
¦ 2019 Vol. 15 no. 1

Traditional and bayesian approaches for

testing mean equivalence and a lack of association

Joseph J. Hoyda
a
, Alyssa Counsell

b
& Robert A. Cribbie

a,B

a
Department of Psychology, York University, Toronto
b
Department of Psychology, Ryerson University, Toronto

Abstract Researchers are often interested in demonstrating that variables are unrelated. How-

ever, declar-ing a lack of relationship (e.g., no mean difference or no correlation) through nonre-

jection of the traditional null hypothesis (e.g., H0: µ1 − µ2 = 0; H0: ρ = 0) is inappropriate. The
two one-sided tests (TOST) method for testing mean equivalence is a popular approach to resolving

this issue, and has been adapted for testing equivalence with various test statistics. In this study,

two Bayesian alternatives to the TOST method for assessing equivalence of means or a lack of cor-

relation were examined and compared to their equivalence testing analogs. The first is the Bayes

factor method, which compares the relative evidence that the data were more likely under one

hypothesis than another. The second method is Bayesian parameter estimation, using highest den-

sity intervals, which estimates a posterior distribution and seeks to demonstrate that the interval

falls within bounds for establishing equivalence. The power rates of these procedures were first

compared in a simulation study. Next, empirical examples of each of the approaches are shown

using an openly available dataset on personality traits. Results identify the benefits and limitations

of these competing alternatives under various testing conditions, and highlight the importance of

using equivalence interval based methods in the behavioral sciences. .
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Introduction

Researchers in the behavioral sciences are frequently in-

terested in determining if groups of subjects are equiv-

alent on an outcome variable. For example, Thompson

(2015) hypothesized that tattooed women would be as psy-

chosocially healthy as non-tattooed women. The primary

difficulty in demonstrating equivalence is that traditional

null hypothesis significance testing (NHST) methods are

designed only to reject, rather than accept, the null hy-

pothesis. In order to demonstrate equivalence using this

method, the researcher would have to retain the null hy-

pothesis. It is well documented, however, that this strat-

egy is inappropriate because absence of evidence is not ev-

idence of absence (Altman & Bland, 1995; Rogers, Howard,

& Vessey, 1993). Thus, it is important that researchers be

aware of, and have access to, methods that can properly

evaluate equivalence.

Over the past few decades, the field of equivalence test-

ing has provided a variety of alternative hypothesis test-

ing methods to assess whether groups of subjects do not

differ significantly on an outcome variable (e.g., Ander-

son & Hauck, 1983; Wellek, 2010; Westlake, 1976). The

two-one sided tests (TOST) method (Schuirmann, 1987) for

mean equivalence is one of the most popular approaches

to resolving this issue, and has been adapted for other test

statistics like correlation (e.g., Goertzen & Cribbie, 2010). In

this paper, we highlight two additional methods relevant

to equivalence testing from the field of Bayesian statistics,

namely, Bayes factors (BF) and estimating highest density

intervals (HDIs). We will focus on two popular instances

in which researchers are interested in demonstrating a
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lack of relationship: 1) equivalence of independent group

means; and 2) a lack of correlation among continuous vari-

ables.

This paper aims to serve as a practical guide for re-

searchers who wish to explore the benefits of Bayesian

alternatives to traditional equivalence testing techniques.

First, the TOST and two Bayesian approaches (BF and HDI)

for mean equivalence and lack of correlation are outlined.

Next, the power rates of these procedures are compared

in a simulation study. The results of this study serve to

identify the benefits and limitations of these competing al-

ternatives under various testing conditions. Lastly, empir-

ical examples using each of the approaches are provided

based on data on personality traits. The examples demon-

strate the ease with which researchers can employ these

techniques, and further serve to highlight their theoretical

differences.

Two One-Sided Testing Approach to Demonstrating
Equivalence

The TOST procedure addresses the problem of retaining

the null with traditional methods by reversing the null

and alternative hypotheses. More specifically, when test-

ing for mean equivalence, the traditional null hypothesis

that there is no mean difference (e.g., H0: µ1 = µ2) is re-

placed by a null hypothesis (actually two null hypotheses,

see below) that state that there is amean difference. There-

fore, in order to determine equivalence, the researcher

must reject the null hypothesis that there is a difference,

in favor of an alternative hypothesis that there is no mean

difference. Further, instead of using a strict nil hypothe-

sis, which assumes that the difference is exactly zero (e.g.,

H0: µ1 − µ2 = 0), the TOST procedure uses an equiva-
lence interval (e.g., −ε, ε), where ε represents the smallest
effect that would still be considered meaningful within the

nature of the research (Cribbie, Gruman, & Arpin-Cribbie,

2004; Rogers et al., 1993). This concept of equivalence

takes into account the fact that mean differences between

groups are rarely, if ever, exactly zero, which is what is

typically assumed by traditional NHST methods. Addition-

ally, equivalence intervals give researchers the freedom to

define the minimum effect size that would be considered

meaningful for their research.

When testing for population mean equivalence, the

TOST procedure uses two simultaneous one-sided t-tests to
evaluate whether the difference in the population means

falls within an equivalence interval. That is, they evaluate

whether the difference in the means is small relative to the

lower and upper bounds of the equivalence interval. The

null hypothesis of non-equivalence then logically has two

components:

H01 : µ1 − µ2 ≥ ε
H02 : µ1 − µ2 ≤ −ε

In order to demonstrate that the group means are equiva-

lent, both null hypotheses must be rejected, which implies

that µ1−µ2 falls within the bounds of (−ε, ε) (Schuirmann,
1987). Note that we are focusing on a symmetric equiva-

lence interval (i.e., |−ε| = ε), however this is not neces-
sary. H01 is rejected when t1 ≤ tα,df and H02 is rejected

when t2 ≥ t1−α,df , where t1 and t2 are calculated by:

t1 =
(M1 −M2)− ε

sM1−M2

t2 =
(M1 −M2)− (−ε)

sM1−M2

where

sM1−M2 =

√
(n1 − 1) s21 + (n2 − 1) s22

(n1 + n2 − 2)

(
1

n1
+

1

n2

)
in which n1 and n2 are sample sizes for both groups.
Note that sM1−M2

is the standard error of the differ-

ence,Mi represents the ith group’s sample mean, ni repre-
sents the ith group’s sample size and si represents the ith

group’s sample standard deviation. The degrees of free-

dom are the same as that for an independent samples t-
test (i.e., df = n1 + n2 − 2). The null hypothesis of non-
equivalence is rejected when both H01 and H02 are re-

jected. An equivalent approach to the TOST method is to

demonstrate that the 100(1− 2α)% confidence interval of
the difference betweenM1 andM2 falls completely within

the equivalence interval (Westlake, 1976). Numerous ex-

tensions to the TOST method are also available, including

a heteroscedastic two independent-samples procedure of-

ten referred to as the Schuirmann-Welch test (TOST-SW;

Gruman, Cribbie, & Arpin-Cribbie, 2007). The TOST-SW

is identical to the TOST except that the pooled standard

error (sM1−M2
) is replaced by a nonpooled standard er-

ror, i.e.,

√
s21/n1 + s22/n2, and the degrees of freedom are

that of the heteroscedastic Welch statistic (see Gruman et

al., 2007). Further extensions include trimmed means and

Winsorized variances which are appropriate with skewed

or heavy-tailed distributions (see vanWieringen & Cribbie,

2014).

The TOST method has also been applied to the problem

of detecting a lack of correlation by Goertzen and Cribbie

(2010). In this case, the null hypotheses, H01 : ρ ≥ ρ∗

and H02 : ρ ≤ −ρ∗, are rejected if t1 ≤ tα,N−2 and

t2 ≥ t1−α,N−2, where

t1 =
r − ρ∗√

1−r2
N−2

t2 =
r − (−ρ∗)√

1−r2
N−2
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in which ρ∗ represents the half-width of the (symmetri-
cal) lack of association interval (−ρ∗, ρ∗),N represents the
sample size, tα,N−2 represents the α level critical value
from the t distribution withN −2 degrees of freedom, and
r represents the sample correlation value.

Bayesian Alternatives to the TOST Approach

While the TOST resolves some of the initial criticisms in

regards to retaining the null hypothesis, it still uses tradi-

tional hypothesis testing. One of the primary advantages

of Bayesian approaches, insofar as it is related to equiv-

alence testing, is the ability to quantify evidence for, as

well as against, the traditional null hypothesis. This can be

done by quantifying the probability of the null hypothesis,

given the data, or by providing relative evidence in favor of

the null hypothesis relative to some competing hypothesis.

These approaches are described in more detail below.

Bayesian statistics differ from frequentist approaches

in (at least) two important ways. First, in frequentist statis-

tics parameters are considered fixed, whereas in Bayesian

statistics parameters are considered unknown and de-

scribed probabilistically. Second, prior information re-

garding the model parameters is incorporated into the

probability model for the parameters. Bayes theorem can

be written as:

p (A|B) =
p (B|A) p (A)

p (B)

where p(A) is the prior credibility of parameter values,
p(B) is the overall probability of the data given the model,
p(A|B) is the conditional probability of A given B, and
p(B|A) is the conditional probability of B given A. There
are three fundamental aspects of the Bayes calculations

that are important for determining an outcome. The like-

lihood distribution, represented by p(B|A), represents the
plausibility of the data, given the hypothesized model. The

prior distribution, represented by p(A), represents any in-
formation that is known about the parameters before the

study. Finally, the posterior distribution, represented by

p(A|B), is the final probability distribution that represents
a compromise between the prior and the likelihood. In

other words, the posterior is equal to the likelihood mul-

tiplied by the prior and divided by the overall evidence

being examined. Here, a researcher obtains information

about the probability of their hypotheses given prior infor-

mation and data, rather than the probability of the data

assuming that the null hypothesis is true.

The concept of the prior distribution is one of the most

important contributions of Bayesian estimation. The use

of priors allows the researcher to incorporate previous

knowledge thatmay have been accumulated through other

studies or research. For instance, if it is known that a spe-

cific parameter value is particularly unlikely, the model

can be modified in order to take this into account. This

can be especially useful if the researcher has a large body

of research fromwhich to draw. The other primary advan-

tage is that Bayesian estimation allows researchers to accu-

mulate knowledge by continuing to update their data; the

resulting posterior distribution of one experiment can be

used as an informative prior in future research. It is also

important to note that although priors can be informative

in cases where a lot is known about the possible parame-

ter values, they can also be noninformative in cases where

the researcher wants to minimize assumptions regarding

parameters.

Bayesian HDI Approach to Equivalence Testing

The Bayesian highest density interval approach advocated

by Kruschke (2013) estimates the probability of potential

parameter values and allows researchers to calculate a

Bayesian equivalent to a confidence interval (HDI) around

those parameters. Applying this method to a two sample

t-test, a researcher would estimate the distributions of five
parameters: each of the population means (µ1, µ2), each

of the population standard deviations (σ1, σ2) and a distri-
bution shape parameter common across groups (ν). From
these posterior distributions, information is garnered per-

taining to the difference between the population means

(i.e., µ1 − µ2); more specifically, the HDI for µ1 − µ2 is

computed in order to determine if the HDI falls completely

within the predefined equivalence interval (Kruschke la-

bels the equivalence interval the ’region of practical equiv-

alence’ or ROPE). The posterior distribution represents the

probability of those parameters, given the data, and, fol-

lowing Bayes theorem above, can be expressed as:

p (µ1, µ2, σ1, σ2, ν|D) = p (D|µ1, µ2, σ1, σ2, ν)

× p (µ1, µ2, σ1, σ2, ν)

p (D)

in which p (D|µ1, µ2, σ1, σ2, ν) represents the likelihood of
the data given the hypothesized parameters (i.e., the prod-

uct of t distribution probability densities associated with

each of the data values), p (µ1, µ2, σ1, σ2, ν) represents the
prior probability of the parameters (derived from the dis-

tributions of the five parameters) and p (D) represents the
marginal likelihood, or the overall probability of the data,

and its purpose is to ensure that the posterior is a valid

probability by making its area sum to 1.

In testing for a lack of association, a researcher esti-

mates six parameters: the correlation (ρ), each of the pop-
ulationmeans (µ1, µ2), each of the population standard de-

viations (σ1, σ2) and a distribution shape parameter com-
mon across groups (ν). This posterior distribution repre-
sents the probability of those parameters, given the data,
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and is calculated as:

p (µ1, µ2, σ1, σ2, ν, ρ|D) =

p (D|µ1, µ2, σ1, σ2, ν, ρ)×
p (µ1, µ2, σ1, σ2, ν, ρ)

p (D)

As with the t-test, these posterior distributions are used
to compute the HDI (in this case the parameter of interest is

ρ) in order to determine if it falls entirely within the prede-
fined equivalence interval. In both the t-test and test for
correlation, researchers can conclude equivalence if the

100(1− 2α)% HDI falls within the equivalence region.
The posterior distributions are estimated using sam-

pling techniques, rather than direct computation. The

sampling is conducted using Markov Chain Monte Carlo

(MCMC) methods. MCMC uses many samples of potential

parameter values that fit the sample data and prior distri-

butions simultaneously. From these samples for each pa-

rameter, the HDI for µ1 − µ2 or ρ can be explicitly deter-
mined by using the credible values from each sample.

Bayes Factor Approach to Equivalence Testing

The BF method developed by Jeffreys (1961) emphasizes

the selection of one model over another by estimating the

ratio of the likelihoods for the twomodels being compared.

Thus, it compares the degree to which the data is proba-

ble under each of these models (e.g., the models associated

with the null and alternative hypotheses). In its original

formulation for demonstrating equivalence, the model as-

sociated withH0 uses a spiked prior based on the point nil

hypothesis (µ1−µ2 = 0) and is then compared to an alter-
native modelH1. The BF can be expressed as:

BF =
p(D|H0)

p(D|H1)

where p(D|H0) is the probability of the data, given H0,

and p(D|H1) is the probability of the data, given H1. The

BF therefore expresses the relative plausibility of these two

models, resulting in a number that quantifies how much

more likely one model is over another. For example, a BF

of 10 indicates that the data are 10 times more likely to

have occurred under the null hypothesis than under the

alternate hypothesis; further, if it can be assumed that the

two hypotheses were equally likely a priori, then the BF

indicates that the null hypothesis is 10 times more likely

than the alternate. Jeffreys (1961) qualifies the size of BF

values by indicating that values less than 3 are not worth

mentioning, between 3 and 10 are substantial, between 10

and 30 are strong, between 30 and 100 are very strong,

and greater than 100 are decisive (also see Kass & Raftery,

1995).

The original BF approach by Jeffreys (1961) can be used

for equivalence testing (i.e., quantifying relative evidence

in favor of the null hypothesis), but it was not originally

proposed to be used with an equivalence interval and thus

the null hypothesis, as described above, was typically the

nil hypothesis (i.e., δ = 0). An important consequence of
using a model based on the nil hypothesis is that the nil

hypothesis will sometimes fail for trivial reasons. For in-

stance, it has been argued byMeehl (1978) that nil hypothe-

ses never hold to an arbitrary level of precision. Morey

and Rouder (2011) address this issue by permitting the null

hypothesis to be an interval within a specified distribu-

tion, with the alternate hypothesis representing the com-

plement of the null. The goal of this method is to avoid re-

jecting the null hypothesis if the failure is due to trivial or

uninteresting effects, making it a good fit for equivalence

testing.

When using the BF approach, it is important to recog-

nize that the concept of a prior is very different in the BF

setting than in the Bayesian parameter estimation setting.

In a Bayesian estimation setting, the prior explicitly spec-

ifies prior information about the parameter, whereas in a

BF setting the prior specifies the comparison distribution

(in our setting the alternative hypothesis). Take, for exam-

ple, a situation in which a researcher would like to use a

precise prior. Adopting a precise prior (e.g., a normal dis-

tribution with a standard deviation of .1 instead of a uni-

form [−.1, 1] distribution for ρ) leads to a narrower HDI
(and a greater chance of demonstrating equivalence) in an

estimation setting. However, in a BF setting where rela-

tive evidence is being quantified, specifying a more pre-

cise prior actually specifies an alternative distribution that

is more similar to the null and thus leads to less evidence

in favor of the null (relative to a setting in which a less pre-

cise prior is adopted). In other words, the more similar the

competing priors, the harder it will be to differentiate be-

tween them.

Simulation Study

A simulation study was conducted to provide researchers

with power comparisons of the discussed TOST and

Bayesian procedures under conditions thought to be com-

mon in behavioral science research. The goal of these

simulations is to assist researchers in understanding how

to quantify and compare the power of these theoretically

diverse procedures. Three methods were compared: 1)

TOST; 2) BF; and 3) Bayesian HDI. Each of these methods

was applied to the problem of detecting the equivalence of

two population means and to the problem of detecting a

negligible correlation.

For the BF approach, both a nil hypothesis (BF-N) based

approach, as proposed by Jeffreys (1961) and an equiva-

lence interval based approach (BF-EQ), as developed by

Morey and Rouder (2011), were included. For the BF
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method, BF cutoffs of 10, 30 and 100 were used in accor-

dance with Jeffreys’s (1961) recommendations to evaluate

when equivalence was successfully detected. These cutoffs

refer to the required BF size to detect equivalence, since

we are exploring the relative likelihood of the null hypoth-

esis relative to the alternate hypothesis (e.g., a BF of 45

will be counted as equivalent by the BF10 and BF30 cut-

offs, but not the BF100). This allows researchers to see how

the power differs across the different cutoffs. For the HDI

method, a 90% HDI was used to be consistent with both

the 100(1− 2α)% confidence interval approach (Westlake,
1976) and the TOST method when α = 0.05. For both
the correlation and t-test methods, 1000 replications were
used for each condition. We acknowledge here that the

HDI and BF methods were not necessarily designed for di-

chotomous types of decisions, e.g., equivalent means vs.

nonequivalent means, however these methods are often

used in this manner and for this study, this is necessary

in order to compare the results to the TOST method.

For themean difference problem, standardized equiva-

lence intervals, based on population Cohen’s d effect sizes,
were set at (−ε, ε) = (−.1, .1), (−.2, .2), (−.3, .3) and
(−.4, .4), except for the BF-N method, which uses a nil
hypothesis. Although a standardized effect size of Co-

hen’s d = .4 might seem large for an equivalence testing
study, Rusticus and Eva (2016) found that participants did

not find a mean difference to be meaningful until around

d = .5. Total sample sizes used were 50, 100, 200 and 1000
with equal group sizes (e.g., with N = 50, n1 = 25 and
n2 = 25). Standard deviations were set at 1 in each group.
The posterior distribution for the t-test simulations was
generated with the BEST package (Kruschke & Meredith,
2015) in R, using the default 100,000 iterations of MCMC.

For the BFmethod, theBayesFactor R packagewas used
(Morey & Rouder, 2015).

To explore how sample size and equivalence inter-

val size affect power in tests for a lack of correlation,

standardized equivalence intervals for ρ were set to
(−.05, .05), (−.1, .1), (−.15, .15) and (−.2, .2), except for
the BF-N method, which uses a nil hypothesis. Sample

sizes were set at N = 50, 100, 200 and 1000. These

sample sizes were chosen to be comparable to the sam-

ple sizes of the t-test simulations and to the sample sizes
common in psychological research. The posterior distri-

bution for the correlation simulations was generated with

the BayesianFirstAid package in R (Bååth, Kruschke,
& Meredith, 2014), using the default 15,000 iterations

of MCMC. The BayesFactor package was used (Morey &

Rouder, 2015) to calculate every version of the BF method,

including the nil hypothesis.

For both the t-test and correlation simulations, nonin-
formative priors were used to ensure minimal influence

on the estimates of the parameter values. For the HDI ap-

proach, the priors on µ1 and µ2 were normal distributions

with large standard deviations (i.e., 1000 times the pooled

standard deviation of the groups), the priors on the stan-

dard deviations were uniform distributions ranging from

σ/1000 to 1000σ, and lastly the prior distribution on the
shape parameter was a shifted exponential (λ = 1/29,
shift = 1; which allows for similar prior likelihood of a

normal or heavy-tailed distribution) and represents the de-

grees of freedom for a t-distribution (recall that as the de-

grees of freedom increase the distribution approximates a

normal distribution). In testing for a lack of correlation,

the same priors as above were used in addition to a uni-

form (−1, 1) prior for ρ to reflect the full range of pos-
sible values for a correlation coefficient. For the BF ap-

proach for the mean comparison, noninformative priors

were also used for the population means and variances.

More specifically, a Jeffreys prior was placed on σ2, while
a Cauchy prior is placed on the standardized effect size (d).
For the BF approach for correlation, a uniform distribu-

tion was used as a prior for ρ (see Ly, Verhagen, & Wagen-
makers, 2016). When using the BF-EQ method, the null hy-

pothesis was an interval within the specified distribution

[e.g., δ ∼ Cauchy(0, 1), δ ∈ (−ε, ε); δ ∼ Uniform(−1, 1),
δ ∈ (−ε, ε)], while the alternate hypothesis is the comple-
ment of the null [e.g., δ ∼ Cauchy(0, 1), δ 6∈ (−ε, ε) and
δ ∼ Uniform(−1, 1), δ 6∈ (−ε, ε)]. For the BF method, we
also varied the scale of the alternative hypothesis distribu-

tion (often referred to as the ‘rscale’), using values of .5, .75

and 1. Increasing the scale of the alternative hypothesis in-

creases the variability of the distribution and thus makes

it more dissimilar to the null distribution. For the mean

comparison simulation, a scaling factor of 1 is equivalent

to a standard Cauchy distribution, for correlation a scal-

ing factor of 1 is equivalent to a uniform (-1,1) distribution.

See (Morey & Rouder, 2011) for more details regarding the

priors.

Results

The results for the different scalings of the alternative dis-

tribution produced expected effects; namely, by decreas-

ing the scale of the alternative hypothesis the distribution

becomes more like the null distribution and thus power

for detecting equivalence decreases. Thus, due to space

limitations only results for a scaling factor of 1 are pre-

sented here, however full tables of results are available at

https://osf.io/tfdxq/. This issue is also discussed further in

the discussion section.

Mean Equivalence

Power results for the TOST, BF approaches andHDImethod

are displayed in Figure 1, where the y-axis represents the
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Figure 1 Probability of concluding equivalence of means with each of the equivalence testing and Bayesian methods.

The rate of detecting equivalence for the BF-N method is represented when ε = 0. The TOST and HDI methods are not
represented when ε = 0 because these methods require an equivalence interval that is greater than 0.

probability of declaring the populations equivalent. The

results for the 90% HDI and TOST procedures were practi-

cally identical in every sample size (displayed in separate

panels) and equivalence interval (displayed along the x-

axis of each panel). This is not surprising because, even

though there are interpretational differences between the

Bayesian and frequentist results, the procedures are nu-

merically aligned. Along with the BF100 cutoff, they were

also consistently the most conservative (i.e., the least likely

to detect equivalence) of the tests used. However, the

power of the BF100 cutoff increased faster relative to the

HDI and TOST procedures as sample size increased; the

BF100 cutoff was ultimately the lowest in power for detect-

ing equivalence when sample size was low (N ≤ 100), but
the TOST and HDImethods were lower in power compared

to the BF100 cutoff as sample size increased to N = 1000.

Overall, the BF10 and BF30 cutoffs both detected equiv-

alence more frequently than all other methods in every

case.

In general, a large equivalence interval was needed to

detect equivalence when the sample size was low. In fact,

with N ≤ 100, every method had power rates for detect-
ing equivalence of 0 with an equivalence interval based on

an effect size below d = 0.2. Even when sample size was
increased to N = 200, a BF cutoff of 10 was the only mea-
sure to detect equivalence with an equivalence interval set

at (−0.2, 0.2). The BF with a nil hypothesis was unable to
detect equivalence at any sample size, highlighting the po-

tential limitations of using the overly strict nil hypothesis.
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Figure 2 Probability of concluding a lack of correlation with each of the equivalence testing and Bayesian methods.

The rate of detecting equivalence for the BF-N method is represented when ε = 0. The TOST and HDI methods are not
represented when ε = 0 because these methods require an equivalence interval that is greater than 0.

Negligible Correlation Simulation

Power results for the TOST, BF approaches andHDImethod

are displayed in Figure 2, where here the y-axis represents

the probability of declaring the relationship between the

two variables negligible. Results for the lack of correla-

tion simulations were very similar to the lack of mean dif-

ference simulation results reported above. Namely, the

HDI and TOST procedures displayed practically identical

equivalence detection rates in all conditions (i.e., all sam-

ple size and equivalence interval conditions). Along with

the BF100 cutoff, they were also again the most conserva-

tive methods. As seen in the t-test simulation results, the
power to detect equivalence of the BF method increased

more relative to the HDI and TOST procedures as sample

size increased; the BF100 cutoff was lower in power com-

pared to the HDI and TOST methods when sample size was

low (N ≤ 100), but was higher in power when sample size
increased to N = 1000. Again, the BF10 and BF30 cutoffs
both detected equivalence more frequently than all other

methods.

The most significant departure from the mean differ-

ence results was that the BF with a nil hypothesis was able

to detect a lack of correlation when N ≥ 200. However,
this was only the case when using a BF cutoff of 10. Even

when the sample size was N = 1000, the BF30 cutoff was
unable to detect a lack of correlation using a nil hypothe-

sis. The TOST, HDI, and BF100 methods were all unable to

detect negligible correlation with a tighter equivalence in-

terval than (−.15, .15)when the sample size wasN ≤ 200.
The BF30 method had reasonable power to detect negligi-

ble correlation with an equivalence interval of (−.15, .15)
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Figure 3 Overlapping histogram of males and females in scores of conscientiousness.

or higher when N ≥ 100, and an equivalence interval of
(−.1, .1) or higher whenN ≥ 200.

Application with Empirical Data

To demonstrate the TOST and the Bayesian HDI and BF ap-

proaches for detecting the equivalence of two population

means and negligible correlation, we performed an analy-

sis on the Big Five Inventory (BFI) dataset available in the R

psych package (Revelle, 2016). The BFI dataset is based on
a collection of 25 personality self-report items taken from

the International Personality Item Pool that measure lev-

els of the Big Five personality traits: Conscientiousness,

Agreeableness, Neuroticism, Openness, and Extraversion

(Goldberg, 1999). The survey items are based on a 6-point

response scale, from 1 (Very Inaccurate) to 6 (Very Accu-
rate). The dataset includes the responses of 2800 subjects
taken from the Synthetic Aperture Personality Assessment

(SAPA) web based personality assessment project (Revelle,

Wilt, & Rosenthal, 2010).

To demonstrate testing for mean equivalence, the

scores of males and females in levels of conscientiousness

were compared to test the research hypothesis that they

are equivalent. This hypothesis follows up on a recent

paper that found no significant difference between gen-

ders in levels of conscientiousness (Lehmann, Denissen,

Allemand, & Penke, 2013). After excluding all incomplete

cases, the final sample size was 2707 subjects, with 888

male participants (Mage = 28.0, SDage = 11.0) and 1819
female participants (Mage = 29.1, SDage = 11.1). All
procedures use an equivalence interval based on a small

value of Cohen’s d (−.2, .2), except for the BF-N method,
which uses a nil hypothesis. The posterior distribution for

the HDI was generated with the BEST package (Kruschke
& Meredith, 2015), using the same noninformative priors

as used in the simulation study described above.

To demonstrate testing for a lack of correlation, the

association between age and agreeableness was analyzed

to test the hypothesis that personality traits remain sta-

ble in fully developed adults. The choice to measure

levels of agreeableness was based on a recent longitudi-

nal study, which found that agreeableness remains sta-

ble among middle-aged cohorts (Wortman, Lucas, & Don-

nellan, 2012). To this end, only participants between the

ages of 30 and 60 were included. After excluding partic-

ipants outside of this age range or with incomplete an-

swers, the final sample size was N = 978. All procedures
use an equivalence interval based on a Pearson’s r set at
(−.1, .1), except for the BF method that uses a nil hypoth-
esis (BF-N). The posterior distribution was generated with

the BayesianFirstAid package (Bååth et al., 2014), us-
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Figure 4 Posterior distribution for the standardized effect size with a 90%HDI. The red vertical lines indicate the bounds

of the equivalence interval (−0.2, 0.2).

ing the same approach as in the simulation study (e.g.,

noninformative priors, default iterations). The R (Revelle,

2016) code for conducting these analyses can be found at

https://osf.io/tfdxq/.

Equivalence of Conscientiousness by Gender

Conscientiousness scores were standardized so that an

equivalence interval based on Cohen’s d could be used
with all tests. Figure 3 shows an overlapping histogram

of the standardized scores. The TOST-SW variant of the

TOST method was used, which adjusts for unequal pop-

ulation variances. Using the TOST-SW method, the null

hypothesis that the difference between the scores of male

(MM = 0.03, SDM = 1.05) and female (MF = −0.02,
SDF = 0.97) participants in levels of conscientiousness
is greater or equal to d = .2 (or less than or equal to
d = −.2) can be rejected, t1(1648.6) = −1.262, p1 = 0.01;
t2(1648.6) = 3.501, p2 < 0.01.
Using a BF approach with a nil hypothesis resulted in

a BF of 16.13. This means that the null model, which pre-

dicts that there is no difference, is 16.13 times more likely

than the alternative model, which predicts that there is a

difference. In terms of the BF cutoffs used in the simula-

tion study, this indicates that only the BF10 cutoff would

conclude that the scores of male and females are equiva-

lent. However, when an equivalence interval is incorpo-

rated into the test based on bounds of (−.2, .2), the calcu-
lated BF rises to 77546. Thus, every level of the BF cutoffs

used in the simulation study (10, 30 and 100) would detect

equivalence. This drastic jump in the BF highlights once

again the theoretical importance of including equivalence

intervals in the BF approach when it is warranted.

Using Bayesian estimation, the mean of credible pa-

rameter values for µ1 is 19.2, with a 90% HDI from 19.1

to 19.3, and the mean for µ2 is 19.0, with a 90% HDI from

18.9 to 19.1. As seen in Figure 4, the 90% HDI for µ1 − µ2

(−0.0077, 0.137) is fully within the equivalence interval (-
.2, .2), and thus there is support for the hypothesis that

there is no difference betweenmales and females in scores

of conscientiousness.
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Figure 5 Scatterplot of the variables age and agreeableness.

Lack of Correlation between Age and Agreeableness

Figure 5 shows that there does not appear to be any non-

linear relationship between age and agreeableness. In ad-

dition, it suggests that the assumption of homoscedasticity

is valid and that there are no multivariate outliers. The

correlation coefficient was r = .043, 95% CI [−0.02, 0.11].
Using the correlation variant of the TOST to check for a

lack of association, the null hypothesis that the correlation

between age (M = 40.08, SD = 7.75) and agreeableness
(M = 21.45, SD = 3.34) falls outside the equivalence
interval can be rejected, t1(976) = −1.775, p1 = .038;
t2(976) = 4.479, p2 < 0.001.
Using a BF approach with a nil hypothesis results in

a calculated BF of 10.04, indicating that the null model,

which assumes that there is no correlation, is 10.04 times

more likely than the alternativemodel, which assumes that

there is a correlation. In terms of the BF cutoffs used in

the simulation study, this indicates that only the BF10 cut-

off would conclude a lack of correlation. However, when

an equivalence interval is incorporated (−1, .1), the calcu-
lated BF rises to 235. Thus, every level of the BF cutoffs

used in the simulation study (10, 30 and 100) would con-

clude equivalence. As with the mean difference example,

this highlights the substantial increase in power that comes

from using an equivalence interval in BF calculations.

Using the Bayesian estimation approach, the mean of

credible parameter values for ρ is 0.044, with a 90% HDI
from (−0.008 to 0.099). As seen in Figure 6, the 90% HDI
is within the equivalence interval (−0.1, 0.1). Thus, there
is support for the hypothesis that there is no association

between age and levels of agreeableness.

Discussion

This paper aims to serve as a guide for researchers who

wish to explore and compare the benefits and differences

between the TOST procedure and two Bayesian alterna-

tives for assessing a lack of association (e.g., lack of mean

difference, negligible correlation). To this end, a simula-

tion study was performed to assist researchers in under-

standing how to quantify and compare the power of these

procedures. Specifically, the results serve to illustrate how

these competing alternatives differ under various testing

conditions. Next, these methods were applied to a dataset

to serve as a demonstration of how Bayesian analysis can

be used to test for a lack of mean difference and negligible
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correlation.

The simulation study revealed important practical dif-

ferences between the three approaches examined in this

paper. Power differences between the tests remained rela-

tively consistent across both the lack of mean difference

and negligible correlation situations. However, it is in-

teresting to note that in most cases either a large sam-

ple size or large equivalence interval is required to detect

a lack of association. This highlights the inherent diffi-

culty in successfully demonstrating a lack of association

with limited data, regardless of the method being used.

On the other hand, recent research (Rusticus & Eva, 2016)

has highlighted that the smallest meaningful association

among variables might actually be larger than what has

traditionally been accepted as such (e.g., d = .2, r = .1);
this research has important implications for setting appro-

priate equivalence intervals.

In the simulation study, the BF100 cutoff had a power

of 0 in all cases when sample size was low (N ≤ 100).
However, it is important to note that the BF100 cutoff was

more powerful in both the mean difference and correla-

tion simulations than the TOST and HDI methods when

sample size was N = 1000. This suggests that sample
size affects the power of these methods differently, al-

though further study is required to make any definitive

statements. A related note is that the power for detecting

equivalence is also affected by setting the scale of the al-

ternative hypothesis (BF prior). We only present results

for the default scaling factor of 1, since we believe it is

important when testing for equivalence to have sufficient

The demonstrations us-
ing the BFI dataset also
illustrate how easy it
can be to apply Bayesian
alternatives to the fre-
quentist methods that
psychologists often em-
ploy in their analyses.

separability between the null and alter-

native distributions. Setting the scal-

ing factor below 1 results in an alterna-

tive distribution that contains a nontriv-

ial probability that the parameter falls

near 0 (i.e., contains substantial over-

lap with the null distribution). More re-

search and discussion is necessary re-

garding the most appropriate alterna-

tive distribution to use when utilizing

BFs to test for equivalence.

Since noninformative priors were

used, it is not surprising that the HDI

and TOST results were similar. While

the HDI and TOST methods displayed similar power across

conditions, keep in mind that the HDI method is capable

of incorporating informative priors and more logical state-

ments can bemade regarding the conclusions. With a large

body of research informing a researcher’s study, it may be

wise to use informative priors based on previous research.

If incorporating informative priors, the HDI method may

be a better choice. It is also important to note that al-

though the adopted TOST, HDI and BF approaches are all

heteroscedastic in nature, the BF-EQ is not. Although this

was not an issue with the simulation study or applications

described in this paper, caution should be taken in inter-

preting the results of the BF-EQ approach when the vari-

ances are unequal.

Finally, both the simulation study and the demonstra-

tions point to the importance of using equivalence inter-

vals in psychological research. In the simulation study, the

use of a nil hypothesis significantly reduced the power of

the BF method for detecting equivalence. It was unable

to detect equivalence in any of the mean difference sim-

ulation conditions, even when the sample size was over

1000, andwas only able to detect a lack of correlationwhen

sample sizes were large (N ≥ 200) using a BF cutoff of
10. These power issues with the BF-N were further high-

lighted in the demonstrations. In both the mean difference

and correlation demonstrations, the BF approach with an

equivalence interval due to (Morey & Rouder, 2011) was

drastically more powerful than the BF approach with a nil

hypothesis developed by Jeffreys. This was particularly ev-

ident in the lack of mean difference example, where the

BF jumps from 16.13 using a nil hypothesis to 77546 when

using an equivalence interval.

The demonstrations using the BFI dataset also illustrate

how easy it can be to apply Bayesian alternatives to the fre-

quentist methods that psychologists often employ in their

analyses. Although the TOST uses familiar NHST terminol-

ogy that is familiar to most researchers, the results of the

BF method are no more difficult to interpret. Likewise,

results of the HDI method are easily

understood by anyone with experience

calculating confidence intervals. In the

end, each method has unique proper-

ties that can make it a more pragmatic

choice, depending on the situation. The

BF is a good choice if researchers want

to compare how much more likely the

null is to the alternative (or vice versa),

and the HDI method is a good choice

if they want information about the full

posterior distribution(s). The Bayesian

methods are also recommended if the

researchers have previous information

that could be included in the priors. In fact, it is important

for future research to explore the effect of informative pri-

ors on the procedures outlined in this paper. For instance,

when testing for a lack of correlation, researchers might

want to explore priors that give less weight to values that

are closer to 1 or −1, as opposed to using a uniform distri-
bution.

Overall, Bayesian methods provide useful alternatives
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to traditional equivalence testing techniques like the TOST.

With the power of modern computers, Bayesian tech-

niques now serve as a practical alternative to frequentist

approaches that take very little effort to employ, and which

have unique benefits. Although we do not wish to ar-

gue that Bayesian methods are superior to frequentist ap-

proaches, or vice versa, for testing formean equivalence or

negligible correlation, we feel that knowledge of Bayesian

methods should be more widespread in the realm of the

behavioral sciences so that discussion on the relative mer-

its of each method is encouraged.
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