Corrigendum to “A review of effect sizes and their confidence intervals, Part I: The Cohen’s d family”

Jean-Christophe Goulet-Pelletier a, and Denis Cousineau a

aUniversité d’Ottawa

Abstract Two errors have been found in the published article that are corrected here. All the simulations reported were error-free.

Keywords Effect size, standard error, confidence intervals, Cohen’s d.

✉ jgoul014@uottawa.ca

JCNP: 0000-0002-2016-549X; DC: 0000-0001-5908-0402

d 10.20982/tqmp.15.1.p054

Two errors have been identified in the published article Goulet-Pelletier and Cousineau (2018). First, the d_{D_c} formula in Table 1, page 244, is erroneous. The correct formula is

$$d_{D_c} = d_D \times \sqrt{2} (1 - r)$$

(the division sign is replaced by a multiplication sign). This error is found within the text, on page 252, right column, first paragraph, with the incorrect sentence

the result of d_D is $\sqrt{2} (1 - r)$ times larger than Cohen’s d_p

(the symbol d_D and d_p replaces S_D and S_p). The mistake comes from the fact that the factor of conversion is incorrectly applied to the effect size estimate instead of its standard deviation. Therefore, when applied to the Cohen’s d effect size, the factor of conversion is $1/\sqrt{2} (1 - r)$. Hence, the equation (12a), at page 252, should be

$$d_D = d_p / \sqrt{2} (1 - r) \quad (12a)$$

and equation (12b) on page 252 should be

$$d_p = d_D \times \sqrt{2} (1 - r) \quad (12b)$$

Second, regarding the standard error of Cohen’s d_1 on page 256, left column, last paragraph, we omitted to mention that the standard error of d_1 is obtained by changing all “2/n” in Table 3 by “1/n”. Again, the simulations have been conducted using the correct standard error formula (using 1/n) for d_1. Therefore, the results are not affected by this change.

Authors’ note

We are thankful to Louis Laurencelle and Bertram Walter who brought those mistakes to our attention.

References

Citation

The Quantitative Methods for Psychology

Copyright © 2019, Goulet-Pelletier and Cousineau. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original