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Abstract The study of complex social networks is an inherently interdisciplinary research area

with applications across many fields, including psychology. Social network models describe, illus-

trate and explain how people are connected to each other and can, for example, be used to study

information spread and interconnectedness of people with different kinds of traits. One approach

to social network modelling, originating mainly in the physics literature, is to generate targeted

kinds of social networks using models with specialized mechanisms while analyzing and deriving

features of the models. Surprisingly though, and despite the popularity of this approach, there is no

available functionality for generating a wide variety of social networks from these models. Thus,

researchers are left to implement and specify these models themselves, restricting the applicability

of these models. In this article, I provide a set of Matlab functions enabling the generation of artifi-

cial social networks from 22 different network models, most of them explicitly designed to capture

features of social networks. Many of these models originate in the physics literature andmay there-

fore not be familiar to psychological researchers. I also provide an illustration of how these models

can be evaluated in terms of a simulated model comparison approach and how they can be applied

to psychological research. With the already existing network functionality available in Matlab and

other languages, this should provide a useful extension to researchers.
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Introduction
The analysis of complex networks, or network science, is

an interdisciplinary field emerging mainly from sociology

and from graph theory in mathematics (Watts, 2004). Ba-

sically, it concerns the understanding of relational phe-

nomena through studying complex networks of intercon-

nected components and its applications include problems

in physics (Bianconi & Barabási, 2001), bioinformatics

(Barabási & Oltvai, 2004), epidemiology (Meyers, Pour-

bohloul, Newman, Skowronski, & Brunham, 2005), eco-

nomics (Mayer, 2009), sociology (McPherson, Smith-Lovin,

& Cook, 2001), psychology (Perry-Smith & Shalley, 2003) as

well as many other areas (Borgatti, Mehra, Brass, & Labi-

anca, 2009; Newman, 2003). Among the many network

models available, the subset of social network models fo-

cus on how people interconnect in various domains. As

such, these models attempt to capture the structure of so-

cial networks in different ways. In some contexts, such

models are highly relevant for psychological research, be-

cause the structure of a social network can impose fun-

damental constraints on how psychological variables im-

pact individuals across the network (Brass, Butterfield, &

Skaggs, 1998; Fowler & Christakis, 2008).

This article focuses on randomly generated artificial

networks from different social network models. In addi-

tion, this article gives concrete examples on how such ran-

domly generated networks can be used in psychological

research. In general, randomly generated networks can

be used to explore the predictions of a theory in a social

network context. For example, suppose we have a theory

about how information spreads in a network. We can then

generate artificial social networks with desired properties

and simulate information spread in those networks. This

makes it possible to check what the theory predicts and re-

late those predictions to particular network properties. If
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real network data is available, we can also check which

simulated network properties are crucial for reproducing

information spread data patterns observed in the real net-

work.

One possible dimension along which to classify social

network models is “Generic-Specialized”. In the one end

of this dimension, we find generic statistical network mod-

els that focus on issues of statistical inference. These mod-

els typically do not focus on the mechanisms by which

networks evolve, but rather on identifying network prob-

ability distributions. For example, one such framework

is offered by exponential random graph models (Robins,

Pattison, Kalish, & Lusher, 2007). In the other end of

the “Generic-Specialized”-dimension we find specialized

network models that contain explicit specifications of the

mechanisms by which networks evolve. These models are

often introduced with a specific purpose in mind, such

as suggesting mechanisms by which community structure

can develop in a network (Li & Maini, 2005). Models on

the Generic end of the dimension are well represented and

available in different computational packages and func-

tions (Handcock, Hunter, Butts, Goodreau, & Morris, 2003;

Ripley, Snijders, Boda, Vörös, & Preciado, 2015). On the

contrary, models on the Specialized end of the dimension

are, on the whole, not nearly as available in the form of

program functions. For example, both the SNAP library

(Jure Leskovec, Lang, Dasgupta, & Mahoney, 2008) and the

igraph R package (Csardi & Nepusz, 2006) implement
models for generating networks, but very few of these are

explicit social network models. On the one hand, this may

not be surprising, because specialized models often attract

the interest of specialized researchers who write their own

functions. On the other hand, this is unfortunate, because

it means that some researchers whomight benefit from us-

ing a variety of these models end up not doing so because

of the work required in implementing them. Furthermore,

many of the specialized social network models originate in

the physics literature. This means that these models may

not always be familiar to researchers in other disciplines,

such as psychology.

In order to make specialized social network models

more readily available, this article provides Matlab (Mat-

lab, 2016) functions for generating artificial networks from

22 different networkmodels. These functions can be found

at https://osf.io/7apdm/. This set of models, although not

exhaustive, is representative of the kinds of social network

models originating from the physics literature. The struc-

ture of the rest of this article is as follows. First, I consider

some common social network terminology and features.

Second, I describe different classes of social network mod-

els. Third, I introduce the Matlab functions implementing

the network models and illustrate their use for a few of

the models. Fourth, by way of examples, I illustrate some

cases for which social network modelling may be relevant

to psychological research. Fifth and finally, I discuss the

relevance of different kinds of modelling approaches, in-

cluding an illustration of how to compare different mod-

els. The overarching aim of this article is to enhance the

availability and applicability of specialized social network

models.

Social Network Features
A network or graph G(V,E) consists of n vertices v ∈ V
and m edges e ∈ E connecting some of the vertices. In
a social network, the vertices typically represent people

and the edges represent relations or inter-connectedness

in some sense. For example, an edge connecting two ver-

tices could represent an existing friendship relation be-

tween two people. The networks considered here are all

undirected, meaning that the edges represent symmetric

relations. Most of the networks considered here are also

unweighted, meaning that all existing edges have the same

weight. Vertices in a network form components, so that

all vertices within a component are reachable via paths

through other vertices. Figure 1A shows an example of an

artificial social network. The grey vertices represent the

largest component and vertex size is proportional to ver-

tex degree k. For undirected networks, the degree k is a
vertex property that designates the number of edges con-

necting a vertex to other vertices.

There are a number of characteristics often exhibited

by social networks. For example, the degree distribution

P (k) of social networks is often highly skewed, so that
there is a small number of vertices with large k and a large
number of vertices with small k (as in Figure 1) and can
often be approximated by power-law or exponential dis-

tributions (or a combination thereof; Clauset, Shalizi, and

Newman, 2009): P (k) ∝ k−γ or P (k) ∝ e−λk

respectively.

Another feature typical of social networks is that the

average shortest distance D̄ tends to be small (Travers

& Milgram, 1969; Watts & Strogatz, 1998). The shortest

summed distance Di,j between vertices vi and vj is the
smallest number of edges in G through which vj can be
reached from vi, assuming that each traversed edge equals
a distance of 1. The average shortest distance D̄i,j is then

simply the average of all

(
n
2

)
shortest distances in G (as-

suming G has only one component). A small value of D̄
means that few edges are expected to be traversed in or-

der to travel from one random vertex to another.

Social networks also show a relatively high value of

clustering. The clustering of a network can be measured

through the average clustering coefficient C̄ (Watts & Stro-
gatz, 1998). The clustering coefficient Ci for each vertex vi
ranges from 0 to 1 and is a proportion indicating the extent
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Figure 1 Artificial Social Networks. A: Singer model (Singer, Singer, & Herrmann, 2009). Grey vertices belong to the

largest component. B: Li model (Li & Maini, 2005). Greyscale brightness is based on community structure according to

the algorithm in Blondel, Guillaume, Lambiotte, and Lefebvre (2008). C: Toivonen model (Toivonen, Onnela, Saramäki,

Hyvönen, & Kaski, 2006). D: Leskovec model (J. Leskovec, Lang, Dasgupta, & Mahoney, 2008). A and B visualized using

Fruchterman-Reingold algorithm (Fruchterman & Reingold, 1991) and C and D using OpenOrd algorithm (Martin, Brown,

Klavans, & Boyack, 2011) in Gephi 0.9.1 (Bastian, Heymann, & Jacomy, 2009). Vertex size is proportional to degree in A

and B.

to which vertices connected to vi (“neighbors” to vi) are
connected to each other. Clustering in the entire network

can then be measured by the average of these, so that

C̄ =

∑n
i=1 Ci
n

.

Many social networks also reveal distinct community

structure. There are various definitions of what com-

munity structure means and many different associated

algorithms (Blondel, Guillaume, Lambiotte, & Lefebvre,

2008; Newman, 2011, 2016; Palla, Derényi, Farkas, & Vic-

sek, 2005), but a common denominator is that commu-

nity structures in some sense form relatively dense sub-

networks within a larger network. For example, people

in a workplace have different assignments and this puts

natural constraints on which and how many people they

interact with. On average, people within a community

are closer to each other than they are to people in other

communities. Figures 1B-D show artificial networks with

clear com-munity structure. The number of communi-

ties will depend on one´s definition, but the networks can

clearly be partitioned into a number of different groups

with much fewer connections between than within them.

A final typical feature of social networks is assortativity

or homophily. This property designates similarity between

vertices and neighboring vertices. In the case of social net-

works, this means that people tend to connect with peo-

ple similar to themselves. For example, social networks

often exhibit assortativity with respect to degree k (New-
man, 2002), so that degree k is positively correlated with
knn, where knn is the average k for neighboring vertices.
Put simply, on average, compared to people with few con-
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Table 1 Classification of Network Models.

Type Description

Static Independent formation of edges via pre-defined probability.

Growing Network grows from n0 to n vertices, acquiring edges along the way.
Dynamical Network contains n vertices, acquiring edges iteratively.
Spatial Vertices are distributed in space, updating their position or acquiring edges as a function of distance

and attributes associated with vertices.

nections, those with many connections connect to people

with more connections.

The basic network and vertex properties mentioned in

this section are illustrated even more concretely in Figure

2, which depicts a small network with four vertices. The

tables in Figure 2 contain values for different quantities.

These values can be easily calculated by considering the

depicted network.

For example, the table to the left in Figure 2 shows

values for the degree k, the clustering coefficient C and
the average degree of the nearest neighbors knn. For ver-
tex number 1, the values for these quantities are k = 3,
C = 1/3 and knn = 5/3. We arrive at k = 3 by count-
ing the number of edges that connect to vertex 1. We ar-

rive at C = 1/3 by counting the number of edges among
the neighbors of vertex 1 and then divide that number by

the maximum possible number of edges among the neigh-

bors. The neighbors of vertex 1 are vertices, 2, 3 and 4, and

these neighbors have one edge between them. The maxi-

mum possible number of edges between vertices 2, 3 and

4 is 3 edges, which gives C = 1/3. Finally, we arrive at
knn = 5/3 by summing the degrees of the neighbors of
vertex 1 and then divide that number by the number of

neighbors. The neighbors of vertex 1 are vertices 2, 3 and

4. The sum of the degrees of these neighbors is 2 + 2 + 1 = 5.

The number of neighbors of vertex 1 is k = 3, which then
gives knn = 5/3.
The table to the right in Figure 2 shows the shortest dis-

tancesD for all vertex pairs. For example, the shortest dis-
tance between vertex 1 and 2 is D = 1, because we only
have to traverse one edge to get from vertex 1 to vertex 2.

In contrast, the shortest distance between vertex 2 and 4 is

D = 2, because we have to traverse two edges, via vertex
1, to get from vertex 2 to vertex 4 along the shortest path.

Classification of Network models
Network models can be classified in several ways. Here, I

focus on the mechanisms underlying the models and use

the classification given in Toivonen et al. (2009), which in-

cludes three categories of models: Growing, Dynamical,

and Spatial. For completeness, I add a fourth category:

Static, even though these models are not explicitly social

network models. Table 1 summarizes these four types

of models. Static models typically involve some proba-

bilistic procedure performed on each element of the net-

work. For example, the classic Erdős–Rényimodel (Erdos &

Rényi, 1959; Gilbert, 1959) independently forms edges be-

tween vertices in a network with probability p. There is
no growth mechanism and no interaction between the el-

ements of the network incorporated into the network for-

mation procedure. Thus, the model is static.

Growing models start with a number of n0 vertices
and then implements a growth procedurewhereby the net-

work accumulates both vertices and edges until the net-

work has n vertices. The classic Barabási-Albert model
(Barabási & Albert, 1999) is an example of a growing net-

work model. Here, the network starts with a number of

vertices (m+1 in the current implementation). On each

time step a new vertex and m edges are added to the net-

work. The m edges connect the new vertex to m existing

vertices selected using preferential attachment, so that the

probability of being selected is proportional to degree.

In dynamical models no vertices are added to the net-

work. Instead, the network starts out with the final num-

ber of vertices while adding, removing, and/or modify-

ing edges iteratively. For example, in the Davidsen model

(Davidsen, Ebel, & Bornholdt, 2002) we start with n ver-
tices. On each iteration an edge is formed between two

neighbors of a random vertex and, with probability p, a
random vertex and its edges are removed and replaced

with a new vertex with one random edge.

Finally, in spatial models vertices are distributed in

space. Thesemodelsmay also involve attributes other than

spatial position associated with each vertex. Edge forma-

tion or updating of vertex position is then typically a func-

tion of distance and vertex attributes. For example, in

the Boguna model (Boguñá, Pastor-Satorras, D́ıaz-Guilera,

& Arenas, 2004) vertices are distributed uniformly in a so-

cial space. Edges are then formed as a function of distance

in social space.

In a few cases a model may belong to several cate-

gories. This is especially so for the Qiao model (Qiao,

Huang, Li, & Fan, 2014) which is explicitly designed to

serve as a bridge between different types of social network

models. Depending on parameter values, the model can

behave as both a growing and a dynamical networkmodel.
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Figure 2 In the middle is a small network consisting of 4 vertices (black circles) labelled 1 to 4. The lines connecting

the vertices are undirected edges. The table to the left shows, for each vertex, the degree k, which is the number of
edges connected to a vertex; the local clustering coefficient C , which is the proportion of possible edges that are actually
present between the neighbors of a vertex; and knn, which is the average degree among the neighbors of a vertex. The
table to the right shows the shortest distanceD from one vertex to another for all vertex pairs, where each edge counts as
a distance of 1. The mean of all quantities is shown at the bottom of the tables. By convention, the clustering coefficientC
has no value (n/a = not available) for vertices with degree k < 2, because in that case there are no possible edges between
neighbors that can exist.

It is important to remember that different models pro-

posed in the literature have been proposed with different

purposes and scope in mind. As a result, some of them

capture features of social networks more adequately than

others. For example, the Barabási-Albert model (Barabási

& Albert, 1999) produces highly skewed (power-law) de-

gree distributions in line with real social networks, but the

clustering, assortativity and community structure associ-

ated with themodel is far from that of real social networks.

This is not surprising, because the model was not designed

to capture those features. Other models have extended the

mechanisms in the Barabási-Albert model to capture spe-

cific features of social networks (Catanzaro, Caldarelli, &

Pietronero, 2004; Li & Maini, 2005).

A comparison of models explicitly designed to capture

features of social networks was reported in Toivonen et al.

(2009). This comparison involved seven specialized net-

work models (all of which are included among the func-

tions in this article) and also an exponential random graph

model. In this comparison, the spatialmodels produced ad-

equate community structure and assortativity, but unreal-

istic clustering and degree distributions. The latter two fea-

tures were better captured by growing and dynamical net-

work models. The exponential random graph model pro-

duced instable results as well as weak community struc-

ture. In the next section I describe the use of the cur-

rent Matlab functions implementing different types of so-

cial network generation.

Matlab Functions for Social Network Generation
Associated with this article is a set of 22 Matlab func-

tions for generating artificial networks. The Appendix

briefly describes each of these models and related param-

eters. For the most part, the functions utilize the core

functionality of Matlab. Some functions utilize the rand-

sample function though, which is included in the Statis-

tics and Machine Learning Toolbox available from Math-

works. For most of the included network models, the out-

put returned when calling a function is the n × n sym-
metric zero-diagonal adjacency matrix M describing the

generated network of n vertices. If there is an edge be-
tween vertex i and j then Mij = Mji = 1, otherwise
Mij = Mji = 0.
Running these functions in Matlab is very simple.

Download the function files from https://osf.io/7apdm/ and

put them in the same folder. Set this folder as the cur-
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rent folder in Matlab or add the folder to the search path

(type help cd or help addpath in the Command window, or

set current folder directly by point and click when open-

ing Matlab). To view the help text associated with each

function, simple write help <function name>. For example,

to view the help text associated with the Barabási-Albert

model (Barabási & Albert, 1999) write help barabasi
and the output of Listing 1 appears.

In order to run this function we need to specify its two

parameters, n andm. In order to generate a network with
200 vertices and m = 3, we writeM = barabasi(2e2,3) in

the command window. Matlab has some graph and net-

work algorithms in its core functionality (see help graph)

that can be useful. One can also visualize networks eas-

ily in Matlab, although for larger networks there are bet-

ter programs available. A network generated from the

Barabási-Albert model is visualized in Figure 3A. For a

quick and raw visualization where vertex color is matched

to degree use the code, whereM is the adjacency matrix:

G = graph(M);
plot(G,’-ok’,’layout’,’force’,

’NodeLabel’, {},...
’NodeCData’,degree(G),
’MarkerSize’,6);

colormap gray
c = colorbar;
set(c,’FontSize’,15)
axis off

As noted, for most of the functions the returned output

is the symmetric unweighted adjacency matrixM . There
are three exceptions to this, namely for the Singer, Axel-

rod, and Parravano model functions. The Singer function

returns M and, if requested, a combined friendship and

interest function (see help singer); the Axelrod function re-

turns an edge-weighted adjacencymatrixM (see help axel-

rod); finally, the Parravano function returns a list of [x, y]-
coordinates for the vertices (see help parravano). The Ax-

elrod and Parravano functions also visualize the network

formation process iteratively during simulation.

The list of models in the Appendix encompasses mod-

els of many different kinds and the reader is referred to

the original sources in order to gain a fuller understand-

ing of the types of networks generated by each model and

the meaning of associated parameters. I offer one addi-

tional example here using the Toivonen model (Toivonen,

Onnela, Saramäki, Hyvönen, & Kaski, 2006), or T model

for short. The T model is a growing network model able

to generate networks with clear community structure, rel-

atively high clustering, relatively high assortativity and

highly skewed degree distributions. Thus, it capturesmany

of the features of social networks (Johansson, 2016; Toivo-

nen et al., 2009). The model has four parameter, n, n0, p
and lim. The network grows from a chain of n0 vertices to
a total of n vertices, adding one vertex each time step. On
each time step, the new vertex is attached to one random

vertex with probability p and to two vertices with proba-
bility 1− p. These random vertices are called primary con-
tacts. The neighbors of these primary contacts are called

secondary contacts and the new vertex is attached to m
secondary contacts of each primary contact, where m is a
uniformly distributed integer with lower and upper limits

given by lim. Figure 3B shows a realization of this network

revealing clear community structure, with parameter val-

ues n = 200, n0 = 10, p = .95 and lim = [0, 3]. Given
that we can generate artificial social networks one might

naturally ask how social networks may be relevant to psy-

chological research. In the next section, I consider two ex-

amples in detail to illustrate this relevance.

Social Networks in Psychological Research
In this section, I consider two fictitious examples of how

social network models may be applied to psychological re-

search. Of course, there aremany examples using real data

illustrating this basic point in many different ways (Brass

et al., 1998; Feiler & Kleinbaum, 2015; Fowler & Christakis,

2008; Krause, James, & Croft, 2010; Mollgaard &Mathiesen,

2016). Nevertheless, by using fictitious data, we can tailor

the data to highlight central aspects of the examples more

clearly. One example illustrates how personality traits can

be incorporated into specialized network models and the

other example illustrates how the structure of a network

could affect opinion formation. Ourmain aimhere is not to

provide full-fledged realistic examples, but rather to illus-

trate the general reasoning behind using specialized net-

work models in a simplified way.

Personality Traits and Networks

Personality traits, or “relatively enduring styles of think-

ing, feeling, and acting.” [50, p. 509], have a long-

standing place in the psychological literature (Allport &

Allport, 1921). Traditionally, personality traits are concep-

tualized either as theoretical terms in a nomological net-

work (Cronbach &Meehl, 1955) or as latent variables caus-

ing observed responses (Borsboom, Mellenbergh, & van

Heerden, 2004). A relatively new approach links person-

ality traits directly to network theory by viewing indica-

tors of personality traits as directly and indirectly linked

interacting components in a network (Cramer et al., 2012).

Although this latter approach is promising in reducing

the abstract components of personality theory to concrete

causal relations, we shall for the sake of simplicity stick to

a simple conception of personality when relating personal-

ity traits to social networks.
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Listing 1 Result of the help barabasi command

barabasi Generate Barabasi-Albert network

M = barabasi(N,M) computes adjacency matrix M according to the
Barabasi-Albert model. N is the number of vertices and M is the number
of edges added each time-step as the network grows. The starting
network consists of M+1 vertices and 0 edges.
See DOI: 10.1126/science.286.5439.509

Example
n = 1e3;
m = 4;
M = barabasi(n,m);
Computes adjacency matrix M for the Barabasi-Albert model with
1000 vertices, adding 4 edges each time-step starting from an
unconnected network of 5 vertices.

One commonly investigated trait dimension is ex-

traversion/introversion (Eysenck & Eysenck, 1963; McCrae

& Costa, 1997), where extraverted individuals are more so-

ciable and outgoing and introverted individuals are more

solitary. Thus, on average extraverts have more friends

than introverts. Furthermore, if two individuals have sim-

ilar levels of extraversion they are more likely to become

friends (Feiler & Kleinbaum, 2015). Suppose our only ob-

jective is to set up a social network model that captures

these two features: 1) degree related to extraversion and

2) assortativity with respect to extraversion. To this end,

we can use a spatial model and associate each vertex with

a realization of extraversion E. For example, in order to
incorporate assortativity with respect to extraversion, we

can use the Boguna model (Boguñá et al., 2004), where the

probability of an edge is a function of distance in 1D social

space. If we replace this social space with realizations of

E then the probability of an edge will reflect distance in
E. We can also add an additional influence reflecting the
meanE with respect to two vertices and specify the weight
of each influence. Thus, in the original Boguna model,

edges between vertices i and j are formed with probabil-

ity

pi,j =
1

1 +
(
dSi,j

b

)a , (1)

where dS is distance in social space in the interval [0, 1]
and a and b are parameters. In our new model, edges are

formed with probability

pi,j =w

 1

1 +
(
dEi.j

b

)a


+ (1− w)

 1

1 +
(

1−mEi.j

b

)a
 ,

(2)

where dE is the distance in E, mE is the mean of E for
a pair of vertices, and w is a weight parameter in the in-
terval [0, 1]. Essentially, what we have done is simply to

make the model reflect two influences on edge formation:

1) pair-wise similarity in E and 2) pair-wise mean value of
E, along with a parameter governing the weight of each
influence. Changing the boguna Matlab function to reflect

these two influences is straightforward. The original code

is

function M = boguna(n,a,b)
v = repmat(rand(1,n),n,1);
M = triu(1./(1+(abs(v-v’)./b).^a),1)>

rand(n);
M = sparse(M+M’);
end

whereas the new code is

function M = bogunanew(E,a,b,w)
n = length(E);
E = (E-min(E))./(max(E)-min(E));
v = repmat(E,n,1);
M = triu(w.*(1./(1+(abs(v-v’)./b).^a))

...
+(1-w).*(1./((1+(1-((v+v’)./2))./b)
.^a)),1)>rand(n);
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Figure 3 Visualization of Barabasi (A) and Toivonen (B) Network in Matlab. Greyscale bar indicate degree k. Figure
code can be obtained at https://osf.io/7apdm/.

M = sparse(M+M’);
end

In the New Code aboveE is a row vector with extraver-
sion values. These are then rescaled by the function to the

interval [0, 1].

Figure 4 plots joint probability distributions P (E, k)
and P (E,Enn) for n = 100, a = 2, b = .2 and w = 0, .1, 1
where the elements of E are distributed as Normal(30, 5)
and Enn denotes E of the nearest neighbors. When pair-
wise mean values of E control edge formation (w = 0) k
grows with E on average, but E is only weakly related to
Enn. In contrast, when pair-wise similarity in E controls
edge formation (w = 1) Enn grows with E, but k is a U-
shaped function ofE. When both components of Equation
2 influence edge formation appropriately (e.g. w = .1)
both k and Enn grow with E on average. In conclusion,
the two features we considered, namely 1) degree being

related to extraversion and 2) assortativity with respect to

extraversion, are captured by the model.

Opinion Formation and Networks

Opinion formation and persuasion research concerns in-

formation transmission between individuals and how the

resulting dynamics affect the formation of opinions. As

such, this type of research fits naturally within a social net-

work framework (Watts & Dodds, 2007; Weenig & Midden,

1991). In the following example, we consider the effect of

social network structure on opinion change. In this con-

text, we will make a non-trivial observation, namely that

an aggressive opinion change approach can have different

effects on opinion change depending on the distribution of

initial opinions within and between communities. In order

to model this we need a model which is able to produce

networks with different degrees of community structure,

along with a model for opinion change.

The model we will use for opinion change is as follows.

Assume we have a network G(V,E). Every vertex v has
the same fixed persuasion probability p and an initial opin-
ion o which can take one of two values. We then 1) select a

random vertex v and its neighbors vnwith opposing views.
Then, 2) for each of the neighbors vn change the opinion

to that of v with probability p. We call this changed set of
neighbors vnc. Next, 3) for eachmember of vnc, let each of
its neighbors vnn independently change the opinion back
to the original with a probability equal to proportion of

neighbors of the specific vnn that have changed its opin-
ion. If the set vnc is not empty return to step 1 and replace
v with vnc.
In more concrete terms, the algorithm proceeds by

changing the opinion of one individual, say John. John

then persuades some of his friends, say Sue, Bill and Janet.

Some friends of Sue, Bill and Janet will now possibly have

opinions different from those of Sue, Bill and Janet. These

friends react by trying to change the opinions of Sue, Bill

and Janet back to what they originally were, before they

were changed by John. Suppose James is a friend of both

Bill and Janet. Then James will try harder changing their

opinions than if James knew only Bill. Likewise, if James

has few friends hewill try harder persuading Bill and Janet

than if James hasmany friends. We could say that themore

threatened James own view is by the opinion change, the
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Figure 4 Simulated k as a function ofE (left column) andEnn as a function ofE (right column) for different values of w
in the adapted Boguna model. Each plot is based on 104 model realizations. Brighter regions correspond to higher joint
probability. Figure code can be obtained at https://osf.io/7apdm/.

more effort he will spend restoring the original opinion.

If Sue, Bill and Janet are all persuaded to go back to their

original opinions then we stop. Otherwise, Sue, Bill and/or

Janet will try to persuade their friends. Some of these may

be persuaded, and then their friends will react, and so on.

Figure 5 provides an illustration of the opinion change

algorithm. Here, at time step 1, we have a small network

with opinions distributed in white and black. At time step

2, the enlarged vertex attempts to change the opinions of

its neighbors with opposing views, successfully changing

the opinion of one of them to white. At time step 3, the op-

posing black neighbor of the newly changed vertex tries to

change it back to black, but fails. At time step 4, the newly

changed vertex tries to convince its opposing neighbor and

succeeds in doing so, upon which the algorithm stops.

In order to simulate this type of opinion change in a so-

cial network with clear community structure, we use the

Li model (Li & Maini, 2005). This model is similar to the

Barabási-Albert model (Barabási & Albert, 1999) but is able

to generate distinct communities. The number of commu-

nities is set through theMc parameter and the distinctive-
ness of these is set through the a probability parameter.
When a = 0 there are no edges between communities
(complete community structure) and when a = 1 there are
as many edges between as within communities (no com-

munity structure). For the simulations we will compare

a = .1 with a = .9 for n = 100 vertices. The number of
edges added each time-step was set tom = 3 in the former
case and m = 2 in the latter case, in order to keep mean
degree k similar across the two values of a. The number of
communities wasMc = 2 and one opinion was associated
with vertices in one community and the other opinionwith

the other community.

The p parameter can be interpreted as an aggressive-
ness parameter, because it designates the probability of

changing the opinion of a neighbor. Aggressiveness, how-
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Figure 5 Illustration of opinion change algorithm. See text for explanation.

ever, comes with a potential cost, because the more neigh-

bors are changed themore the others will potentially strike

back. This pattern can be seen for both clear commu-

nity structure (a = .1) and for no community structure
(a = .9) in Figure 6, because there is an optimal p for
opinion change in the middle of the p distribution. Being
more aggressive than this optimal level results in less net

opinion change. Furthermore, when there is clear com-

munity structure associated with the original opinions the

least amount of opinion change is achieved when aggres-

siveness is at its highest (p = 1), which is not the case
when there is no community structure. In the latter case,

the least amount of opinion change occurs when there is

very little aggressiveness (p = .1). This example illustrates
the basic point that depending on the network structure,

aggressiveness in persuading others pays off differently.

Different Modeling Approaches
The complexity emerging from interacting network com-

ponents makes it difficult to generate predictions purely

based on informal reasoning. Here, we have considered

the effect of extraversion on network structure and the

effect of aggressiveness and network structure on opin-

ion change. These effects were explored by embedding

the questions in specialized network models along with

theoretical assumptions. Psychological variables, such as

extraversion and aggressiveness, occur within individu-

als. However, they mostly achieve their effects by inter-

acting with other individuals who are situated in social

networks. Therefore, psychological research could quite

plausibly benefit from considering explicit specialized so-

cial network models when investigating questions related

to network structure. This final section considers this issue

more broadly.

The “Generic-Specialized” dimension of network mod-

els considered in this article is not unique to the analysis

of complex networks. In fact, the same dimension can be

applied to virtually any substantive research area where

modeling has been applied. For example, in psychology

there is an abundance of mechanistic computational mem-

ory (Hintzman, 1984; Ratcliff, 1978; Shiffrin & Steyvers,

1997; Stewart, Brown, & Chater, 2005), learning (Elman,

1990; McClelland, McNaughton, & O’Reilly, 1995; Servan-

Schreiber & Anderson, 1990) and categorization (Kruschke,

1992; Nosofsky, 1986; Vanpaemel & Storms, 2008) models.

These models incorporate theoretical assumptions about

the mechanisms underlying psychological processes and

fall in the specialized end of the “Generic-Specialized” di-

mension. For example, a memory model could involve as-

sumptions about how information is stored, how it is up-

dated, how it is forgotten, and how it is used. In the generic

end of the “Generic-Specialized” dimension, we find statis-

tical models with a more general purpose, that are much

broader in scope and that have a more explicit statistical
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Figure 6 Mean number of changed opinionsM(c) as a function of p in the Li model for a = .1 and a = .9. The means
are averaged over 103 realizations for n = 100 vertices. Figure code can be obtained at https://osf.io/7apdm/.

foundation, such as latent variable models (Loehlin, 1987),

time series analysis (Jebb, Tay, Wang, & Huang, 2015) and

generalized linear models (Hedeker, 2005). These models

account for relationships, covariances and dependencies

in the data in different ways, but typically do not involve

specification of underlying processes at the detailed level

of specialized models.

At the risk of belaboring the obvious, I assert that both

Generic and Specialized models have their use in psychol-

ogy, and this includes network models. It is obvious that

both types of models have been applied successfully in the

past in psychology and in network science. Furthermore,

sometimes a model or class of models moves along the di-

mension, often from the Specialized end in the Generic di-

rection. For example, a model may be proposed in a rel-

atively detailed, yet heuristic and algorithmic fashion ini-

tially, in order to model some specific phenomenon. Then,

further on, the model may be placed on a more solid sta-

tistical or mathematical foundation (Bollobás & Riordan,

2004; Goldenberg, 2009).

Even though Specialized models are often not ex-

pressed in a form directly amenable to analytic statisti-

cal inference, most of the time numerical or simulation

strategies are applicable in order to evaluate the models.

For example, in order to engage in model comparison we

could fit the models with respect to a combined error func-

tion containing as many quantities as the number of free

parameters, and then assess the resulting models with its

optimal parameters with respect to some quantity of in-

terest (Johansson, 2016; Toivonen et al., 2009). Alterna-

tively, in linewith a Bayesian approach (Wasserman, 2000),

we could compare the marginal likelihoods of the mod-

els through simulation. For example, suppose we have a

model with two parameters, we could then simulate the

model over an informative grid of parameter value com-

binations. For each combination of parameter values, we

compute the probability of observing the empirical data in

question (the likelihood) with respect to some quantity of

interest (Rohrmeier & Cross, 2014). The average of these

likelihoods is then the marginal likelihood of the model

with respect to a uniform prior on the model parameters.

The ratio of two marginal model likelihoods is the Bayes

Factor and denotes the factor by which the data support

one model over the other (Dienes, 2011). We will illustrate

this approach by an example along with the Matlab code

required to implement it.
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Consider the Boguna model, previously mentioned in

the Personality Traits and Networks section. This model

has two parameters a and b. Suppose we want to com-
pute the marginal likelihood for this model with respect

to mean degree k of an observed network with n = 50
vertices. First, we define a grid of parameter values of in-

terest. Note that the resulting likelihood will depend on

this choice. Suppose we select a from 1 to 3 in steps of
0.1 and b from 0.05 to 1 in steps of 0.05. We then define
a distance D from the observed k and let D define the

boundaries of what we count as the observed data. Sup-

pose that mean k = 10.5, and we set D = 0.5. Then,
mean degrees k in the interval I = [10, 11] will count as
reproducing the observed data. We then simulate the net-

work over s iterations and compute the proportion of sim-

ulated mean degrees falling in the interval I for each of
the parameter value combinations. The mean of all these

is our marginal likelihood. Simulating this in Matlab is

straightforward, although of course potentially time con-

suming depending on the model, parameter values and s,
because of the brute force nature of this way of approxi-

mating a likelihood through Monte Carlo simulation. How-

ever, the virtue of this method is its simplicity. The Matlab

code for simulating this using a parallel loop and returning

the marginal likelihood for s = 103 is as follows.

Marginal Likelihood Boguna
a = 1:.1:3;
b = .05:.05:1;
np = length(a)*length(b);
p1 = reshape(repmat(a,length(b),1),1,np)

;
p2 = repmat(b,1,length(a));
n = 50;
s = 1e3;
kobs = 10;
D = 1;
I1 = kobs-D;
I2 = kobs+D;
L = zeros(1,np);
c = np;
parfor i = 1:np

k = zeros(1,s);
for m = 1:s

k(s) = mean(sum(boguna(n,p1(i),
p2(i))));
end
L(i) = mean(k>I1 \& k<I2);

end
ML = mean(L);
disp(ML)

This gives a marginal likelihood LB = 1.43 × 10−5
.

Suppose we wish to compare the Boguna model to the

Grindrod model (Grindrod, 2002), which has two param-

eters constrained to the interval [0, 1]. This model has a

marginal likelihood LG = 2.25× 10−5
. The ratio LB/LG

gives the Bayes FactorBF quantifying the factor by which
the observed data supports one model over the other. In

this case, BF = 0.64 which is close to 1, indicating that
none of the two models is distinctly supported over the

other (Dienes, 2011).

Conclusion
The aim of this article is not to go into details with respect

to model comparison, but rather to enhance the applica-

bility of specialized social network models in psychology.

Ultimately though, this requires getting to know the mod-

els under consideration. In many cases, it is likely that im-

plementing psychological variables into these models re-

quires careful thinking and perhaps some adjustment of

the model functions. In fact, the careful thinking required

is precisely one of the main advantages of modeling. A

model parameter implemented in a particular way corre-

sponds to some particular way of conceptualizing a pro-

cess. When a parameter is distributed a particular way,

it corresponds to a distributional assumption, and so on.

Without making these choices, the model produces no out-

put. As such, modeling naturally offers the potential of in-

sight and theory development, along with theory testing.

Hopefully, the included social network Matlab functions

will assist researchers in achieving these goals with some

degree of success.
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Saramäki, J., & Kaski, K. (2009). A comparative study

of social network models: Network evolution models

and nodal attribute models. Social Networks, 31(4),
240–254. doi:10.1016/j.socnet.2009.06.004

Toivonen, R., Onnela, J.-p., Saramäki, J., Hyvönen, J., &
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Appendix A: Description of Network Models in Alphabetical Order.
Name Reference

Type Parameters

Description

Axelrod Axelrod (1997)

Spatial ns, nf , nt, T,D
n2s vertices ("cultural sites") are connected in a square lattice. Each vertex is associated with nf cultural features,
each taking a uniformly random value from 1 to nt. On each of T iterations a vertex vi and one of its neighbors vj
are randomly selected. If they differ on any of their nf features then, with a probability matching the percentage of
shared features between them, one of the differing features is selected from vi and substituted for the corresponding
value of vj . The returned edge-weighted adjacencymatrixM indicates the percentage of shared features plus a small

number (floating point relative accuracy, for drawing edges). D is a drawing parameter. If D is 1 then the network
is visualized over time (wider edges means more shared features) and if D is 0 the network is not visualized and
computed much faster.

Barabasi Barabási and Albert (1999)

Growing n,m
n is the number of vertices andm is the number of edges added each time-step as the network grows. The starting
network consists ofm+ 1 vertices and 0 edges. New edges are formed with preferential attachment.
Boguna Boguñá et al. (2004)

Spatial n, a, b
n is the number of vertices distributed uniformly in a one-dimensional space from 0 to 1. Edges are formed with
probability p = 1/(1 + (d/b)a), where d is the distance in space.
Caldarelli Caldarelli, Capocci, De Los Rios, and Muñoz (2002)

Static/spatial n, k
Uses a power-law fitness distribution p(x) ∼ x−k where x is uniformly distributed in the interval [0,1]. n is the
number of vertices and k is the power-law exponent. The edge probability function is f(xi, xj) = (xi×xj)/max(x)2.
Callaway Callaway, Hopcroft, Kleinberg, Newman, and Strogatz (2001)

Growing n
n is the number of vertices. One edge is added each time-step with random attachment.
Catanzaro Catanzaro et al. (2004)

Growing n, p, f
n is the number of vertices, p is the probability of adding one new vertex on the current iteration and connecting
it to an existing vertex selected with a probability proportional to degree (same as Barabasi model). 1 − p is the
probability of connecting two unconnected existing edges, v1 and v2, on the current iteration, where v1 is selected
with a probability proportional to its degree and v2 is selected with a probability proportional to the relationship
between its own degree and the degree of v1. f specifices the functional form of this relationship, where f = 1
specifies an inverse functional form and f = 2 specifies an exponential functional form.
David Davidsen et al. (2002)

Dynamical n, p, it
n is the total number of vertices and it is the number of iterations. On each iteration 1) an edge is formed between
two neighbors of a random vertex and 2) with probability p, a random vertex along with its edges is removed and
replaced with a new vertex with one random edge.

Erdos Erdos and Rényi (1959)

Static n, p
n is the number of vertices and p is the probability of an edge between two random vertices.
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Name (reference)
Type Parameters

Description

Grabowski Grabowski and Kosinski (2006)

Spatial l, σ,Q, t, kmax
The network consists of n vertices arranged in a square lattice with sides of length l, so that n = l2. Each vertex is
associated with Q normally distributed features with mean 0 and standard deviation σ, with the features rounded
to integers. Over the course of t iterations the features of a vertex change as a function of its current features and
those of its neighbors. Feature similarity between vertices is then used to define social distance, which in turn is used

to update edges. The edges in the original lattice always remain, but others may form and disappear. kmax sets the
maximum degree of a vertex. If kmax is reached the edge to the most socially distant vertex is deleted. If kmax is not
reached an edge is formed to the socially closest vertex within the neighbors of neighbor. If there are several then

the spatially closest is formed. If there are still several, then a random one of these is formed.

Grindrod Grindrod (2002)

Static/Spatial n, a, b
n is the number of vertices. Edges are formedwith probability p = a×bk−1

, where k is |i−j| for the natural ordering
of the vertices from i = 1, 2, . . . , n, and a and b are constrained to the range [0,1].
Kumar Kumar, Novak, and Tomkins (2006)

Growing t,m, g, p1, p2, vi
On each of t iterations one new vertex is first added. This vertex is a "passive" with probability p1, a "linker" with
probability p2, or an "inviter" with probability 1− p1 − p2. Then,m edges are added. One of the vertices (vx) in each
edge pair (vx, vy) is sampled based on degree from existing linkers and inviters. If vx is a linker, then vy is sampled
based on degree from linkers and inviters, but favoring linkers by a factor of g. If vx is an inviter, then vy is a new
vertex added to the network and designated a "passive". vi is the number of unconnected initial vertices.Kumpula Kumpula, Onnela, Saramäki, Kaski, and Kertész (2007)

Dynamical n, pd, pe, pr, it
n is the number of vertices. For each of it iterations, pd is the probability of connecting a random vertex vr with one
other vertex along a local weighted updated search path, pr is the probability of connecting vr with another random
vertex, and pe is the probability of deleting a vertex and its edges and replacing it with a new unconnected one. The
model involves additional fixed parameters: w0 (initial vertex strength = 1),∆ (weight increase = .5).
Leskovec J. Leskovec, Kleinberg, and Faloutsos (2007), J. Leskovec, Lang, Dasgupta, and Mahoney (2008)

Growing n,m
Themodel uses a burning algorithm and generates directed networks in its original formulation. Here, I have adapted

it to generate undirected networks. The original model contains 3 parameters, while this only contains 2. The net-

work grows from a single vertex to n vertices. On each time step a new vertex vi is added and connected to a random
existing vertex vj . Then, x neighbors to vj are randomly selected, where x is a random number from a geometric dis-
tribution with meanm. If x = 0 or if there are no neighbors then proceed to the next time step. Otherwise, if vj has
fewer than x neighbors then all neighbors are selected, Then repeat the sampling procedure from the neighbors of
the x neighbors, and so on, conditioned on not revisiting the same vertex on the current time step and not revisiting
the same edge over the entire simulation. Then connect vi to all visited vertices.Li Li and Maini (2005)

Growing n,Mc,m0,me, a
The model starts withMc internally fully connected communities of m0 vertices. Edges are then formed between
communities from random vertices within communities so that all communities are connected by an edge. The

network then grows to a total of n vertices by the following procedure: On each time step, a new vertex vi is added
and assigned to a community randomly. Vertex vi is then connected to 1 ≤ me ≤ m0 vertices within its community
using preferential attachment based on within-community degree. Then, with probability a, vi is connected to me
vertices in other communities using preferential attachment based on between-community degree.

Marsili Marsili, Vega-Redondo, and Slanina (2004)

Dynamical n, a, b, c, it
n is the total number of vertices, a is the probability of connecting two random vertices, b is the probability of con-
necting to secondary contact, c is the probability of deleting a random edge and it is the number of iterations.
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Name (reference)
Type Parameters

Description

Parravano Parravano and Reyes (2008)

Spatial n, ρ, γ,R, T,D
This is a gas like social network model, consisting of n particles. At first, the particles are distributed uniformly
random in a square with side l = sqrt(n/ρ), where ρ is the density. Each particle has an unchanging internal state
x, whose distribution is specified through parameter D. D = 1: uniformly random from 0 to 1; D = 2: uniformly
random from -1 to 1; D = 3: all 1; D = 4: half -1, half 1. Using periodic boundaries the particles then move as
they interact with particles in their neighborhood. The neighborhood is defined as a circle with radius l/R with the
particle in the center, where R ≥ 2. The movement takes place over T iterations using Eq. 2 in (Parravano & Reyes,
2008), depending on the parameter γ.
Qiao Qiao et al. (2014)

Growing/ Dynamical m0, N,E, pg, pa, pr, pc, pp, pt
m0 is the number of initial unconnected vertices,N is the final number of vertices andE is the final number of edges.
The model can be either growing or dynamic depending on configuration and includes four types of mechanisms

for connecting vertices: random attachment, transitive attachment (connecting via neighbors) within social groups,

preferential attachment and non-preferential attachment. The model algorithm is relatively involved. See Qiao et al.

(2014) for further explication of the algorithm and probability parameters pg, pa, pr, pc, pp, and pt.
Singer Singer, Singer, and Herrmann (2009)

Spatial n, σ, it
The model starts with n unconnected vertices and forms connections over it iterations. On each iteration a randomly
selected vertex seeks an encounter, either with a connected vertex, or with an unconnected vertex, with probabilities

as a function of both degree and a parameter governing the tendency of each vertex to seek new acquaintances. The

σ parameter specifies the standard deviation of the normally distributed acquaintance parameter with a mean of 1
and truncated at 0. Encounters with connected vertices are governed by a combined friendship and interest function,

while encounters with unconnected vertices are governed by degree and a threshold related to σ. Connections can
be replaced if suggested connections reveal gain according to the interest function. The combined friendship and in-

terest function, scaled between 0 and 1, constitutes a combination of howmany times two vertices have encountered

each other and how well they match each other. The interest function itself is uniformly distributed between 0 and

1.

Toivonen Toivonen et al. (2006)

Growing n, n0, p, lim
n is the total number of vertices, n0 is the number of initial vertices, p is the probability of a new node attaching to
one random vertex (1−p is the probability of attaching to two random vertices), and lim is a vector with two elements
indicating the lower and upper boundaries of a uniform distribution used to select the number of secondary contacts.

Vazques Vázquez (2003)

Growing n, u,mr,m
n is the total number of vertices, 1− u is the probability of connecting a new vertex tomr random vertices, and u is
the probability of convertingm potential edges to actual edges.
Wong Wong, Pattison, and Robins (2006)

Spatial n, p, pb, h
n is the number of vertices distributed uniformly in a two-dimensional unit space, p and pb are probabilities and h is
a threshold.

Watts Watts and Strogatz (1998)

Static n, k, β
n is the number of vertices, 2 × k is the mean degree, and β is the probability of rewiring the edges of each node
starting from a regular ring lattice.

The Quantitative Methods for Psychology 732

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p056


¦ 2019 Vol. 15 no. 2

Citation
Johansson, T. (2019). Generating artificial social networks. The Quantitative Methods for Psychology, 15(2), 56–74. doi:10.

20982/tqmp.15.2.p056

Copyright © 2019, Johansson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with

these terms.

Received: 14/01/2019∼ Accepted: 31/03/2019

The Quantitative Methods for Psychology 742

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p056
https://dx.doi.org/10.20982/tqmp.15.2.p056
https://dx.doi.org/10.20982/tqmp.15.2.p056

