24 item responses (u1-u24) are loaded
on the f1 latent variable where x1-x24 in the paren-
thesis denote the labels for the 24 item loading param-

eters. The next two terms, [u1$1-u24$1](a1-a24)
and [u1$2-u24$2](ax1-ax24) are used to specify the
first and second threshold parameters for the 24 itemswith

labels a1-a24 and ax1-ax24, respectively. [f1@0] is
used to indicate that the mean of the latent trait f1 is fixed
at 0 for Class 1 (which means that Class 1 is the reference

latent class). Under the %c#2% heading, the model for
Class 2 is specified to be similar to the model for Class 1.

The differences are found in the labels for the item loading

and threshold parameters. f1 BY u1-u24* (x1-x12
y13-y24)means that the loading parameters for the first
12 items (x1-x12) are set to be equal to the loading pa-
rameters for Class 1 (since the same labels x1-x12 are
used in both latent classes), while the loading parameters

for the next 12 items (y13-y24) are allowed to be differ-
ent in Class 2. This means that two item groups are used in

this example (first 12 items (‘Want’) and last 12 items (‘Do’)

and the second set of items (‘Do’ items) are used to differ-

entiate performance between Class 1 and Class 2 subjects.

The last term [f1] indicates that the mean of the latent
trait distribution for Class 2 is freely estimated.

The next part of the Mplus syntax is the MODEL
CONSTRAINT command, which is necessary for specifying
the Saltus model as a constrained mixture IRT model (see

Listing 3). The first line NEW(tau_d tau_a) is used to
create two new variables labeled for the Saltus parameters

(for item threshold parameters and item loading parame-

ters). The next 24 lines (tau_d = a13-b13; to tau_d
= a24-b24; and tau_d = ax13-bx13; to tau_d =
ax24-bx24;) are used to tell Mplus that the difference in
the item threshold parameters (for Categories 1 and 2) be-

tween Class 1 and Class 2 (tau_d) is constant across items
13 to 24 (‘Do’ items). That is, tau_d refers to τ (δ)22 (that is,

it is assumed that all response categories (except the ref-

erence category) have the same threshold Saltus parame-
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Listing 1 Initial part of the MPlus syntax

--------------------------------------------------------------------------------
!! Header of input file
TITLE: 2PL ordinal Saltus model for verbal aggression data

!! Data file specification
DATA: FILE = verbal_pol.dat;

!! Define variables and specify number of latent classes
VARIABLE:
NAMES = male u1-u24; ! male is dummy variable for male subjects
CATEGORICAL = u1-u24; ! ordinal item responses (0,1,2)
MISSING = ALL(99); ! missing data are coded as 99
CLASSES = c (2); ! number of latent classes

!! Estimation settings
ANALYSIS: TYPE = MIXTURE; ! estimate finite mixture model
ALGORITHM = INTEGRATION; ! use integration method with 15 default quadrature points
STARTS = 50 10 ; ! use multiple random starts (can be increased if needed)
------------------------------------------------------------------------------------

ter). The last 12 lines (tau_a = y13-x13; to tau_a =
y24-x24;) are used to instruct Mplus that the difference
in the item loading parameters between Class 1 and Class 2

(tau_a) is constant across items 13 to 24 (‘Do’ items). That
is, tau_a refers to τ (α)22 .

The final part of the Mplus syntax includes the

SAVEDATA command (see Listing 4). The SAVE option
tells Mplus to save, as an external file, the subjects’ pos-

terior probability (cprob) in each latent class. The FILE
option indicates the name of the external file to be saved

(prob_pol.txt). The external file will be saved to the
folder where the syntax file is located.

Once the full syntax input file has been constructed, the

input file (saltus_pol.inp) can be submitted to Mplus
by using the RUN button found on the top of the user inter-
face. Once Mplus terminates successfully, the output will

appear in a text file in the folder where the input file is lo-

cated, with the same name as the input file, ending with

the extension .out (saltus_pol.out).

Results
Here the estimated results are described for the 2PL or-

dinal Saltus model obtained from Mplus. Recall that the

model was specified for the following purposes: (1) to con-

firm that there are two groups of subjects who substan-

tially differ in the way that they express their anger; (2) to

evaluate the hypothesis that items on the behavior types

(‘Do’ vs. ‘Want’ items) can differentiate the two groups

of subjects; specifically, to check whether there are differ-

ences in the two item parameter (loading and threshold)

values for the ‘Do’ items between the two latent classes;

and (3) to test the hypothesis that there is a gender dif-

ference in subjects’ latent class membership (e. g., to see

whether male and female students have different proba-

bilities of belonging to the subject groups who show a dif-

ferent anger level to the ‘Do’ type items). Note that these

questions, which can be investigated with the proposed

Saltus model, may be unanswerable with regular mixture

IRT models or with other existing approaches.

Mplus output contains voluminous information, but

here I focus on the output sections that contain the most

important information to interpret key Saltus model re-

sults. First, the Mplus output section for the final class

counts and estimated proportions reports the number of

subjects in each latent class. There are three pieces of in-

formation provided (based on the estimated model, based

on estimated posterior probabilities, and based on the

most likely class). The information based on the estimated

model was used (that provides the final class counts and

estimated proportions based on the most likely model pa-

rameter estimates). The result shows that approximately

31.3% of the subjects were classified into Class 1, while

68.7% of the subjects into Class 2. This result suggests that

two groups of subjects were well differentiated as hypoth-

esized, based on the estimated model. However, to under-

stand the nature of the two latent classes, it is necessary to

further examine the estimates of other model parameters.

The two Saltus parameters are useful for this purpose.
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Listing 2 Second part of the MPlus syntax

--------------------------------------------------------------------------------
!! Model specification
MODEL:
! Overall model
%OVERALL%
f1 BY u1-u24*; ! free loading parameters
f1@1; ! factor variance is fixed at 1
! Multinomial regression of class membership with male variable
c ON male; ! male variable is used to predict subjects’ class membership

! Model for Class 1
%c#1%
f1 BY u1-u24* (x1-x24); ! loading parameters
[u1$1-u24$1](a1-a24); ! threshold parameters for response category 1
[u1$2-u24$2](ax1-ax24); ! threshold parameters for response category 2
f1@1; ! factor variance is fixed at 1
[f1@0] ; ! factor mean fixed at 0 (reference latent class)

! Model for Class 2
%c#2%
! Use different loading parameter labels for Do items (u13-u24)
f1 BY u1-u24* (x1-x12 y13-y24);
! Use different threshold parameter labels for ’Do’ items (u13-u24)
[u1$1-u24$1](a1-a12 b13-b24); ! for response category 1
[u1$2-u24$2](ax1-ax12 bx13-bx24); ! for response category 2
f1@1; ! factor variance is fixed at 1
[f1]; ! factor mean freely estimated
--------------------------------------------------------------------------------

Figure 1 Class-specific estimated discrimination (αi) parameter values (a1 to a24) and threshold (δim) parameter values
(d11 to d242) for the 2PL ordinal Saltus model for the verbal aggression data.

(a) (b)
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Listing 3 Third part of the MPlus syntax

--------------------------------------------------------------------------------
! Set model constraints
MODEL CONSTRAINT:
NEW(tau_d tau_a); ! define Saltus parameters
!! Define Saltus parameter for threshold parameters as difference
!! in threshold parameters for ’Do’ items between Class 1 and Class 2
! Category 1
tau_d = a13-b13;
tau_d = a14-b14;
tau_d = a15-b15;
tau_d = a16-b16;
tau_d = a17-b17;
tau_d = a18-b18;
tau_d = a19-b19;
tau_d = a20-b20;
tau_d = a21-b21;
tau_d = a22-b22;
tau_d = a23-b23;
tau_d = a24-b24;

! For Category 2
tau_d = ax13-bx13;
tau_d = ax14-bx14;
tau_d = ax15-bx15;
tau_d = ax16-bx16;
tau_d = ax17-bx17;
tau_d = ax18-bx18;
tau_d = ax19-bx19;
tau_d = ax20-bx20;
tau_d = ax21-bx21;
tau_d = ax22-bx22;
tau_d = ax23-bx23;
tau_d = ax24-bx24;

!! Define Saltus parameter for discrimination parameters as difference
!!in discrimination parameters for Do items between Class 2 and Class1
tau_a = y13-x13;
tau_a = y14-x14;
tau_a = y15-x15;
tau_a = y16-x16;
tau_a = y17-x17;
tau_a = y18-x18;
tau_a = y19-x19;
tau_a = y20-x20;
tau_a = y21-x21;
tau_a = y22-x22;
tau_a = y23-x23;
tau_a = y24-x24;
--------------------------------------------------------------------------------
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Listing 4 Last part of the MPlus syntax

--------------------------------------------------------------------------------
!! Save posterior probability in each class
SAVEDATA:
SAVE is cprob;
FILE is prob_pol.txt ;
--------------------------------------------------------------------------------

The Saltus parameter estimates are given at the Mplus out-

put section with New/Additional parameters. TAU_D and
TAU_A are the labels created for two Saltus parameters

(τ
(δ)
22 and τ

(α)
22 ). Specifically, the Saltus parameter for the

item threshold parameters (τ
(δ)
22 ) was negative and signif-

icant at the 5% level with an estimate of -1.770 (SE=0.387,

p=0.000). Recall that τ
(δ)
22 = δ∗im1 − δ∗im2 (for allm, except

the reference category 0). Hence, the negative Saltus pa-

rameter estimate indicates that the ‘Do’ items’ thresholds

were higher for subjects in Class 2 compared to subjects

in Class 1. In other words, the subjects in Class 2 were

less likely to endorse ‘Yes’ or ‘Perhaps’ (rather than ‘No’)

to the ‘Do’ items than the subjects in Class 1. This result

also suggests that Class 2 included a group of subjects who

showed a lower level of verbal aggression to the ‘Do’ be-

havior items compared to Class 1 subjects. On the other

hand, the Saltus parameter for the item loading parame-

ters (τ
(α)
22 ) was positive and significant at the 5% level with

an estimate of 1.632 (SE=0.465, p=0.000). Since τ
(α)
22 = α∗

i2

- α∗
i1, this means that the ‘Do’ items were more discrimi-

nating for subjects in Class 2 compared to subjects in Class

1. In other words, the ‘Do’ behavior items can better differ-

entiate between people who display similar levels of verbal

aggression in Class 2 than in Class 1.

Next, it is also important to examine the mean of the

class-specific latent trait distribution (µh) to understand
the characteristics of the specified latent classes. This in-

formation is given at the output section for Means each

under Latent Class 1 and Latent Class 2 headings. F1 is
the label for the latent trait specified in the model. The

mean of the Class 1 latent trait was fixed at zero (hence,

both the estimate and the standard error are 0.000 in the

output), while the mean of the Class 2 latent trait was 0.228

(SE = 0.190, p = 0.229). This means that the two la-
tent class means were not significantly different from each

other at the 5% significance level. In other words, little ev-

idence was found that there was a difference in the overall

verbal aggression level between the two classes.

Note that the between-class difference was found only

in the Saltus parameters for the threshold and loading

parameters (τ
(δ)
22 , τ

(α)
22 ), that is, in terms of the way the

subjects react to the ‘Do’ items. The fact that the two

Saltus parameter estimates were significantly different

from zero means that there were systematic differences in

the estimated item parameter values between the two la-

tent classes. To see this more clearly, class-specific item

parameter values can be examined at the F1 BY and
Thresholds output sections each under Latent Class 1
and Latent Class 2 headings. At the F1 BY section, the
estimates for labels U1 to U24 indicate the item loading pa-
rameters for items 1 to 24, respectively. At the Thresholds

section, labels U1$1 and U1$2 (to U24$1 and U24$2) de-
note the item threshold parameters for Category 1 and Cat-

egory 2, respectively (Category 0 is the reference response

category). Figure 1 displays the estimated item parameter

values (αi and δim) for Class 1 and Class 2.
It can be observed in Figure 1 that the αi and δim pa-

rameter estimates for the two latent classes differ only for

the ‘Do’ items (items 13 to 24). The differences in the item

parameters amount to τ
(α)
22 and τ

(δ)
22 for the αi and δim pa-

rameters, respectively.

Lastly, to test whether there was a gender differ-

ence in subjects’ latent class membership, the regres-

sion coefficients of the multinomial logit model (Equa-

tion 14) need to be examined. The Mplus output sec-

tion Categorical Latent Variables can be used to this pur-
pose. Label MALE is found under C#1 ON at this out-
put section, indicating that the corresponding result re-

ports the estimate of the regression coefficient of the

male variable for predicting subjects’ Class 1 member-

ship (meaning that Class 2 was treated as the reference

latent class). Since Class 1 is used as the reference la-

tent class in the current analysis, the result reported un-

der ALTERNATIVE PARAMETERIZATIONS FOR THE
CATEGORICAL LATENT VARIABLE REGRESSION
should be utilized, which contains the section Parame-

terization using Reference Class 1. Under C#2 ON of this
section, label MALE indicates the regression coefficient es-

timate of the male variable for predicting subjects’ Class

2 membership. The estimate (γh1, h = 2) was negative
and significant with -1.567 (SE = 0.523, p = 0.003). This
means that there was sufficient evidence at the 5% sig-

nificance level that male subjects had a lower probability

of being classified into Class 2. Or equivalently, male stu-

dents had a higher probability of being classified into Class
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1 (who displayed a higher verbal aggression level to ‘Do’

behavior items compared to Class 2 subjects). This result

confirms that there was indeed a gender difference in the

subjects’ class membership as hypothesized (that is, more

male students were found in Class 1 than in Class 2). An

additional piece of information that can be taken from

this result is that male subjects had a higher tendency to

express a higher level of verbal aggression to the ‘Do’ be-

havior items compared to female students, which is in line

with the literature that reports a higher verbal aggression

level for males. The fitted Saltus model adds to the litera-

ture by finding that the difference might have been driven

by the ‘Do’ behavior type items.

Discussion
This paper discussed a specialized, constrained confirma-

tory mixture IRT model, referred to as the Saltus model

(Mislevy & Wilson, 1996; Wilson, 1989). The model is con-

firmatory in that the number/nature of latent classes is

known in advance and prior knowledge on item charac-

teristics is used to hypothesize the item-class relationship.

Researchers who are more familiar with an ordinary,

exploratory use ofmixture IRTmodelingmay feel that such

a confirmatory approach seems somewhat unusual. How-

ever, as discussed earlier in this paper, a confirmatory ap-

proach could reasonably be adopted in mixture IRTmodel-

ing, as it can be used to verify a researcher’s hypothesis on

the character of postulated latent classes and latent class

differentiation. This purpose is unique and differentiated

from the purpose of an exploratory approach.

Various extensions of the Saltus model were discussed

with discrimination parameters, person predictors, and or-

dinal response data, and the estimation of an extended

Saltus model with Mplus was illustrated with an empiri-

cal dataset. Those extensions are not exhaustive and other

types of extensions are certainly possible. For instance, the

model could be expanded to handle multidimensional test

items and multilevel/longitudinal data structures. Future

studies will investigate the applications and estimation of

these extensions.

Authors’ note
I am grateful to Dr. Perman Gochyyev for his very helpful

comments on an earlier version of the paper.
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Appendix
Here I provide the full Mplus syntax for estimating the extended, 2PL ordinal Saltus model that was illustrated in this

paper. As discussed, the Saltus model and its extensions can be estimated as constrainedmixture IRTmodels by imposing

linear constraints on item parameters. I will show how this operation can be done in Mplus with this example.

<2PL ordinal Saltus model>
!! Header of input file
TITLE: 2PL ordinal Saltus model for verbal aggression data

!! Data file specification
DATA: FILE = verbal_pol.dat;

!! Define variables and specify number of latent classes
VARIABLE:
NAMES = male u1-u24; ! male is dummy variable for male subjects
CATEGORICAL = u1-u24; ! ordinal item responses
MISSING = ALL(99); ! missing data are coded as 99
CLASSES = c (2); ! number of latent classes

!! Estimation settings
ANALYSIS: TYPE = MIXTURE; ! estimate finite mixture model
ALGORITHM = INTEGRATION; ! use integration method (with 15 default quadrature

points)
STARTS = 50 10 ; ! use multiple random starts (can be increased depending on

studies)

!! Model specification
MODEL:
! Overall model
%OVERALL%
f1 BY u1-u24*; ! free loading parameters
f1@1; ! factor variance is fixed at 1
! Multinomial regression of class membership with male variable
c ON male; ! male variable is used to predict subjects’ class membership

! Model for Class 1
%c#1%
f1 BY u1-u24* (x1-x24); ! loading parameters
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[u1$1-u24$1](a1-a24); ! threshold parameters for response category 1
[u1$2-u24$2](ax1-ax24); ! threshold parameters for response category 2
f1@1; ! factor variance is fixed at 1
[f1@0]; ! factor mean fixed at 0 (reference latent class)

! Model for Class 2
%c#2%
! Use different loading parameter labels for Do items (u13-u24)
f1 BY u1-u24* (x1-x12 y13-y24);
! Use different threshold parameter labels for ’Do’ items (u13-u24)
[u1$1-u24$1](a1-a12 b13-b24); ! for response category 1
[u1$2-u24$2](ax1-ax12 bx13-bx24); ! for response category 2
f1@1; ! factor variance is fixed at 1
[f1]; ! factor mean freely estimated

! Set model constraints
MODEL CONSTRAINT:
NEW(tau_d tau_a); ! define Saltus parameters
!! Define Saltus parameter for threshold parameters as difference
!! in threshold parameters for ’Do’ items between Class 1 and Class 2
! Category 1
tau_d = a13-b13;
tau_d = a14-b14;
tau_d = a15-b15;
tau_d = a16-b16;
tau_d = a17-b17;
tau_d = a18-b18;
tau_d = a19-b19;
tau_d = a20-b20;
tau_d = a21-b21;
tau_d = a22-b22;
tau_d = a23-b23;
tau_d = a24-b24;
! For Category 2
tau_d = ax13-bx13;
tau_d = ax14-bx14;
tau_d = ax15-bx15;
tau_d = ax16-bx16;
tau_d = ax17-bx17;
tau_d = ax18-bx18;
tau_d = ax19-bx19;
tau_d = ax20-bx20;
tau_d = ax21-bx21;
tau_d = ax22-bx22;
tau_d = ax23-bx23;
tau_d = ax24-bx24;

!! Define Saltus parameter for discrimination parameters as difference
!!in discrimination parameters for Do items between Class 2 and Class1
tau_a = y13-x13;
tau_a = y14-x14;
tau_a = y15-x15;

The Quantitative Methods for Psychology 1352

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.2.p120


¦ 2018 Vol. 14 no. 2

tau_a = y16-x16;
tau_a = y17-x17;
tau_a = y18-x18;
tau_a = y19-x19;
tau_a = y20-x20;
tau_a = y21-x21;
tau_a = y22-x22;
tau_a = y23-x23;
tau_a = y24-x24;

!! Save posterior probability in each class
SAVEDATA:
SAVE is cprob;
FILE is prob_pol.txt ;
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