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Introduction

The study of statistics is often dreaded or at the very

least undesired by many students, particularly those in

the social sciences (Onwuegbuzie & Seaman, 1995). This

is reflected both in lower grade averages relative to other

courses (Cantinotti, Lalande, Ferlatte, & Cousineau, 2017),

and in the reported levels of anxiety it causes to students

(Vigil-Colet, Lorenzo-Seva, & Condon, 2008). In addition,

the learning and teaching of applied statistics can some-

times be hampered by a complete reliance on abstract

mathematical concepts (Cousineau & Harding, 2017). Of-

ten, students lack simple, approachable datasets on which

they can apply and practice their newly acquired knowl-

edge. Other times, students are provided trivially simple

datasets from which they manually compute their mea-

sures of interest. This can be doubly inefficient because

most statistics outside of the classroom are performed us-

ing software packages (i. e., SPSS, SAS) or programming
languages (i. e., R, Python, Matlab) which are rarely ex-
ploited except in advanced or specialized courses. In short,

the teaching of statistics at the undergraduate level –for

most, the entry and only point of contact with statistics–

is hardly benefiting both in content and methods from the

technological advancements and trends of our era.

Herein, we present a generator of random data (GRD)
for the programming language R (R Core Team, 2018),

inspired from a previously published extension to SPSS

(Harding & Cousineau, 2014, 2015). The function GRD
and this accompanying document allows users with no

prior programming experience to generate customizable

random datasets so that they can practice statistical pro-

cedures and statistical testing. The created datasets can

be specified to reflect any combination of experimental de-

signs and probability distributions. It can contain under-

lying effects between groups and/or across repeated mea-

sures, both as main effects and as interactions. Most im-

portantly, the dataset is in dataframe format, which can be

readily analyzed using common R commands. Thus, the
learner of statistics can have new and different datasets in

just a matter of seconds.
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Basic Use

Loading GRD into memory
Before using GRD, the commands shown below must be
executed to loadGRD into memory.1

setwd(’c:\\users\\me\\GRD{}_Directory’)
source(’GRD_20.R’)

The first command sets the current working directory to

the directory specified within quotes; you must change

it to the folder\\subfolders containing the source file
GRD_20.R (the current version is 2.0). The second com-
mand tells R to import the GRD source file by its name.
Once these instructions have been executed,GRD is active
in memory. This step is done only once per session.

Generating a dataset with default specifications
The command

dta <- GRD()

creates the variable dtawhich contains a randomly gener-
ated data frame. The name of the variable dta is arbitrary
and can be replaced by any name of your choice. For sim-

plicity, throughout the text, we will assume that the vari-

able name is dta. Note that R is case-sensitive.
The variable dta contains random data. By default,

GRD creates a random sample of size 100, following the
standard normal distribution (i. e., z scores) for a design
with no between-subject factor and only one variable mea-

sured once (i. e., no within-subject factor). To print only

the first or last few rows of the dataset, use the commands

head(dta) or tail(dta) respectively, as seen below. With
head(dta,n) or tail(dta,n), the number of lines n to be
shown can be specified. In what follows, we show the out-

put produced by R as comments begining with "#"

head(dta$Data,2)
# id DV
# 1 1 −0.4135888
# 2 2 −0.4638726
tail(dta$Data,2)
# id DV
# 99 99 0.7616850
# 100 100 0.4953989
On this simple dataset, there are only few things to

mention. The first column, id, contains the “subject” num-
ber and the second, DV, contains the score obtained for
that ”subject”. As between-subject factors and repeated

measures will be added, more columns and rows will ap-

pear in the data frame. For an illustration of the data, we

can plot a frequency distribution plot of the data (a.k.a. a

histogram) with hist(dta$DV). The resulting plot should
look like that of Figure 1, first panel.

At this point, the shape of the distribution is worth a

brief discussion. While the distribution from which GRD
randomly samples its data is by default the standard nor-

mal distribution, the shape of the actual data will not nec-

essarily appear normally distributed. This random sam-

pling effect arises from the limited number of data points

that compose the dataset (by default,N = 100). The bigger
the sample size, the closer the distributions and statistical

measures will be to the true population distribution. Once

the argument to change the sizes of experimental groups

will be introduced in the next section, the student is en-

couraged to explore the effect of random sampling on the

distribution of the data.

As described next, the command can be given argu-

ments to change the default specifications. The seven argu-

ments (plus two to display informations) are presented in

Table 1. The rest of this article describes how to use these

arguments to tailor the desired random dataset.

By default, and as was seen in the above outputs,

the column containing the simulated scores is called DV,
standing for dependant variable. To change the name of
the dependent variable from ’DV’ to any desired name, use

the RenameDV argument. The new name must be given
within quotes. Note that because ’:’ and ’,’ are used as sep-

arators in the subsequent arguments, it cannot be used as

part of a variable or level name.

The following changes the name of the dependant vari-

able from ’DV’ to ’score’:

dta <- GRD( RenameDV = "score" )

Note that spaces are optional anywhere in GRD and that
the command can span multiple lines, as always in R. The
order of the arguments is also irrelevant.

Changing the experimental design and the sample size

The two arguments to customize the experimental de-

sign are BSFactors andWSFactorswhereas SubjectsPer-
Group is used to changed the sample size.

Adding groups by specifying between-subject factors
We start tailoring the data set defining between-subject fac-

tors with the BSFactors argument. It requires one oblig-
atory input which is a string following a specific format

that indicates the between-subject factors of the experi-

mental design as well as their levels. For a fully tailored

dataset, one can specify the name of independent variables

1
When starting a new project, it is good practice to remove all previously used variables. This helps in avoiding errors due to inappropriate use of old

data, data structures and functions. InR, this can be done by the command rm(list = ls())which clears from memory all variables in the workspace.
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Figure 1 Three examples of data generated withGRD.

(or leave them unspecified, in which case generic names

are generated) and their respective levels within parenthe-

sis. GRD does not impose any restrictions on the number
of between-subject (BS) factors or their number of levels.

However, one must be cautious in adding factors because

the complexity of the dataset increases rapidly when the

design is expanded. The design specification can be in-

putted using four increasingly detailed forms. In all four

cases, different BS factors are separated by “:”. Spaces are

optional.

In its easiest form, specify the number of levels for a

single factor with:

dta <- GRD( BSFactors = ’3’)

The head of the data frame generated is

head(dta,2)
# id BS1 DV
#1 1 1 0.7587990
#2 2 1 −0.8917315
As seen, a new column is added, whose default name isBSi
where i is 1 for the first between-subject factor created.
For illustrative purposes, let’s assume that we wish to

create a dataset simulating the following experimental de-

sign: A ficticious study which recruits participants attend-

ing different types of therapy divided by whether they had

eye surgery in the past or not. Their performance on a vi-

sual task is evaluated under different contrast levels. In

formal terms, this is a study with two between-subject fac-

tors (Therapy and Surgery) and one within-subject factor
(Contrast). Table 2 shows all the possible combinations of

between-subjects and within-subjects factors from this de-

sign.

From the above example, the between-subject factors

could be specified using the number of levels with:

dta <- GRD(BSFactors =’2 : 3’ )

Instead of the number of levels, the names of each of the

levels could be provided, still leaving the factors unnamed:

dta <- GRD( BSFactors = ’(yes, no) :
(CBT, Control, Exercise)’)

Inversely, one could name the between-subject factors and

provide the number of levels it contains, without naming

them, in which case successive integers are used:

dta <- GRD( BSFactors = ’Surgery(2) :
Therapy(3)’ )

Finally, one can specify both the factor names and their re-

spective levels:

dta <- GRD(
BSFactors =’Surgery(yes, no) : Therapy
(CBT,Control,Exercise)’

)

All of these formats can be mixed together, for exam-

ple:

dta <- GRD(BSFactors = ’(yes, no) :
Therapy(3)’)

It is possible to have a factor with a single level. Note

that a numerical name cannot be assigned to levels in this

The Quantitative Methods for Psychology 32

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.1.p001


¦ 2019 Vol. 15 no. 1

Table 1 Arguments toGRD

Argument name Description

SubjectsPerGroup Changes the sizes of the groups
a

RenameDV Renames the dependent variable
b

BSFactors Defines between-subject factors and their respective levels
c

WSFactors Defines within-subject factors and their respective levels
c

Effects Sets the effects
d

Population Adjusts the characteristics of the population
e

Contaminant Adjusts the characteristics of a source of contaminants
e

Summary Prints an overview of the design requested
f

Debug Prints debugging information (for programming purposes only)
f

Note. a
: Default is 100 subjects per group;

b
: Default isDV;

c
: Default is "" which represents no factor;

d
: Default is an empty list of effects, list();

e
: Default is a standard normal distribution, and the proportion of contaminants is 0.00;

f
: Default is FALSE.

case, as it will be confused with the number of levels in-

stead of its name. A contrario, if the numerical level is
not the only level listed (numerical or otherwise), it will

be considered as a level label. In the case ofTherapy(1, 3)
and Therapy(3, CBT), the "3" in both commands would
be considered as a label name. When label names are pro-

vided, they are treated as character string by GRD whereas

when the number of levels is provided, the levels gener-

ated (from 1 to the number given) are numerical integers.

Adding repeated measures by using within-subject fac-
tors
TheWSFactors argument allows one to create experimen-
tal design with repeated measures. The argumentWSFac-
tors receives the same type of input as the BSFactors: a
string where the within-subject factors are specified sepa-

rated by ’ : ’. As shown before, the input can be increasingly

more detailed. The format remains the same as before, so

we only show examples of the least and most detailed for-

mats:

dta <- GRD( WSFactors=’3’ )
dta <- GRD( WSFactors=’ Contrast(Low,

Medium,High)’ )

For each combination of within-subject factors,

one column is added to the dataset with the format

DV.leveloffactor1.leveloffactor2.etc. All of these combi-

nations can be seen when head(dta,2) is used:

# id DV.Low DV.Medium DV.High
# 1 0.05163949 −0.57360397 −0.2073698
# 2 −0.55032289 −0.05957762 0.5362954

Mixed designs
Between-subject and within-subject factors can be inter-

mixed in the same instructions to create mixed designs

datasets. For example,

dta <- GRD(
BSFactors = ’Surgery(yes,no) : Therapy
(CBT, Control,Exercise)’,

WSFactors = ’Contrast(C1,C2,C3)’,
)

Changing the number of participants per groups
By default,GRD creates 100 data points (e.g. participants)
per groups. To change the number of data in each group,

use the SubjectsPerGroup argument. As an example, the
following

dta <- GRD( SubjectsPerGroup = 1000 )

increases the number of participants to 1000, as can be ver-

ified with dim(dta).
When multiple groups are simulated, they all have the

same size. Groups of different sizes can be specified by

providing their respective sizes as a sequence of integer

numbers as input, e. g., with

dta <- GRD(
BSFactors = "3",
SubjectsPerGroup = c(20,25,50)

)

The length of the sequence of sample sizes must match the

number of groups.
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Table 2 Illustration of an experimental design in a 2× 3× (3) design with factors Surgery× Therapy× Contrast.

Surgery Therapy DV.1 DV.2 DV.3

yes CBT

no CBT

yes Exercise

no Exercise

yes Control

no Control

Changing the population characteristics

Data following a Gaussian distribution
Data is sampled from a population with a given distri-

bution. By default, the population distribution is a stan-

dardized normal distribution, that is, a normal distribution

with mean (µ) equal to 0 and standard deviation (σ) equal
to 1. While the normal distribution is ubiquitous in statis-

tical analysis, rarely does one observe a mean of 0 and a

variance of 1. In GRD, we can set the parameters of the
Gaussian distribution to arbitrary mean and variance us-

ing the Population argument. To do so, it is necessary to
provide themean and standard deviation within a list with

the attributesmean and stddev respectively.
As an example, to simulate IQ scores –whose popula-

tion mean is 100 and population standard deviation is 15–,

the following can be used:

dta <- GRD(
RenameDV = "IQ",
Population=list(mean=100,stddev=15)

)
hist(dta$IQ)

Figure 1, second panel, shows the resulting dataset; notice

how sample mean is close to µ = 100 and standard devia-
tion is close to σ = 15.

Changing the distribution directly
Internally, GRD uses a random number generator based
on rnorm. The full specification is rnorm(1, mean = GM,
sd = STDDEV) where GM and STDDEV are initialized
by the attributes seen in the above section. It is possible

to change the full specification, with the Population argu-
ment, by specifying the attribute scores. For example, you
could have a sample of constants with

dta <- GRD(
BSFactors = "Group(2)",
Population = list( scores = "1" )

)

If two groups were defined, the group number could be

used as the constant

dta <- GRD(
BSFactors = "Group(2)",
Population = list( scores = "Group" )

)

As a last example, the following command creates two

groups, and the standard deviation in each group is pro-

portional to the group number:

dta <- GRD(
BSFactors = "Group(2)",
Population = list(

mean = 100, # will set GM to 100
stddev = 15, # will set STDDEV to 15
scores = "rnorm(1, mean = GM, sd =
STDDEV*Group)"

)
)

Any factor created in the BSFactors orWSFactors can be
used anywhere in the scores attribute. Note that it would
have been simpler to just use constants in the scores at-
tribute with

...
Population = list(

scores = "rnorm(1, mean = 100, sd =
15*Group)"

...

The example creates data that violate the homogeneity of

variances assumption. This can be tested using the Levene

test which is available, for example, in the package lawstat
(Gastwirth et al., 2017) with

library(lawstat)
levene.test(dta$DV, dta$Group, location=

"mean")
# data: dta$DV
# Test Statistic = 32.567 , p−value = 4.157e−08
so that with the present dataset, homogeneity of variance

is rejected (Levene’s F (2, 198) = 32.6, p < .001). Make
sure that the first argument to rnorm (the number of data
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sampled from the distribution) is 1 as GRD proceeds one
line at a time.

(Advanced) Switching to an arbitrary theoretical dis-
tribution
For most uses, Gaussian distributed data is an adequate

approximation of measured data. But some phenomena

might be better represented by other distributions. GRD
can accommodate this need with the scores attribute in
which a different theoretical distribution is specified.

The distribution must be available in the R language.
For example, if one wanted data that are sampled from a

Weibull distribution, the scores attribute of Population is
changed. The Weibull distribution is a good approach to

simulating response times (RT) data (Cousineau, Brown, &

Heathcote, 2004):

dta <- GRD(SubjectsPerGroup = 5000,
RenameDV = "RT",
Population=list(
scores = "rweibull(1, shape=2, scale
=40)+250"

)
)
hist(dta$RT,breaks=seq(250,425,by=5))

The resulting data are illustrated in Figure 1, third panel.

Again, whatever the distribution used, it is necessary that

the first argument (the number of data sampled from the

distribution) be equal to 1.

For reference, Table 3 contains some common theoret-

ical distributions. For help on how to use them, one can

simply type help(<function>).

Adding statistical effects

Once the between- and within- subject designs are spec-

ified with the desired number of participants per group,

one can start tailoring the difference between them. The

argument E�ects allows modifying the effect size of dif-
ferent factors by shifting their means. GRD can specify
effects for multiple factors independently or from inter-

actions of factor levels. We first define the between and

within-subject factors described previously and use larger

group sizes with:

dta <- GRD(
BSFactors = ’Therapy(CBT, Control,
Exercise)’,

WSFactors = ’Contrast(3)’,
SubjectsPerGroup = 1000,
<<insert one or many effects as
described below>>

)

The input to E�ects is a list of effects, each based on
a selection of factors to be modified and the effect to be

applied. The type of effect must be one of the four effect

types offered by GRD, namely range, slope, custom and

Rexpression. The range and slope effect types require only
one number. For range, this number represents the differ-
ence between the highest mean and the lowest mean of all

groups of interest. The mean of the means across all levels

will remain at its original value, but the mean of the indi-

vidual levels will be uniformly distributed on either side

within the range specified by the magnitude. For the slope
type, themagnitude represents the difference between two

consecutive means. In other words, the mean of means

will again be centred at its original value, but this time, the

mean of the individual levels will be linearly distributed

with slope given by the magnitude. Finally, the custom at-
tribute, allows the user to specify the specific shifts for all

subsets of data separately.

As an example, We can define a slope effect of 2 points

for the ’Therapy’ factor, displacing each of its groups (’CBT’,

’Control’ and ’Exercise’) respectively by -2, 0 and +2.

...
Effects = list(’Therapy’ = slope(2))
...

The result for one of the repeated measure variable is seen

on Figure 2, top row, using the histogram command from
the lattice library (Sarkar, 2008), with the commands:

library(lattice)
histogram(~ DV.1 | Therapy, data = dta,

breaks=seq(-7,7,by=0.5),layout = c
(3,1) )

In that figure, we did not change the base standard devia-

tion from its default value of 1. A difference in means of

2 consequently corresponds to a Cohen’s d of 2, a rather
large effect that is easily seen on the plot (Goulet-Pelletier

& Cousineau, 2018).

Effects can be applied on within-subject factors as well.

For example:

...
Effects = list(’Contrast’= range(4) )
...

Visualizing effects that are located among repeated mea-

sure variables can be more difficult. The approach sug-

gested here is to transform the data frame from wide for-

mat to long format. This can be done in multitude of ways.

Here, we use the wideToLong command from the lsr li-
brary (Navarro, 2015) which match factors with the labels

found after "DV." in the dependant variable names:

library(lsr)
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Table 3 Examples of random number generator functions for common distributions that can be used inGRD

Distribution R function Distribution R function
Constant 1 Poisson rpois()

Uniform runif() t distribution rt()

Bernouilli rbern() Weibull rweibull()

Binomial rbinom() Exponential rexp()

Geometric rgeom() Chi-Squared rchisq()

dta2 <- wideToLong(dta, within = c("
Contrast"),sep=".")

histogram(~ DV | Contrast, data = dta2,
breaks=seq(-7,7,by=0.5),layout = c
(3,1), aspect =1)

The results are seen in Figure 2, second row.

Both slope and range are linear effects: their impact

is gradual on every level of the factor(s) named. For non-

linear effects, it is possible to specify custom effects, one

per cell of the specified factor(s).

...
Effects = list( "Therapy"=range(4) )
...

There must be as many effect sizes listed in the custom ef-
fect specification as there are levels in the factor named

(here Therapy). The result is seen in Figure 2, bottom
panel.

More generally, GRD allows the specification of inter-
action effects using ’*’ to separate different factors. This

effectively creates sub-groups from every combination of

levels of each factor specified. Interactions can be spec-

ified for as many factors as needed. For example, inter-

actions between the within and between factors ’Therapy’

and ’Contrast’ is obtained with:

...
Effects = list(’Therapy * Contrast’ =
custom(XXXXXx))

...

It is also possible to provide anyR expressions that can
be used to compute an effect. In this case, there is no need

to provide a factor name, but a string must be provided

in all case. Hence, arbitrary strings such as ’code1’ can be

used. One example is

dta <- GRD(
BSFactors = ’Therapy(CBT,Control,
Exercise)’,

WSFactors = ’Contrast(3) ’,
SubjectsPerGroup = 1000,
Effects = list(
"code1"=Rexpression("if (Therapy ==

’CBT’){-50} else {0}"),
"code2"=Rexpression("if (Contrat ==
3) {+50} else {0}")

)
)
library(lsr)
dta2 <- wideToLong(dta, within = c("

Contrast"), sep = ".")
histogram(~ DV | Contrast + Therapy,

data=dta2,
breaks = seq(min(dta2$DV)-5,max(dta2$
DV)+5,by=2.5)

)

Note the use of single quotes within double-quote specifi-

cations.

Rexpression is any expression which can be applied to
the subject "id", and the factor(s) names. For example, one

could print the subject number as lines are processed by

GRD:

...
Effects = list( "code1" = Rexpression(
"print(id);0") )

...

in which ;0 is added to the expression so that the data are
not affected by this line of code (the effect is zero).

(Advanced) Working with multivariate distributions

When exploring a dataset containing repeated measures, a

frequentmeasure of interest is the correlation between dif-

ferent experimental groups. GRD allows to create multi-
variate correlated data with the Population argument rho.
By default, a multivariate normal distribution is generated

but this default can be changed.

As an example, we generate two repeated measures

with the within-subject factorDi�culty. We request a cor-
relation of ρ = 0.5:

dta <- GRD(
WSFactors = ’Difficulty(1, 2)’,
SubjectsPerGroup = 1000,
Population=list(mean = 0,stddev = 20,
rho = 0.5)
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Figure 2 Three examples of effects generated with GRD. The experimental design is a 2 × 3 × (3 × 2) with factors
Reply, Therapy, Contrast and Size. Top left panel shows a slope effect of 2 on Therapy, the top right, a range effect of 4 on
Surgery, and the bottom panel, a custom effect of 0, 0 and 2 for the levels CBT, Control and Exercice respectively.

)
plot(dta$DV.1, dta$DV.2)

In this example, whose result is seen in Figure 3, first panel,

the standard deviations are all constant to 20 and the co-

variances are all identical. This corresponds to compound
symmetry, a much less stringent requirement than spheric-
ity in order to run linear model analysis such as ANOVAs

(Cousineau, submitted).

We can apply a correlation of −0.85 to the ’Difficulty’
factor, and we can specify distinct means and standard de-

viations to each of the variables with:

dta <- GRD(
WSFactors = ’Difficulty(1, 2)’,
SubjectsPerGroup = 1000,
Population=list(mean = c(10,2),stddev
= c(1,0.2),rho =-0.85)

)
plot(dta$DV.1, dta$DV.2)

The result is seen in the central panel of Figure 3. Note

that with negative ρ’s, the covariancematrix sometimes be-
come non-positive definite and consequently, no data are

generted. In that case use a less extreme ρ.

Arbitrary multivariate function
As soon as ρ is set to a non-null value, GRD is switched
to a multivariate mode. From that moment, any multivari-

ate distribution can be specified in the scores option of the
Population argument. Here, we show an example with
the multivariate skewed normal distribution, an extension
of the multivariate normal distribution which includes an

asymmetry parameter α (Wuertz, Setz, & Chalabi, 2017).
To generate random data following this distribution, we

first set the parameters of that distribution, ξ (a measure
of central tendency), Ω (a matrix of covariance) and α that
characterizes the asymmetry:

library(fMultivar)
xi <- c(0,0)
Omega <- diag(2)
Omega[1,2] <- Omega[2,1] <- 0.5
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Figure 3 Three examples of bivariate data generatedwithGRD. The first plot shows a bivariate normal distributionwith
a correlation of 0.85, the second with a negative correlation of 0.3 and the last shows a multinormal skewed distribution

with parameters ξ = {0, 0},Ω =
(
1 0.5
0.5 1

)
and α = {2,−6}.

alpha <- c(2,-6)

The functionGRD is then called with the scores option set
with the function sn::rmns followed by the parameters of
that function. Note that if you defined mean or stddev,
these will not be used by the function.

dta <- GRD(
WSFactors = "Difficulty(2)",
SubjectsPerGroup = 1000,
Population=list(
rho = 99, # any non−zero value will do
scores = "sn::rmsn(1,xi,Omega,alpha)
")

)
plot(dta$DV.1, dta$DV.2)

The result is seen in Figure 3, third panel.

Adding contaminants

It is possible to define a second population. That second

population can be used to “contaminate” the scores ob-

tained from the population of interest. The argumentCon-
taminant works in the same way than Population except
that an additional parameter is provided, proportion. By
default, the proportion of contaminant is zero. However,

if you set that proportion to be different from zero, then

some of the data from the population will be replaced by

scores from the contaminating population. The substitu-

tion is random but on average the proportion of scores re-

placed should match that parameter.

With this example,

dta <- GRD(SubjectsPerGroup = 5000,
Population= list( mean=100, stddev =
15 ),

Contaminant=list( mean=200, stddev =
15, proportion = 0.10 )

)
hist(dta$DV,breaks=seq(0,265,by=2.5))

approximately 10% of contaminants are added having a

mean of 200. The result is seen in Figure 4, first panel.

Any population can be defined for the contaminant as

well, such as

dta <- GRD(SubjectsPerGroup = 10000,
Population=list( mean=100, stddev = 15

),
Contaminant=list( proportion = 0.10,

scores="rweibull(1,shape=1.5, scale
=30)+1.5*GM"

)
)
hist(dta$DV,breaks=seq(0,365,by=2.5))

GM and STDDEV are set by the Population argument
only. The result is seen in Figure 4, second panel.

Also, the contaminants can be multivariate, as for ex-

ample:

dta <- GRD( BSFactors="grp(2)",
WSFactors = "Moment (2)",
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Figure 4 Three examples of samples with contamination. The first panel represents a univariate population along with

univariate contaminants; the second has contaminants following a different theoretical distribution; the last two panels

illustrate multivariate contaminants for two groups. The effect affects the population data only, not the contaminants.

SubjectsPerGroup = 1000,
Effects = list("grp" = slope(100) ),
Population=list(mean=0,stddev=20,rho=
-0.85),
Contaminant=list(mean=100,stddev=4,
rho=-0.99,proportion=0.2)

)
par(mfrow=c(1,2))
plot(dta[dta$grp == 1,]$DV.1,dta[dta$grp

==1,]$DV.2,
ylim=c(-150,150), xlim=c(-150,150))

plot(dta[dta$grp == 2,]$DV.1,dta[dta$grp
==2,]$DV.2,
ylim=c(-150,150), xlim=c(-150,150))

As seen with this example plotting the results sepa-

rately for both groups, any effect defined will affect only

the true population, not the contaminants which are unaf-

fected by conditions and effects. Figure 4, last two panels,

shows the two plots.

Finally, contaminants can be used to insert missing

data in a random fashion with

dta <- GRD(
SubjectsPerGroup = 5000,
Population = list(mean = 100, stddev =

15 ),
Contaminant = list(scores = ’NA’,
proportion = 0.1)

)

Conclusion

This function is based on GRD for SPSS (Harding &

Cousineau, 2014, 2015). Most of the functions herein are

identical to those in SPSS. The present however extends

previous work by giving access to any multivariate distri-

bution whereasGRD for SPSS was limited to the multinor-
mal distribution. Also, the present offers the possibility

to enter effects using arbitrary R expressions. However,
note that for very large samples,GRD for SPSS runs faster.
More broadly,GRD improves on its previous SPSS version
in that it is based on a free software environment widely

used in the academic world. Since the research commu-

nity is gradually but decisively phasing out from pre-built

packages such as SPSS or SAS, it is necessary for students to

be trained so that their skill-set matches the requirements

of their future careers.

GRD provides students with an approachable tool to
create custom-tailored data sets for statistical exploration.

It is built on intuitive syntax and supported by powerful

random number generators. It aims to facilitate the prac-

tice and learning of concepts such as central tendencymea-

sures, the law of big numbers, type-I and type-II errors,

probability distributions and experimental designs.

Furthermore, it introduces the user to basic commands

in R language. In that aspect, GRD helps students take
their first steps into data-science tools and methods that

are both ubiquitous in our modern era and rapidly grow-

ing. It is the authors’ hope that GRD will be a useful tool
in the teaching of statistics and one of the first stepping-
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stones for students to dive into the world of statistics and

data-science.
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tionnaire d’anxiété statistique (sas-f-24). Canadian
Journal of Behavioural Science, 49, 133–142. doi:10 .
1037/cbs0000074

Cousineau, D. (submitted). Correlation-adjusted standard

errors and confidence intervals for within-subject de-

signs: A (much) simpler solution. The Quantitative
Methods for Psychology, na, ss–ss.

Cousineau, D., Brown, S., & Heathcote, A. (2004). Fitting dis-

tributions using maximum likelihood: Methods and

packages. Behavior Research Methods, Instruments, &
Computers, 36(4), 742–756. doi:10.3758/BF03206555

Cousineau, D., & Harding, B. (2017). Why statistics is

difficult to teach: A few considerations. Mesure et
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