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Abstract Repeated measures data are widely used in social and behavioral sciences, e.g., to inves-

tigate the trajectory of an underlying phenomenon over time. A variety of different mixed-effects

models, a type of statistical modeling approach for repeated measures data, have been proposed

and they differ mainly in two aspects: (1) the distributional assumption of the dependent vari-

able and (2) the linearity of the model. Distinct combinations of these characteristics encompass a

variety of modeling techniques. Although these models have been independently discussed in the

literature, the most flexible framework – the generalized nonlinear mixed-effects model (GNLMEM)

– can be used as a modeling umbrella to encompass these modeling options for repeated measures

data. Therefore, the aim of this paper is to explicate on the different mixed-effects modeling tech-

niques guided by the distributional assumption and model linearity choices using the GNLMEM as

a general framework. Additionally, empirical examples are used to illustrate the versatility of this

framework.
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Introduction
Correlated data structure arises as a consequence of re-

search design or as an inherent characteristic of the pop-

ulation (Fitzmaurice, Laird, & Ware, 2011). Repeated mea-

sures data are one particular type of correlated data where

measurements of the same individuals are gathered over

time and/or in different experimental conditions (Fitzmau-

rice et al., 2011). The assumption of independence holds

at the between-subjects level (inter-individual or level-2),

but the repeated measures of the same individual over

time are dependent rather than independent. The within-

subject (intra-individual or level-1) observations are cor-

related and such correlation must be taken into account

in order to get valid inferences from the model (Fitzmau-

rice et al., 2011). An example of this study design in

educational research is the widely used Early Childhood

Longitudinal Study—Kindergarten (ECLS-K) dataset where

a nationally representative cohort of children who en-

tered kindergarten in 1998-1999 school year were followed

through middle school (Tourangeau, Nord, Lê, Sorongon,

& Najarian, 2009). During that period, data on students’

background and academic achievement were collected on

seven measurement occasions, where the level-1 consists

of time (seven instances of data collected for each student)

and the level-2 of students (data gathered across students).

The data collected on the same student across seven time-

points are dependent and likely correlated (within-subject

or level-1 correlation), whereas the data from different stu-

dents (between-subjects or level-2) are assumed to be inde-

pendent.

A major advantage of repeated measures data is that

it can capture patterns of change over time, that is, the

growth trajectory of the individuals and the independent

variables that predict the trajectory (Fitzmaurice et al.,

2011; Stroup, 2013). Several statistical models have been

proposed to analyze this type of data. Researchers in di-

verse fields such as education, sociology, psychology, statis-

tics, and biostatistics have contributed to the development

of new methods for the analysis of repeated measures
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data. Although there is abundant literature showing a spe-

cific type (or types) of models that work well for the analy-

sis of different kinds of repeated measures datasets, there

is lack of a didactic paper that synthesizes the connections

and distinctions among these models. Hence, oftentimes,

users of thesemodels are left wonderingwhich of these un-

connected modeling alternatives to choose to analyze their

data at hand. However, model differences mainly come

from two elements: (1) the distributional assumptions of

the outcome variable, and (2) the model linearity to de-

scribe the underlying trajectory over time, which depends

on the functional form.
1
Having a general scheme to learn

about statistical models for repeated measures data con-

sidering these two main elements can provide a better un-

derstanding of the modeling options. This in turn could

encourage researchers to use a wider variety of statistical

techniques when appropriate.

Initially, Laird and Ware (1982) proposed to use lin-

ear mixed-effects models (LMEMs) for continuous, normal

data to estimate both the average trajectory (i.e., fixed-

effects) and the between-subject variation (i.e., random-

effects), where normality was assumed at both levels

of the errors (within- and between-subjects). Neverthe-

less, the amalgamation of random effects (both at level-1

and level-2) within the generalized linear models (GLMs)

framework allowed the analysis of non-normal repeated

measures data, introducing the generalized linear mixed-

effects models; GLMEMs (Stiratelli, Laird, & Ware, 1984;

Zeger, Liang, & Albert, 1988). Note that LMEMs are a spe-

cial case of GLMEMswhen the normality assumption of the

outcome variable holds, just as the traditional linearmodel

is a special case of the GLM when errors follow a normal

distribution.

Earlier models mainly allowed for fixed and random

effects that enter the model in a linear fashion, assuming

level-1 and level-2 errors to be normally distributed. How-

ever, there were some developments in the field of phar-

macokinetics that used a specific nonlinear model to de-

scribe repeated measures data (see e.g., Sheiner & Beal,

1980). Lindstrom and Bates (1990) proposed a general

nonlinear mixed-effects model (NLMEM) for the analysis

of repeated measures data. This approach introduced a

general framework to use intrinsically nonlinear functions
(e.g., exponential; see formal definition in the next section)

to model changes over time of continuous data, assuming

normal distribution at both levels of error. Furthermore,

the LMEM can be considered a special case of the NLMEM

(Lindstrom & Bates, 1990).

The combination of non-normal data and nonlinear

trajectories over time led to the extension of GLMEMs to in-

clude nonlinear (and linear) fixed and random effects (see

e.g., Payne, 2014; Vonesh, 2012; Vonesh, Chinchilli, & Pu,

1996; H. Wu & Zhang, 2006). Such combination defined a

general class of models, the generalized nonlinear mixed-

effects models (GNLMEMs). The GNLMEMs bring together

all different models for repeated measures data described

above; all of them could be derived as special cases of this

general framework because the differences between these

approaches are duemostly to (1) the normality assumption

of the outcome variable, and (2) the (non)linearity of the

model. However, despite the practicality of this resource-

ful scheme, there has been little discussion around it in the

social and behavioral sciences. This lack of dissemination

intensifies the use of LMEMs under the assumption of nor-

mality when the nature of the outcome variable requires

other modeling strategies. For instance, a wide majority of

analyses in psychological research of count data are still

assuming normality when the Poisson distribution would

be preferred (Vives, Losilla, & Rodrigo, 2006).

The main objective of this article, therefore, is to de-

scribe the most popular mixed-effects models subsumed

under the GNLMEM framework as a combination of two

features: the distributional assumption and the model lin-

earity to describe the mean trajectory of the dependent

variable. To elaborate, the data at hand could be either

normally or non-normally distributed, and the trend ex-

hibited by the data could be linear, nonlinear, or intrinsi-

cally nonlinear. Combinations of data-type (e.g., continu-

ous, binary, categorical, continuous and nonnegative, and

count) and data-behavior (linear and nonlinear in parame-

ters) will determine the model choice for appropriately de-

scribing the underlying structure. That is, modeling tech-

niques are conditioned to the choice of distributional as-

sumption and model linearity. In addition, the GNLMEM is

the most general framework for repeated measures data

analysis. Thus, we use it to enclose and derive from it

the rest of the statistical approaches. We acknowledge

that temporal dependencies in the within-subject variabil-

ity (level-1 errors) are possible for each of the models dis-

cussed in the article. However, a discussion of this feature

is out of the scope of the study.

Our intent is to communicate to a broader audience

of methodologists, substantive researchers and practition-

ers that the GNLMEM framework constitutes a resourceful

tool that assembles diverse statistical techniques for the de-

scription of a variety of repeated measures data. We advo-

cate that having this broad framework of statistical mod-

els will help disseminate the different modeling options for

1
Another option to model repeated measures data is within the nonparametric and semiparametric frameworks where the mean trajectory is not

specified apriori but rather estimated by using smoothing procedures (Fitzmaurice et al., 2011). Nonparametric and semiparametric models are out of
the scope of this article.
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these types of data. We note that the LMEMs, the NLMEMs,

the GLMEMs, and the GNLMEMs have been discussed and

presented elsewhere separately (e.g., Davidian & Giltinan,

1995; Stroup, 2013; Vonesh, 2012; Vonesh et al., 1996; H.

Wu & Zhang, 2006); however, our contribution is unique

in that we integrate different modeling approaches for re-

peated measures data under the GNLMEM scheme. Re-

searchers can significantly benefit from having a general

scheme that reminds them of all the modeling possibilities

for these types of data. Available software packages for dif-

ferent submodels of GNLMEMs are also provided for broad

audience with different preferences.

The organization of this paper is as follows. In Sec-

tion 2 we present the GNLMEM framework, and use it to

derive other mixed-effects models classified by two main

features: (1) the distributional assumptions of the outcome

variable, and (2) the model linearity characterized by the

functional form used to describe temporal change. In Sec-

tion 3 we briefly discuss the estimation capabilities in dif-

ferent software packages. We then present empirical ex-

amples in Section 4 to illustrate the practical utility of view-

ing mixed-effects models as a combination of their fore-

most characteristics using the GNLMEM as an umbrella

approach. And finally we reemphasize the importance of

having a flexible umbrella framework for repeated mea-

sures data in Section 5.

Model
Following Vonesh et al. (1996), Stroup (2013), and Ander-

son, Verkuilen, and Johnson (2013), the GNLMEM can be

expressed as

yi|bi ∼ G(µi,Σi)

g(µi|bi) = ηi
ηi = f(Xi,β, bi)

bi ∼ N(0,Φ)

(1)

where:

• yi is a ni × 1 vector of repeated measures on subject i
(ni is the number of time points for subject i);

• bi is a r × 1 vector of r subject-specific random effects,
which follows a normal distribution with mean 0 and
(co)varianceΦ;

• G(µi,Σi) is a general distribution function with mean
µi and variance-covariance matrixΣi;

• g(µi|bi) is a link function that connects the mean of
the response variable, µi, with the (non)linear predic-
tor, ηi, given the vector of random effects, bi;

• ηi is the (non)linear predictor, which depends on the
subject only through its dimension ni;

• f(Xi,β, bi) is a general ni×1 (non)linear vector func-
tion;

• Xi is a ni×p designmatrix of p independent variables;

• β is a p× 1 vector of fixed effects.
This model represents a comprehensive framework to

analyze correlated data. For instance, the general distribu-

tionG(µi,Σi) could be either normal or non-normal (e.g.,
binomial, gamma, Poisson), which also corresponds to dif-

ferent forms of the link function, g(µi|bi). The functional
form, f(Xi,β, bi), can be either linear or nonlinear (see
definitions of model linearity in a subsequent subsection).

For example, mixed-effects models assuming normality for

both levels of the error structure, which have been stud-

ied extensively, represent a special case of the GNLMEM

framework. In this case G(µi,Σi) is the multivariate nor-
mal density, and g(µi|bi) is the identity link. Due to the
versatility and flexibility of the GNLMEM, it provides a se-

ries of modeling options for repeated measures data from

which researchers can choose according the type of data

at hand and its behavior. Special cases derived fromModel

(1) along with examples of their applications are presented

below categorized by its main features: (1) the distribu-

tional assumption of the response variable, and (2) the

model linearity.

Distributional Assumptions

If the distribution of the outcome variable is a member of

the natural exponential family, a subset of the exponential

family, or similar to the exponential family, then the model

belongs to the generalizedmodeling framework (Anderson

et al., 2013; McCullagh & Nelder, 1989; Neuhaus & McCul-

loch, 2011). The generalized modeling framework encom-

passes a variety of distributional assumptions for the re-

sponse variable. The choice of the distributional assump-

tion depends entirely on the characteristics of the outcome

variable (Anderson et al., 2013; McCullagh & Nelder, 1989),

as it will be described below. In the subsequent sections,

we provide examples of some common distributional as-

sumptions.Normal distribution. When the outcome variable is con-
tinuous and normally distributed, mixed-effects models

as described by Laird and Ware (1982) or Lindstrom and

Bates (1990) can be easily obtained from Model (1). We

can simply replace the general distribution function “G”
inModel (1) by amultivariate normal density function, and

choose the link function “g” to be an identity link, such that
Model (1) takes the form of

yi|bi ∼MVN(µi,Λi)

µi = ηi

ηi = f(Xi,β, bi)

bi ∼MVN(0,Φ)

(2)

Non-normal distributions. There are several non-

normal distributions that could be considered under the
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GNLMEM modeling framework, e.g., gamma, exponential,

binomial, beta, Poisson, geometric, negative binomial. We

will focus on the distribution of the three most common

response variables: dichotomous data, count data, and

nonnegative response data.

Binomial distribution. The binomial distribution applies
to cases where there is a series of trials of indepen-

dent dichotomous observations. In such cases, the con-

ditional distribution of the vector of repeated measures

in Model (1) follows a binomial distribution, i.e., yi|bi ∼
Binomial(ni,πi) where πi is a ni × 1 vector that de-
notes the probability of success of the repeated mea-

sures of subject i. The most common link function is

the logit of the mean, or equivalently, the logit of the

success probability. In Model (1), this is represented by

g(µi) | bi) = logit(πi/(1 − πi)) (Anderson et al., 2013;
Stroup, 2013). There is a body of research using general-

ized models for binary data, also called mixed logit mod-

els. For instance, researchers have used these models

to analyze the accuracy of language production (Middle-

ton, Chen, & Verkuilen, 2015), memory performance (Mu-

rayama, Sakaki, Yan, & Smith, 2014), factors that affect chil-

dren’s language comprehension (Jaeger, 2008), to investi-

gate sources of difficulty in language production and com-

prehension in children and adults (Arnon, 2010), and to

study the effect of different treatments in smoking cessa-

tion over time (Hedeker, 2005). Moreover, one-parameter

or two-parameter item response models (IRT) could be

seen as generalized logisticmixedmodels aswell (Hedeker,

2005).

Poisson distribution. The Poisson distribution is used to
model count data, and it is especially useful to model

events with low probability of occurrence such as the num-

ber of times a student is nominated by his peers as a

bully (Anderson et al., 2013). In this case, the conditional

distribution of the vector of repeated measures in Model

(1) follows a Poisson distribution with parameter µi, i.e.,
yi|bi ∼ Pois(µi), where µi refers to both the mean and
variance of the distribution. The most common link func-

tion is the natural logarithm, g(µi|bi) = log(µi) (Ander-
son et al., 2013; McCullagh & Nelder, 1989; Stroup, 2013).

Count data is nonnegative, and usually unbounded (it can

take any nonnegative value) and positively skewed (Ander-

son et al., 2013; Atkins & Gallop, 2007). Examples of vari-

ables that have been analyzed assuming a Poisson distri-

bution are marital commitment measured as the number

of steps taken towards divorce (Atkins & Gallop, 2007); or

school violence measured as the number of bullying inci-

dents or fights a studentmay experience in a period of time

(Huang & Cornell, 2012). Bolger and Patterson (2001) in-

vestigated social rejection by peers (measured by years of

rejection) as a function of maltreatment, aggression, and

withdrawal. Despite these examples and the fact that count

data are highly present in social and behavioral sciences,

there is a lack of knowledge and understanding of the use

of Poisson models in psychology (Vives et al., 2006).

Gamma distribution. The gamma distribution is helpful
to model skewed, continuous non-negative data where the

variance is an increasing function of the mean (Anderson

et al., 2013; McCullagh & Nelder, 1989). In this case, the

conditional distribution of the outcome variable given the

random effects in Model (1) will follow a gamma distri-

bution, yi|bi ∼ Gamma(µi, θ), where µiis the mean re-
sponse vector of subject i and θ is the dispersion parameter
from an exponential family parameterization, which for

the gamma distribution equals the reciprocal of the shape

parameter (Anderson et al., 2013; McCullagh & Nelder,

1989). There are two common link functions for the

gamma distribution, the inverse link, g(µi|bi) = 1/µi,
and the natural logarithm,g(µi|bi) = log(µi). The use
of the inverse link suggests an additive model, while the

natural logarithm link advocates for a multiplicative one.

The choice of the link function depends on the nature of

the outcome variable, theoretical considerations, or model

fit (Anderson et al., 2013; Stroup, 2013). There are several

examples in behavioral sciences that might be analyzed as-

suming a gamma distribution. For instance, reaction time

in cognitive or neuropsychological tests usually follows a

non-negatively skewed distribution and thus it is suitable

for this model.

Model Linearity

The main purpose of repeated measures data analysis is

to accurately capture the pattern of change in the phe-

nomenon of interest (Fitzmaurice et al., 2011). The data

structuremay either follow linear (straight-line), nonlinear

(e.g. quadratic or cubic), or intrinsically nonlinear patterns

of change (e.g., exponential or piecewise). Thus the model

can be broadly categorized as linear or intrinsically non-

linear in parameters (see definitions below). The choice

between linear and nonlinear patterns of change over time

can be either based on the physical characteristics of the

phenomenon or on an empirical approach (Cudeck & Har-

ring, 2007; Davidian & Giltinan, 1995). The choice of the

functional form will be reflected in the term f(Xi,β, bi)
in Model (1), and this will determine the model linearity.

Linearmodel. Following the definition of Bates andWatts
(1988), a linear model is one for which the first-order

derivatives of f(Xi,β, bi) “with respect to any of the pa-
rameters are independent of all the parameters” (Bates &

Watts, 1988, p. 2). Hence, some nonlinear relationships

still can be modeled under the linear model framework.

For instance, quadratic, cubic or higher-order polynomi-

als functional forms are examples of models that are still
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Table 1 Schematic representation of models for repeated measures data as a combination of distributional assumption

and model linearity

Model Distributional Assumption

Linearity Normal Non-normal

Linear LMEM GLMEM

Nonlinear NLMEM GNLMEM

Note. LMEM = linear mixed-effects model; NLMEM = nonlinear mixed-effects model; GLMEM = generalized linear
mixed-effects model; GNLMEM = generalized nonlinear mixed-effects model.

linear in parameters but that allow to describe curvilinear

relationships (Locascio & Atri, 2011).

When a steady pattern of change does not seem plau-

sible, there is also the option of transforming the raw data

and fit a linear model. Data transformation could be the

result of several scenarios; for example, to fulfill statistical

model assumptions, to make the data easier to visualize,

or to have more interpretable results. For instance, time

logarithmic transformations are widely used in social sci-

ences (e.g., Shin, Davison, Long, Chan, & Heistad, 2013; Van

Breukelen, 2005). Likewise, polynomial or fractional poly-

nomial transformations can be used to model nonlinearity

under a linear framework (Long & Ryoo, 2010). However,

depending on the transformation used, this might help

or actually complicate parameter interpretation (Long &

Ryoo, 2010), or additional steps are involved to transform

back the estimates to the original scale.

Nonlinear model. Contrary to the linear model, in the in-
trinsically nonlinear model “at least one of the derivatives

of the expectation function with respect to the parameters

depends on at least one of the parameters” (Bates & Watts,

1988, p. 32). Some examples of inherent nonlinearity

are the exponential function, logistic function, and piece-

wise function. Nonlinear models are usually related to

unsteady change over time, asymptotic behaviors, abrupt

increments or decrements, and mostly to the necessity of

having estimated parameters easy to interpret in the con-

text of a phenomenon under investigation (Cudeck & Har-

ring, 2007; Davidian & Giltinan, 1995). Examples where re-

searchers have used nonlinear models are language devel-

opment in children (e.g., Cudeck & Harring, 2007), mathe-

matics achievement over time (e.g., Kohli, Sullivan, Sadeh,

& Zopluoglu, 2015), responses to treatment intervention

(e.g., Cudeck &Harring, 2007; Kreisman, 2003), and skill ac-

quisition such as reading or verbal learning (e.g., Cudeck,

1996; Cudeck & Harring, 2007; Silverman, Speece, Harring,

& Ritchey, 2013).

Interim Summary

Summarizing, distributional assumptions and model lin-

earity are the two principal characteristics that determine

the statistical model to describe repeated measures data.

Model choice, enclosing probability distribution and func-

tional form, is contingent on the characteristics and be-

havior of the data. The general framework of GNLMEMs

serves as an umbrella to encompass several modeling al-

ternatives. The LMEM, for instance, is derived from Model

(1) when normality is assumed and a linear model is pro-

posed. The NLMEM represents the combination of nor-

mal distribution of the outcome variable and an intrin-

sically nonlinear functional form to describe trajectories.

The GLMEM relaxes the normality assumption while still

modeling a linear change over time; and the GNLMEM de-

scribes non-normal data and nonlinear change over time.

Table 1 presents these combinations in a schematic man-

ner.

Estimation Capabilities of Different Software Packages
Parameter estimation is non-trivial for repeated measures

data models, especially for NLMEMs and GNLMEMs. The

main estimation challenge arises as a consequence of no

closed form solution to the marginal likelihood function.

Several estimation methods have been proposed to over-

come this numerical challenge. In this section we briefly

discuss the most common methods and mention their

availability in statistical packages. Estimation methods for

LMEMs are well documented elsewhere (e.g., Bates & De-

bRoy, 2004; Fitzmaurice et al., 2011; Laird & Ware, 1982).

As such, they will not be the focus of the discussion in this

section.

Directmaximization techniques arewidely used to esti-

matemodels of the GNLMEM class. In this approach, an ap-

proximation of the marginal likelihood function is directly

maximized. Gauss-Hermite (GH) quadrature and adaptive

Gaussian (AGH) quadrature are two methods broadly used

for this purpose (Davidian & Giltinan, 2003; Tuerlinckx, Ri-

jmen, Verbeke, & De Boeck, 2006). These methods approx-

imate the integral deterministically by a weighted average

of the integrand evaluated at a certain number of quadra-

ture points; such points could be fixed in advance (GH) or

determined adaptively at each iteration cycle (AGH). An-

other type of approximation to the likelihood is the Monte

Carlo (MC) integration. In this approach, the numerical ap-

proximation is stochastic and it is done by simulating a set
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Table 2 Estimation methods and algorithms for repeated measures data models available in commercial software rou-

tines

Estimation method Statistical model for repeated measures data

and algorithm LMEM NLMEM GLMEM GNLMEM

Maximum likelihood or restricted maximum likelihood
GH SAS-NLMIXED SAS-NLMIXED SAS-GLIMMIX SAS-NLMIXED

SAS-NLMIXED

AGH SAS-NLMIXED SAS-NLMIXED SAS-NLMIXED SAS-NLMIXED

HLM7 R (lme4) nlmer R (lme4) glmer

Stata-gllamm Stata-gllamm R (glmmML) glmmML

HLM7

Stata-gllamm

FIRO SAS-NLMIXED SAS-NLMIXED SAS-NLMIXED SAS-NLMIXED

NR R (lme4) nlme

Laplace SAS-NLMIXED SAS-NLMIXED SAS-GLIMMIX SAS-NLMIXED

HLM7 R (lme4) nlmer SAS-NLMIXED

R (lme4) glmer

R (glmmML) glmmML

HLM7

PQL HLM7 SAS-GLIMMIX

R (MASS) glmmPQL

HLM7

MQL SAS-GLIMMIX

PL SAS-GLIMMIX

REPL SAS-GLIMMIX

PLS R (lme4) lmer

Bayesian estimation
MC R (glmm) glmm

MCMC JAGS JAGS JAGS JAGS

Note. LMEM = linear mixed-effects model; NLMEM = nonlinear mixed-effects model; GLMEM = generalized linear
mixed-effects model; GNLMEM = generalized nonlinear mixed-effects model. GH = Gauss-Hermite quadrature, AGH =

adaptive Gaussian quadrature, FIRO = first-order approximation, NR = Newton-Raphson, Laplace = Laplace approxi-

mation, PQL = penalized quasi-likelihood, MQL = marginal quasi-likelihood, PL = pseudo-likelihood, REPL = restricted

pseudo-likelihood, PLS = penalized least squares, MC = Monte Carlo integration. R packages to which the functions

correspond are in parenthesis.

of values from certain distributions (usually certain priors

or density functions) and then approximating themarginal

likelihood by a simple average (Tuerlinckx et al., 2006).

These techniques (GH, AGH, and MC) are often referred

as direct maximization of the “exact” likelihood function,

since the maximization process is implemented on the nu-

merical approximation of the likelihood. Additionally, the

accuracy of the approximation doesn’t depend on the num-

ber of observations by subject, as it is the case for some

of the techniques described below (Davidian & Giltinan,

2003).

Another popular method for an analytical approxima-

tion to the likelihood function is called first-order approx-

imation method (FIRO). FIRO approximates the model of

the outcome variable as a Taylor series expansion with re-

spect to the random effects evaluated at zero. Assuming

this linear approximation is true, the estimation is per-

formed using available methods for LMEMs (Davidian &

Giltinan, 2003; Littell, Milliken, Stroup, Wolfinger, & Sch-

abenberger, 2006; SAS Institute Inc., 2008). Another al-

ternative is the Laplace approximation, which avoids in-

tractable integration by manipulating the integrand of the

likelihood function using a second order Taylor series ex-

pansion (Raudenbush, Yang, & Yosef, 2000). Notice that

the focus of the direct maximization techniquesmentioned

in the previous paragraph is to approximate the integral,

whereas FIRO approximates themodel and Laplacemanip-

ulates the integrand of the likelihood function.
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Quasi-likelihood approaches emerged as an estimation

alternative when sufficient statistics of the data, such as

the mean and the variance, are used to construct a func-

tion similar to the likelihood but that does not use the

exact distributional specification and performs as well or

nearly as well as the likelihood function (Neuhaus & Mc-

Culloch, 2011; Tuerlinckx et al., 2006). The quasi-likelihood

approaches below differ in their way of approximating

the likelihood function. For instance, Breslow and Clay-

ton (1993) recommended the use of two estimation tech-

niques for GLMEMs, penalized quasi-likelihood (PQL) and

marginal quasi-likelihood (MQL). Both techniques use a

Laplace approximation of the likelihood function. How-

ever, while the PQL uses a linear expansion about the cur-

rent estimate of the fixed effects and about the posterior

mode of the random effects; the MQL uses a quadratic

expansion about the current estimate of the fixed ef-

fects and about the random effects equal to zero (Tuer-

linckx et al., 2006). Separately, Wolfinger and O’Connell

(1993) introduced a similar methodology that they called

pseudo-likelihood (PL), and when the PL estimation is per-

formed using restricted maximum likelihood (REML), it is

called restricted pseudo-likelihood (REPL). The main dif-

ference between the techniques of Breslow and Clayton

and Wolfinger and O’Connell is how they handle the esti-

mation of the dispersion parameter of the exponential fam-

ily of distributions (Littell et al., 2006).

For a thorough discussion of estimation methods for

these models we refer readers to Fitzmaurice et al. (2011),

Bates and DebRoy (2004), Davidian and Giltinan (1995,

2003), Tuerlinckx et al. (2006) and L. Wu (2010). Sev-

eral statistical packages have implemented different es-

timation methods and algorithms for repeated measures

data models. Table 2 shows some of the available rou-

tines in different statistical software. To estimate GLMEMs,

the GLIMMIX SAS procedure implements PL, REPL, PQL,
and MQL techniques (Littell et al., 2006), and the gllamm
routine in Stata uses the AGH algorithm (Rabe-Hesketh,

Skrondal, & Pickles, 2002). The HLM7 statistical pack-

age offers PQL, Laplace and AGH algorithms to fit LMEMs

and GLMEMs (Raudenbush, Bryk, Cheong, Congdon, & de

Toit, 2011). Additionally, the glmmPQL R function in the
MASS package also offers PQL estimation for GLMEMs, the
glmer and glmmML R functions in the lme4 and glmmML
packages, respectively, offer Laplace and AGH quadra-

ture algorithms. The R functions nlmer (in the lme4
package) and nlme (in the nlme package) offer Laplace,
AGH, and Newton-Raphson algorithms for the estimation

of NLMEMs, and the function lmer in the lme4 pack-
age estimates LMEMs following penalized least squares

principles. The SAS procedure NLMIXED implements GH,
AGH, FIRO, and Laplace estimation techniques to estimate

GNLMEMs (SAS Institute Inc., 2008). In terms of Bayesian

estimation, the glmm function in the glmm R package im-
plements MC integration to estimate GLMEMs, and the pro-

gram JAGS uses Markov Chain Monte Carlo (MCMC) simu-

lation where any type of GNLMEMs could be estimated. As

summary, the two programs that could potentially cover all

models within the GNLMEM framework are SAS and JAGS.

Empirical Examples
To illustrate the practicality of choosing a statistical model

to describe repeatedmeasures data based on distributional

assumptions andmodel linearity under the GNLMEM spec-

ification in Model (1), we will present two empirical ex-

amples: (1) behavioral data from a spatial attention ex-

periment (Jiang & Swallow, 2013), and (2) educational data

from the ECLS-K. We first introduce the data and descrip-

tive statistics of the variable of interest, then we choose a

model. Two software programs were used to fit the mod-

els discussed in this section, R and SAS. The SAS procedure

NLMIXED was used in both empirical examples, whereas

the function glmer from lme4 R package was used for the
first example, and JAGS through R was used for the second

example. The commented SAS and R code is provided in

the Appendix. In what follows, we discuss the estimation

results of the SAS procedure NLMIXED because of its flexi-
bility to accommodate a variety of modeling requirements

(SAS Institute Inc., 2008) such as the examples in this Sec-

tion.

Analysis of the Spatial Attention Experiment

The data used for this illustration was collected by Jiang

and Swallow (2013). The aim of the original study was to

explore spatial attention under different viewer-centered

and environmental-centered conditions (Jiang & Swallow,

2013). All participants were students between 18 and 35

years old with normal or corrected-to-normal acuity of vi-

sion. They passed a color blindness test, were tested indi-

vidually, and unaware of the purpose of the experiment.

Participants had to identify a T target among 11 L dis-

tractors presented on a computer monitor by using an op-

tical wireless mouse. Their search response time and the

color of the T target were recorded. During the training

phase, the T target was more often located in one of the

quadrants (50% of the time). However, during the testing

phase, the T target was randomly displayed over the quad-

rants. Additionally, participants experienced changes in

body and/or head orientation during the testing phase to

dissociate viewer-centered from environmental-centered

reference frames. Participants completed 384 trials of

training and 192 trials of testing. For the purposes of this

exemplification, data from the training phase were used

since the experiment conditions were more alike (Jiang &
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Figure 1 Density plots of RT for five selected blocks for the spatial attention experiment.

Swallow, 2013) and such phase provided more data, which

aids model estimation.

Outcome variable. The search response time (RT) data
consisted of 32 blocks of 12 trials each per participant. The

dependent variable for this illustration is the mean time to

respond for each of the 32 blocks. There are 77 participants

in total with 32 RT means for each of them.

Descriptive statistics. Table 3 presents descriptive infor-
mation about the mean RT along the 32 blocks. There is

a decreasing RT trend from Block 1 to Block 32 (mean RT

of Block 1 =3014 ms, and mean RT of Block 32 = 2190 ms).

Likewise, the standard deviation reduces along the blocks

(SDBlock1 = 627.62, SDBlock32 = 406.30, the standard
deviation was computed over the 77 RT means at each

block). Figure 1 presents density plots for five selected

blocks (1, 8, 16, 24, and 32). The distribution of RT by block

is positively skewed and it takes positive values only, so sta-

tistical analyses are required that take these characteristics

of the data into account.

Figure 2 shows 35 individual trajectories randomly se-

lected, and the mean trajectory is added at the top of

them. As manifest in many learning experiments, RT ex-

hibits a decline over repeated measures. It is evident that

the search RT steadily decreases over blocks in this spa-

tial attention experiment. It is clear that there is individ-

ual variation around the average intercept, but it is debat-

able, though, whether there are also individual differences

around the slope.

Choosing a model. Given the descriptive statistics above,
the variable under study is continuous, non-negative and

positively skewed; and it presents a steady decreasing tra-

jectory. Note that we show a traditional approach to un-

derstand the distribution of the data. However, there are

other statistical tools that interested readers could find use-

ful such as the fitdist function in the fitdistrplus
R package (Delignette-Muller & Dutang, 2015). The evident

non-normality of the spatial attention data will be taken

into account by assuming a gamma model, which seems

plausible for this example for two reasons: (1) the variance

of RT seems to decrease as mean RT decreases, signaling a

potential relationship between themean and variance, and

(2) RT is a continuous non-negative variable (Anderson et

al., 2013). Initial exploratory analyses allowed us to con-

clude that a linear trajectory was satisfactory to capture

the trend in data. That is, using descriptive statistics and

the nature of the variable of interest, we propose a linear

model assuming non-normality to analyze the RT outcome

variable. Such model falls under the category of GLMEMs

in the characterization presented in Table 1. Moreover, fol-

lowing the general GNLMEM framework in Model (1), the

gamma linear mixed-effects model can be written as:

yi|bi ∼ Gamma(µi, θ)

log(µi) = ηi

ηi =Xiβ +Zibi

bi ∼ N(0,Φ)

(3)

where yi is a 32 × 1 vector of the search RTs on subject i,
Xi is a 32× 2 design matrix, β = (β0, β1)

′
is the vector of

fixed effects, bi is a 2×1vector of random effects associated
to the intercept and slope, Zi is a 32 × 2 design matrix as-
sociated to bi, ηi is the linear predictor, g(µi|bi) = log(µi)
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Figure 2 Individual RT trajectories and observed mean of 35 randomly selected participants for the spatial attention

experiment.

represents the natural logarithm link function, and θ rep-
resents the dispersion parameter. Mixed models incorpo-

rating a random effect for the intercept only (see Model 1

in Table 4) and considering random effects for both inter-

cept and slope (see Model 2 in Table 4) were analyzed.

Results. Estimation results of this model are shown in Ta-
ble 4. Figure 3 shows that the estimated mean trajectory

closely resembles the observedmean trajectory in the data.

Relying on the BIC fit statistics to compare covariancemod-

els (since themean trajectorywas the same), the variability

in data could be adequately captured by the random inter-

cept and slope model. Thus, only results from the model

with random intercept and slope (Model 2 in Table 4) will

be discussed next. However, notice that the variance of the

random slope and the covariance between the random in-

tercept and random slope were smaller than 1e-4, so they

will be omitted in the discussion. For completeness pur-

poses both model estimation results are presented in Table

4.

The parameter estimate of β0 represents the average
(model-scale) search RT (β̂0 = 7.92, p < 0.001), and of β1
the average linear rate of change in ms per block (β̂1 =
−0.008, p < 0.001). Notice that these estimates can be
translated into the data-scale. For example, the intercept

is given by eβ̂0+β̂1 = 2718.76, and the factor of change is

eβ̂1 = 0.99, which means that the mean trajectory is actu-
ally decreasing 0.99 ms per block. The estimate of ϕ11 de-

notes the random variation around the intercept due to in-

dividual differences (ϕ̂11=0.03). Summarizing, on average,

the search RT steadily decreases without much variability

around the rate of change. Differences between individu-

als are present around the starting RT.

Analysis of ECLS-K Data

The Early Childhood Longitudinal Study – Kindergarten

Class of 1998-1999 (ECLS-K) is a nationally representative

longitudinal study of U.S. students that started kinder-

garten in the 1998-1999 academic year. Students were fol-

lowed over a period of nine years and data were collected

at seven occasions: fall and spring of kindergarten and

first grade, and spring of third, fifth, and eighth grades

(time was coded accordingly as 0, 0.5, 1, 1.5, 3.5, 5.5, and

8.5, respectively). Information was collected from kinder-

gartners, parents, schools and teachers across the U.S.

The ECLS-K was designed to provide information about

kids early school experiences and development during el-

ementary and middle school, as well as their relationship

with other factors at the individual or community levels

(Tourangeau et al., 2009). The analytic sample for this

illustration consists of a random sample of 400 subjects

selected from students whose mathematics achievement

scores were complete (N = 2, 300).

Outcome Variable. The dependent variable in this exam-
ple is mathematics IRT (item response theory) scores. IRT

scoring was used to generate comparable scores across

grades with the purpose of capturing growth over time

(Tourangeau et al., 2009).
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Figure 3 Observed and estimated mean trajectories for the gamma mixed-effects model for the spatial attention experi-

ment.

Descriptive statistics. Table 5 presents descriptive statis-
tics for the math IRT scores at each grade. There is an in-

creasing overall mean and dispersion in the data, and skew

and kurtosis values are under normality assumptions. The

pattern of change over time is illustrated in Figure 4, which

shows 35 individual trajectories chosen at random along

with their observed mean. The variable under examina-

tion presents an increasing trend across time. However,

two distinct growth phases can be observed. At earlier

stages the increment in math achievement is greater than

later in time. Thus, a linear trajectory does not seem plau-

sible. In addition, it is clear that there is individual varia-

tion along the math achievement trajectory. Thus, model-

ing techniques need to consider these characteristics in the

data.

Choosing a model. It seems plausible to assume a normal
distribution in this example, but a linear trend seems un-

likely. The data features segmented trajectories. A suit-

able option for these types of data is the piecewise mixed-

effects model, which allows for different phases of growth

or trajectories over time to be modeled. An important el-

ement of this type of models is the knot or change point,

which characterizes the time point at which the trajectory

changes from one phase to another (Kohli, Hughes, Wang,

Zopluoglu, & Davison, 2015). Following Bates and Watts

(1988), nonlinearity definition, this model is an example of

nonlinear models. The flexibility of piecewise models al-

lows different functional forms to describe each stage or

phase of change. For the purposes or this illustration and

based on the observed mean growth in Figure 4, we de-

cided to model a linear-linear trajectory with random ef-

fects for all model parameters. In summary, based in de-

scriptive statistics and the nature of the outcome variable,

we propose a nonlinear model assuming normality to ana-

lyze the mathematics IRT scores. This modeling combina-

tion results in a NLMEM, as characterized in Table 1. In

addition, following the general GNLMEM modeling frame-

work described in Model (1), the piecewise mixed-effects

model can be specified as.

yi|bi ∼ N(µi,Λi)

µi = ηi

ηi = f(Xi,β, bi)

bi ∼ N(0,Φ)

(4)

where f is a nonlinear functional form described by

fij =

{
β1i + β2i tij tij ≤ γi
β1i + β2i γi + β3i (tij−γi) tij > γi

(5)

for individual i at the jth time point (Kohli, Sullivan, et
al., 2015). In equations (4) and (5), yi is a 7 × 1 vector of
math IRT scores for subject iXi, is a 7 × 4 design matrix,
β = (β1, β2, β3, γ)

′
is the vector of fixed effects, where β1

represents the average intercept, β2 the average slope be-
fore the change point, β3 the average slope after the change
point, and γ the average knot or change point. bi is a 4× 1
vector of random effects associated to the intercept, two

slopes, and the knot. Zi is a 7× 4 design matrix associated
to bi, ηi is the linear predictor, g(µi|bi) = µi represents
the identity link, and it is assumedΛi = σ2I .
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Figure 4 Individual math IRT score trajectories and observed mean of 35 randomly selected participants for the ECLS-K

data.

Results. The estimation results of Model (4) are presented
in Table 6. Figure 5 illustrates the observed and esti-

mated mean trajectories over time. The findings suggest

that mathematics achievement evolves in different phases

over time. The mean initial mathematics achievement was

of 27.31 points. The initial slope was of 22.86 mathemat-

ics IRT scores per academic year, and the second slope of

5.72. That is, the findings showed a faster increase during

the first stage of the trajectory followed by a slow down

during the second phase of growth. Moreover, there was

significant individual variability around the mean trajec-

tory in all model parameters. Variance parameters as-

sociated to intercept, first and second slopes were 57.19,

37.91, and 5.11, suggesting that there were more individ-

ual differences from kindergarten to fourth grade. After

the change point, individual differences around the second

slope were smaller. The change point was located around

fourth grade. This means that the mathematics develop-

mental trajectory switched at that point. Likewise, individ-

ual differences were found around the mean change point

as suggested by a variance of 0.81.

In summary, we have presented two illustrative ex-

amples on choosing a statistical model based on different

combinations of data-type and data-behavior to analyze

repeated measures data. In addition, model representa-

tions can be derived from the same general specification of

mixed-effects models considering the most flexible frame-

work, GNLMEMs.

Discussion
The aim of this article was to present a comprehensive sta-

tistical framework for describing different statistical mod-

els for a variety of repeated measures data. Distributional

assumption and model linearity encompass the principal

characteristics of modeling alternatives. We argue that

characterizingmodels for repeatedmeasures data by these

two main features adds clarity and simplicity to the dis-

cussion of mixed-effects models. In addition, the class of

GNLMEMs as defined in Model (1) represents a general

scheme from which a variety of specific models can be de-

rived (e.g., Table 1). The particular choice of the model de-

pends on the characteristics of the data at hand. For ex-

ample, if the response variable is categorical, then model-

ing the phenomenon of interest as a binomial or multino-

mial stochastic process would be appropriate. One exam-

ple is when investigating memory performance by means

of whether subjects recall items or not (e.g., Murayama et

al., 2014). If we have a count outcome variable, assuming

a Poisson model would be suitable. The analysis of abnor-

mal behavior such as conduct disorder, depression or anx-

iety measured by the number of symptoms subjects expe-

rienced over a period of time (e.g., Lahey, Loeber, Burke,

Rathouz, & McBurnett, 2002) requires the statistical model

to consider the nature of the outcome variable, for which

the Poisson distribution would be the most appropriate.

Moreover, the behavior exhibited by the data also plays an

important role in the modeling strategy choice. Sometimes

linearity in parameters between the outcome variable and
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Figure 5 Observed and estimated mean trajectories for the piecewise mixed-effects model for the ECLS-K data.

the covariate(s) will be sufficient to summarize the data,

others may require a nonlinear model. For instance, learn-

ing experiments will often display a nonlinear trajectory to

model reading speed or language development (e.g., Cud-

eck & Harring, 2007).

Broadly speaking, in the context of repeated measures

modeling, researchers’ main focus is to describe the behav-

ior displayed by the data to the best of their knowledge.

We advocate that considering modeling alternatives as a

combination of two main components (distributional as-

sumption and model linearity) will enable researchers to

expand the scope of their modeling choices. We illustrated

this by showing how different models for distinct data-type

and data-behavior combinations can be derived from the

GNLMEM to summarize change over time. However, it

is still a researcher’s task to get to know and explore the

data at hand in order to choose themost appropriatemodel

specification.

Despite the fact that the generalized framework for

mixed-effects models has been discussed for over a cou-

ple of decades in the literature, still more dissemination is

needed (Stroup, 2013). This is especially the case for mod-

els with distributional assumptions other than the nor-

mal and binomial. For instance, a wide lack of under-

standing of the Poisson model has been documented in

applied psychological research (Vives et al., 2006). This

reinforces the need of a broader exposure of generalized

mixed-effects models, since both researchers and practi-

tioners will greatly benefit from a wider insight of the

range of options to model non-normal data. In addition,

describing non-steady rate of change through nonlinear-

ity in parameters as defined by Bates and Watts (1988) has

been discussed separately in the literature. But nonlin-

ear change over time is found frequently in social and be-

havioral sciences. We therefore believe that researchers

should be aware of the available modeling options above

and beyond normal and binomial models, as well as all the

possible combinations of the underlying stochastic process

and the form of the trajectory over time.

Estimating amixed-effects model is not an easy task. Is-

sues regarding sample size, functional form, distributional

assumption, or starting values, for example, may impact

the estimation results or even convergence. Discussions

of relevant estimation issues are given by Davidian and

Giltinan (1995, 2003), Vonesh and Chinchilli (1997), L. Wu

(2010), and Stroup (2013), for example. Additionally, the

definition of the GNLMEM provided in this article consid-

ers the random effects to be normally distributed. In the-

ory, other distributional assumptions could be considered

and some efforts have been done to estimate mixed-effects

models with non-normal random effects (e.g., Liu & Yu,

2008; Nelson et al., 2006). However, this option is still not

readily available in statistical software.

Summarizing, separate efforts to model repeated mea-

sures data have resulted in distinct statistical modeling

approaches whose differences lie mainly in distributional

assumptions and model linearity. In addition, those ap-

proaches can be derived from the flexible GNLMEM um-

brella framework. We argue that learning about the gen-

eral GNLMEM scheme and viewing modeling alternatives

as a combination of two main characteristics will provide

researchers with a broader collection of statistical mod-
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els to choose from. Because the generalized framework of

mixed-effects models still remains underutilized, we hope

this exposition will exhort researchers to make greater use

of diverse modeling techniques when appropriate based

on the nature of the data.
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Appendix
SAS code for the gamma linear mixed-effects model

*Define data name and convergence options;
PROC NLMIXED DATA=data_long MAXITER=10000 NOAD QPOINTS=20 GCONV=0;
TITLE "Gamma model: Random intercept & slope";
*Individual generalized linear models with a gamma distribution were fitted
*Mean of individual parameter estimates were taken as initial values;
PARMS Beta0=7.91 Beta1=-0.008 k=65.15 phi11=0.03 phi22=0.000016 phi21=0.00028;
*Define individual parameters;
B0i = Beta0 + b0;
B1i = Beta1 + b1;
*Define the linear predictor - block denotes the independent variable;
lin_pred = B0i + B1i*block;
*The natural logarithm is being used as the link function given the gamma parameterization

of NLMIXED;
mu = exp(lin_pred);
*theta denotes the scale parameter;
*k denotes the shape parameter;
theta = mu/k;
*Define the gamma model;
MODEL MRT ~ gamma(k,theta);
*Define boundaries for parameters that should be non-negative;
BOUNDS k phi11 phi22 >= 0;
*Vector of random effects follows a normal distribution;
RANDOM b0 b1 ~ normal([0,0],[phi11,phi21,phi22]) subject=id;
RUN;

SAS code for the piecewise mixed-effects model

*Define data name and convergence options;
PROC NLMIXED DATA=data_long MAXITER=5000 NOAD QPOINTS=20 GCONV=0;
TITLE "Piecewise model: Random knot, intercept & slope";
* Initial values;
PARMS Beta1=26.51 Beta2=25.72 Beta3=5.97 Gamma=3.56

s2e=52.78 t11=9.8 t21=1.48 t22=7.26 t31=-0.92 t32=0.08 t33=3.56
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t41=0.08 t42=-0.55 t43=-0.61 t44=0.75;
*Define individual parameters;
B1i = Beta1 + b1;
B2i = Beta2 + b2;
B3i = Beta3 + b3;
*Gammai denotes the random knot;
Gammai = Gamma + b4;
*Define the piecewise mean trajectory;
mu = B1i + B2i*time;
IF (time > Gammai) THEN DO;

mu = B1i + B2i*Gammai + B3i*(time - Gammai);
END;
*Outcome variable follows a normal distribution centered on mean trajectory with variance

s2e;
MODEL math_score ~ normal(mu,s2e);
*Cholesky decomposition of the covariance matrix of random effects;
phi11 = t11*t11;
phi21 = t21*t11;
phi22 = t21*t21 + t22*t22;
phi31 = t31*t11;
phi32 = t31*t21 + t32*t22;
phi33 = t31*t31 + t32*t32 + t33*t33;
phi41 = t41*t11;
phi42 = t41*t21 + t42*t22;
phi43 = t41*t31 + t42*t32 + t43*t33;
phi44 = t41*t41 + t42*t42 + t43*t43 + t44*t44;
* Vector of random effects follows a normal distribution;
RANDOM b1 b2 b3 b4 ~ normal([0,0,0,0],[phi11,phi21,phi22, phi31, phi32, phi33, phi41, phi42,

phi43, phi44]) subject=id;
*Recover parameters of the covariance matrix of random effects;
ESTIMATE ’phi11’ t11*t11;
ESTIMATE ’phi21’ t21*t11;
ESTIMATE ’phi22’ t21*t21 + t22*t22;
ESTIMATE ’phi31’ t31*t11;
ESTIMATE ’phi32’ t31*t21 + t32*t22;
ESTIMATE ’phi33’ t31*t31 + t32*t32 + t33*t33;
ESTIMATE ’phi41’ t41*t11;
ESTIMATE ’phi42’ t41*t21 + t42*t22;
ESTIMATE ’phi43’ t41*t31 + t42*t32 + t43*t33;
ESTIMATE ’phi44’ t41*t41 + t42*t42 + t43*t43 + t44*t44;
RUN;

R code for the gamma linear mixed-effects model using glmer function in the lme4 package

# Declare initial values as a list
fixef <- c(7.91, -0.008)
theta <- c(0.03, 0.0028, 0.000016)
ini_val <- list("fixef" = fixef,

"theta" = theta)
# Use the glmer function to define the random−effects model
# following a gamma distribution with the logarithmic link function
gamma_model <- glmer(MRT ~ 1 + block + (1 + block | id),

data=data_long,
family = Gamma(link = "log"),
start = ini_val)
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R code for the piecewise mixed-effects model using JAGS

# Define function to pass to JAGS for model estimation
# X is the design matrix
# Y is the outcome variable in wide format
Bayes_PW_LL <- function(X, Y){
# Bayesian model definition
pw_ll_rjags <- "model{
for (i in 1:Nind) {
for (j in 1:Ntime) {

y[i,j] ~ dnorm(mu_y[i,j], prec_y)
mu_y[i,j] <- b.ind[i, 1] + b.ind[i, 2] * (min(x[i,j], b.ind[i, 4])) + b.ind[i,
3] * (max(0, x[i,j]- b.ind[i, 4]))

}
}
### Priors
# Level 1 precision
prec_y ~ dgamma(0.001, 0.001)
# MVN priors for random-effects of the betas
for (i in 1:Nind){
b.ind[i, 1:4] ~ dmnorm(mu_b[1:4], tau_b[1:4,1:4])

}
# Prior for the fixed-effects
# minT and maxT are the minimum and maximum time points
# minCP and maxCP are the minimum and maximum values in time where the
# change-point could occur. That is minCP is the second to the first time
# point, and maxCP is the second to the last time point.
mu_b[1] ~ dnorm(0, 0.001)
mu_b[2] ~ dnorm(0, 0.001)
mu_b[3] ~ dnorm(0, 0.001)
mu_b[4] ~ dnorm(g,tau_g)T(minT,maxT)
g ~ dunif(minCP, maxCP) # change-point
sigma_g ~ dunif(0, (maxT-minT)/4) # standard deviation of change-point
tau_g <- 1/(sigma_g * sigma_g)
# Prior for the var-cov of the random-effects
# The variance has an inverse Wishart prior
tau_b[1:4,1:4] ~ dwish(Omega[1:4,1:4], 5)

}
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Table 3 Descriptive statistics for mean response time (N = 77) for the spatial attention experiment

Descriptive Statistic

Block Mean S.D. Min. Max. Range Skew Kurtosis

1 3013.63 627.62 1993.08 4699.17 2706.08 0.51 −0.46
2 2798.07 605.35 1707.17 4908.33 3201.17 0.72 0.68
3 2786.10 736.39 1708.33 5879.17 4170.83 1.36 2.73
4 2673.69 541.56 1700.83 4134.17 2433.33 0.52 −0.23
5 2644.23 568.04 1623.33 4104.17 2480.83 0.67 −0.18
6 2602.22 536.89 1652.67 3990.83 2338.17 0.49 −0.31
7 2636.05 558.15 1578.92 4230.00 2651.08 0.30 −0.34
8 2444.89 629.35 1453.50 4727.50 3274.00 1.26 1.66
9 2526.58 533.71 1529.92 3675.00 2145.08 0.31 −0.85
10 2537.34 620.60 1277.50 4456.67 3179.17 0.63 0.30
11 2443.67 456.17 1562.50 3618.33 2055.83 0.64 −0.06
12 2502.81 617.12 1437.75 4389.17 2951.42 0.98 0.55
13 2449.08 541.23 1582.50 4200.00 2617.50 0.85 0.44
14 2438.47 478.27 1626.67 3506.67 1880.00 0.31 −1.04
15 2477.25 556.14 1628.50 3968.33 2339.83 0.65 −0.14
16 2358.32 538.11 1303.00 4207.42 2904.42 0.76 0.63
17 2359.28 555.86 1571.75 4395.00 2823.25 1.17 1.58
18 2339.54 498.69 1454.42 4101.67 2647.25 0.99 1.29
19 2324.25 455.00 1425.00 3704.17 2279.17 0.40 −0.32
20 2288.61 459.69 1576.67 3650.00 2073.33 0.82 0.62
21 2365.29 485.12 1466.67 4455.00 2988.33 1.13 2.72
22 2257.43 394.71 1620.83 3163.33 1542.50 0.47 −0.74
23 2289.84 515.85 1498.33 4461.67 2963.33 1.60 3.53
24 2269.92 475.30 1304.42 3941.67 2637.25 0.65 0.79
25 2244.83 480.89 1391.08 3790.83 2399.75 0.76 0.19
26 2262.13 585.81 770.83 4624.17 3853.33 1.12 3.00
27 2194.36 466.42 979.50 3874.17 2894.67 0.72 1.62
28 2233.47 540.85 1158.17 3907.50 2749.33 1.06 1.26
29 2204.87 459.06 1478.33 3729.17 2250.83 0.79 0.59
30 2164.81 493.68 1128.50 3515.00 2386.50 0.66 0.18
31 2205.67 402.69 1490.00 3240.83 1750.83 0.42 −0.59
32 2189.86 406.30 1555.00 3281.67 1726.67 0.51 −0.32
Total 2422.70 565.37 770.83 5879.17 5108.33 0.93 1.34

Note. Kurtosis reported in this table is sample kurtosis.
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Table 4 Estimation results of the gamma mixed-effects models for the spatial attention experiment

Parameter Estimate S.E.

Model 1

β0 7.873 *** 0.009
β1 −0.001 *** 0.000
φ 0.032
k 47.486 *** 1.360

Model 2

β0 7.916 *** 0.015
β1 −0.008 *** 0.000
φ11 0.026
φ22 0.000
φ21 0.000

49.456 *** 1.448
BIC

Model 1 36067
Model 2 36041

Note. ***: p < 0.001. Mean slopes are reported up to three decimals to better represent parameter estimates. S.E. =
standard error.

Table 5 Descriptive statistics for mathematics IRT scores for ECLS-K data

Descriptive Statistic

Grade Mean S.D. Min. Max. Range Skew Kurtosis

0 27.56 9.45 11.36 73.84 62.48 1.06 1.76
0.5 38.63 11.93 15.43 84.85 69.42 0.89 1.10
1 45.97 14.11 12.85 91.42 78.57 0.63 0.48
1.5 64.89 17.33 22.97 117.97 95.00 0.39 0.11
3.5 102.79 23.97 37.47 154.49 117.02 −0.16 −0.55
5.5 126.90 23.50 50.87 168.01 117.14 −0.71 0.15
8.5 143.47 21.73 71.65 171.39 99.74 −1.01 0.53

Table 6 Estimation results of the piecewise mixed-effects model for ECLS-K data

Parameter Estimate S.E.

β1 27.31 *** 0.48
β2 22.86 *** 0.39
β3 5.72 *** 0.21
γ 4.212 *** 0.07
ϕ11 57.19 *** 5.83
ϕ22 37.91 *** 4.04
ϕ33 5.11 *** 1.19
ϕ44 0.81 *** 0.12
ϕ21 34.22 *** 3.49
ϕ31 −3.46 * 1.59
ϕ32 0.13 1.38
ϕ41 −4.32 *** 0.52
ϕ42 −4.50 *** 0.58
ϕ43 −0.87 ** 0.31
σ2 53.13 *** 2.09
BIC 21198

Note. *: p < 0.05, **: p < 0.01, ***: p < 0.001. S.E. = standard error.
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