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Abstract Although Cohen’s d and the growth modeling analysis (GMA) d from linear models are

common standardized effect sizes used to convey treatment effects, popular statistical software

packages do not include them in their standard outputs. This article demonstrated the use of sta-

tistical software with user-prescribed parameter functions (e.g., Mplus) to produce d for treatment

effects from both classical analysis and GMA–along with their associated standard errors (SEs) and

confidence intervals (CIs). A Monte Carlo study was conducted to examine bias in the SE and CI for

GMA d obtained with Mplus and found that both estimates were more accurate when calculated

by the software with the standard bootstrap than with the delta method, but the delta method es-

timates were less biased than respective estimates from extant post hoc equations. Thus, users of

many statistical software packages (including SAS, R, and LISREL) should obtain d or GMA d and

associated CIs directly. Researchers employing less versatile software–and meta-analysts including

ds and GMA ds in their syntheses of treatment effects–should continue to use the conventional post

hoc equations. Biases in SEs and CIs for effect sizes obtained with them are ignorable and point

estimates of d and GMA d are the same whether obtained directly from the software or with post

hoc equations.
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Introduction
The need for effect sizes that communicate the potency

of intervention effects is now well established (Grissom &

Kim, 2012). There is also an increasing recognition of the

importance of also providing confidence intervals (CIs) for

these effect sizes (Cumming, 2013; Odgaard & Fowler, 2010;

Preacher & Kelley, 2011).

Effect sizes can be unstandardized or standardized

(Kelley & Preacher, 2012). Unstandardized effects sizes

have an advantage over standardized effect size when

making comparisons among findings from different stud-

ies that used the same outcome measure because there

is no confounding of effect magnitude with sample ho-

mogeneity (Baguley, 2009). However, different studies

examining the same hypothesis often use varying oper-

ationalizations of identical constructs, thus inextricably

confounding homogeneity with instrumentation proper-

ties. This is a key reason standardized effects sizes are

typically used in meta-analysis in the behavioral sciences

(Feingold, 2017).

There are a number of standardized effect sizes in

common use, and the choice of the effect size metric for

a particular study is often based on the distributions of

study variables: (1) the correlation coefficient (r), when
the independent and dependent variables are both contin-

uous, (2) the odds ratio (OR), when the outcome is categor-

ical, and (3) the standardized mean difference (Cohen’s d),
when the independent variable is categorical (e.g., treat-

ment vs. control) and the dependent variable is continu-

ous (Feingold, 2013). Thus, d is frequently used when re-
porting results from randomized controlled trials (RCTs)
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examining efficacy of psychosocial interventions. How-

ever, the d statistic can vary as a function of design (Goulet-
Pelletier & Cousineau, 2018), and the d relevant to RCTs
(and thus this article) expresses the differences between in-

dependent groups (e.g., the treatment and control group)–

whether observed in data from a completely randomized

design, or from amixed design that compares independent

groups on repeated measures.

Statistical Software for Standardized Effect Sizes

Although most statistical software packages (e.g., SPSS)

output r or OR as a standardized effect size where appro-
priate, such programs do not report d. Thus, a two-step
method is typically used to obtain d from reported descrip-
tive (means and standard deviations) or inferential (e.g.,

t ratios) statistics with post hoc equations typically found
in meta-analytic texts (e.g. Borenstein, Hedges, Higgins, &

Rothstein, 2009) to calculate d and its CI.
In addition, a growth model analysis (GMA) d can be

derived from a linear multilevel or latent growth model

that compares the random slopes of two groups over time

to test intervention efficacy (Feingold, 2009). GMA d is a
model-based estimate of the standardized mean difference

between the two groups (e.g., treatment and control) at the

end of a randomized study, and thus an equivalent of Co-

hen’s d from a completely randomized design (Feingold,
2015). GMA d has now been reported in hundreds of RCTs
(e.g. Chorpita et al., 2017; Felder, Epel, Lewis, Cunningham,

Tobin, et al., 2017; Goodnight et al., 2017; Parra-Cardona et

al., 2017; Stice, Rohde, Shaw, & Gau, 2017). As with classical

d, GMA d is not reported in statistical outputs and has pre-
viously been obtained only with a two-step approach that

uses a post hoc equation at step 2.

An alternative but rarely considered approach is to

use statistical software with user-prescribed parameter

functions– including lavaan in R (Rosseel, 2012), LISREL

(Jöreskog & Sörbom, 2006), PROC CALIS in SAS (Inc, 2011),

and Mplus (L. K. Muthén & Muthén, 2017) but not SPSS–

to directly produce effect sizes, standard errors (SEs) and

confidence intervals (CIs) for d and GMA d (Feingold, 2019).
This article illustrates an application of this approach with

Mplus, a versatile statistical package commonly used to

conduct modeling analysis with observed and latent out-

comes. Although Mplus–like other statistical programs–

does not ordinarily produce d or GMA d, the software has
the capability to create new parameters. This function-

ality would allow Mplus (and other programs with simi-

lar capabilities) to calculate d and GMA d directly, and to
obtain their SEs and CIs with the same methods the pro-

gram uses to produce SEs and CIs for standard parameters

(e.g., regression coefficients). Thus, this article uses Mplus

to demonstrate and validate the use of this new approach

for obtaining d and linear GMA d (with associated SEs and
CIs), although adaptations to other software is relatively

straightforward. (For effect size estimation for more com-

plicated non-linear GMA models, see Feingold, 2019.)

Calculation of d in Classical Analysis

Cohen’s d is the difference between the means of two inde-
pendent groups divided by the pooled within-group stan-

dard deviation (SD).

M1 −M2

SD
, (1)

whereM1 is the mean of one group andM2 is the mean of

the other group.

Most mainstream statistical packages can be used to

compare the means of two independent groups with com-

mands specifying a t test, an analysis of variance (ANOVA),
or a multiple regression analysis. However, Mplus re-

quires the use of the regression framework to compare

means, which entails coding the binary predictor (x) cap-
turing group and regressing the continuous outcome (y) on
those codes (Cohen, Cohen, West, & Aiken, 2003).Single covariate model (one-step method). In a regres-
sion equation with a single dichotomous predictor (with a

1 unit difference between the codes used to create the x
variable, e.g., "0" for control and "1" for treatment, or "-.5"

and ".5"), the unstandardized regression coefficient (b) of y
on x is the raw score mean difference (M1 −M2) between

the groups–the numerator in the formula for d (see Equa-
tion 1). The square root of the residual variance from that

model is the pooled within-group SD of the outcome–the

denominator in Equation 1. The d, the SE of d, and the CI
of d from a single covariate model (where group is the only
predictor) can thus be calculated in Mplus in a single step

with the MODEL CONSTRAINT command that creates new

parameters from existing ones, such as regression coeffi-

cients and residual variances (see Listing 1 in Appendix A

for the Mplus input that produces d from the single covari-
ate model).Multiple covariates model (two-step method). Designs
with one or more covariates in the model in addition to the

binary treatment variable are common in program evalua-

tions. In particular, a pretest score is often included as a co-

variate in an independent groups pretest-posttest control

group design (MacKinnon, 2008; Morris & DeShon, 2002) to

decrease the SE of b and increase power to detect the treat-
ment effect.

When treatment is not the only independent variable

in the regression model, the residual variance is no longer

the pooled within-group SD because variance in y ex-
plained by other covariates is removed from the variance

of y (Cohen et al., 2003). Therefore, in GMA models with
multiple covariates, the pooled SD cannot be determined
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from the residual variance but instead must be obtained

from a prior analysis at step 1 and then specified inMODEL

CONSTRAINT at step 2 (see Listing 2 in Appendix A for in-

put producing d using a specified SD from a model with
multiple covariates). Such a two-step method in which a

predetermined SD of the outcome is specified in the input

to calculate an effect size is also used in Mplus for medi-

ation analysis with a continuous predictor and a dichoto-

mous outcome (Feingold, MacKinnon, & Capaldi, 2019;

B. O. Muthén, Muthén, & Asparouhov, 2016).

Given randomization, the expected value of the corre-

lation between the treatment variable and other covariates

in a regression model is zero. Thus, b and d would then
both have the same expected values in single and multiple

covariate models. However, the CIs may be narrower in

the latter because of the reduced SE as a result of variance

in y (e.g., posttest score) explained by other covariates (e.g.,
pretest scores).

By default, Mplus produces the SE for new estimates

(e.g., d) with the same delta method (Benichou & Gail, 1989;
Kendall & Stuart, 1977) used to obtain the SEs for standard

parameters (e.g., b). Inclusion of an optional command in
the input statement to report CIs will have Mplus produce

the CIs for both b and d with the delta method.
Mplus also has a capability to generate SEs and CIs for

both default (e.g., b) and new (e.g., d) parameters with
the bootstrap –either the standard non-parametric (per-

centile) bootstrap (Efron & Tibshirani, 1993) or the Bollen-

Stine residual parametric bootstrap (Bollen & Stine, 1992)–

in lieu of SEs and CIs obtained by default with the delta

method . However, bootstrap CIs are almost never re-

ported instead of delta method CIs for either b or d, which
indicates that researchers generally assume that b and d
are normally distributed and have symmetric CIs.

The square of the SE of d is the variance of d, which
is used in meta-analysis of study findings in the d metric
(Borenstein et al., 2009; Feingold, 2017). Meta-analysts typ-

ically calculate this variance with post hoc equations that

are approximations provided in meta-analytic texts that

yield estimates that are close to the squares of the SEs of

d obtained in Mplus with the input provided in Appendix
A. Unlike primary researchers, meta-analysts must rely on

post hoc equations (e.g., Equation 1) because Mplus can

only produce d and its SE from raw data, whereas meta-
analysts typically need to calculate them with statistics ex-

tracted from research documents.

Growth Modeling Analysis (GMA)

GMA–including multilevel modeling/hierarchical linear

models (Goldstein, 2011; Hedeker & Gibbons, 2006; Hox,

Moerbeek, & van de Schoot, 2010; Raudenbush & Bryk,

2002) and latent growth modeling (Bollen & Curran, 2006;

Preacher, Wichman, MacCallum, & Briggs, 2008)–is often

used to compare trajectories (e.g., means of random lin-

ear slopes) between groups to examine differences in rate

of growth on an outcome over the course of a longitu-

dinal study, particularly to evaluate intervention efficacy.

GMA has revolutionized approaches to the analysis of re-

peated measures data used to examine naturally occurring

or experimentally induced changes in people’s attitudes,

health, and behaviors (Gueorguieva & Krystal, 2004; Kul-

janin, Braun, & DeShon, 2011). GMA is now as familiar to

evaluators of interventions as ANOVA and ordinary least

squares regression.

Calculating GMA d from Extant Post Hoc Equations

Equation 2 is typically used to convert the unstandard-

ized coefficient (b) for the effect of group on slope (the
treatment effect) to a standardized effect size (GMA d)–the
model-estimated standardized mean difference between

the two groups at the end of a randomized study,

GMA d =
b× duration

SD
, (2)

which estimates the same effect size parameter as Cohen’s

d (Feingold, 2013, 2015).
The b in the numerator of Equation 2 is the differ-

ence in the rate of change in the outcome between the

two groups per unit of time (e.g., per week when time is

coded in weeks), and duration is the length of the study

based on units associated with b (e.g., number of weeks
from baseline if b is the group difference in rate of change
per week).

1
The numerator in Equation 2 (the product of b

and duration) is thus the model-estimated raw score mean

difference between the two groups at the end of the study

(and analogous toM1 − M2 in Equation 1 for d). The SD
(denominator of Equation 2) is the pooled within-group SD

of the outcome (y) that is an estimate of the same param-
eter as the SD in Equation 1. However, with GMA of data

from multiple time points, the SD of y can be calculated
from observed baseline or end-of-study within-group vari-

ation, depending on statistical and theoretical considera-

tions (see discussion in Feingold, 2013). SD can also be ob-

1
The magnitude of b can vary with the coding of time in a given GMA. Therefore, the duration term in Equation 2 can also vary with coding of time

because the product of b and duration (i.e., the expected raw score mean difference at end of the study) must be the same regardless of the value of b.
As an example, consider a 6-week study that includes 4 assessments, with 2 weeks between time points. If the GMA used time codes of 0, 2, 4, and 6 for

T1 (baseline), T2, T3, and T4 assessments respectively, b is the difference in change rate per week, and thus duration is 6, because it is a 6-week study.
However, if time codes were based on measurement occasions rather than week (e.g., 0, 1, 2, and 3), bwould be twice as large because it would then be
the difference in rate of change expected in a 2-week period. The duration in an analysis using this alternative coding for the same study would then

be 3. When the time codes are based on occasions that differ by 1 point between them, duration is 1 less than the number of time points.

The Quantitative Methods for Psychology 982

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p096


¦ 2019 Vol. 15 no. 2

tained from the GMA in a single covariate model by sum-

ming the variance of the intercept growth factor and the

Level 1 residual variance (Feingold, 2015, 2019).
2

Recent work (Feingold, 2015) has derived and validated

an equation for the estimation of the variance (v) of GMA
d,

v = SE2
b ×

(
duration

SD

)2

, (3)

where SEb is the SE of b and SD is the same statistic used
in Equation 2 to calculate GMA d. The square root of v is
thus the SE of the GMA d, which can be used to calculate
the 95% CI of GMA d,

CI = GMA d± 1.96× SE. (4)

A mathematically equivalent approach for CI estimation

uses Equation 2, but with the lower and upper confidence

limits (CLs) of b replacing the point estimate to transform
the CI for b into the CI for GMA d (Feingold, 2015).

Producing GMA d for Linear Models in Mplus: An Illus-
trative Analysis

As with Cohen’s d, the GMA d and associated statistics
can be obtained directly with Mplus. Example 6.10 in the

Mplus user’s guide (L. K. Muthén & Muthén, 2017) consists

of an input statement for a linear GMA–with 4 equidistant

time points (coded 0, 1, 2, and 3 for y11, y12, y13, and
y14, at T1, T2, T3, and T4, both respectively), 2 continuous
time-invariant covariates (x1 and x2), and a single time-
varying covariate (a31-a34)–used for an illustrative GMA
of an accompanying dataset included with the Mplus soft-

ware (ex6.10.dat, N = 500). The current illustration uses
this example as a foundation for demonstrating the calcu-

lation of GMA d–and the three different SEs and CIs for
GMA d–from Mplus, and affords comparisons with respec-
tive statistics obtained with the widely used post hoc equa-

tions that include delta method statistics (Feingold, 2009,

2015).

Because GMA d is used only with binary covariates, a
DEFINE command was added to Example 6.10 input to di-

chotomize the continuous x1 (based on a mean split) co-
variate in the accompanying dataset, and the MODEL CON-

STRAINT command was included for the program to cal-

culate GMA d. With 4 equidistant time points differing by
1 unit between them, duration = 3. Two types of models

are considered, a multiple covariates model (where there

is one ormore covariates in themodel in addition to the co-

variate for condition) and a single covariate model (where

group is the only time-invariant covariate in the analysis).

Multiple covariates model. As with classical analysis, a
two-step method is needed to obtain effect sizes from a

GMA model with multiple covariates (e.g., Mplus user’s

guide Example 6.10). The input requires specifications of:

(a) duration, and (b) a predetermined SD for the within-

group variation of y (see MODEL CONSTRAINT code in
the Listings 3 and 4 in Appendix B). The SD of 1.478 spec-

ified for this example of a model with multiple covari-

ates was the within-group SD at baseline (y11POOLED),

which is commonly used for SD estimation in RCTs because

it ensures that the SD is unbiased by effect of treatment

or attrition–and is also used to evaluate the effectiveness

of the randomization when comparing the two groups at

baseline (see Feingold, 2009, 2013). This SD was obtained

by regressing y11 on the binary x1 covariate and taking
the square root of the residual variance.

Three input statements–all modifications of Mplus Ex-

ample 6.10–were used to conduct the illustrative analysis

to produce the standard GMA statistics plus the GMA ds,
SEs, and CIs from the multiple covariates model with: (a)

the default delta method (see Listing 3 in Appendix B), (b)

the standard bootstrap (Listing 4), and (c) the residual boot-

strap (Listing 5). (Specification for Mplus to use a boot-

strap instead of the default delta method to estimate SEs

and CIs is the same in this example as in all Mplus input

statements, and 500 draws were used in the illustrative

analysis–the standard number of draws when the boot-

strap was requested in input statements in Mplus user’s

guide examples.)

The observed GMA d of .872 was the same in the three
analyses using the delta method and two bootstraps to pro-

duce the SEs and CIs for GMA d because point estimates are
not affected by the method used to estimate the SEs and

CIs. The Mplus-generated SEs and CIs from the multiple

covariates model are reported in last three columns in the

top half of Table 1 (under the heading "All 3 Covariates" for

"Mplus Outputted CI") for each CI estimation method; re-

spective SEs and CIs were nearly identical across the three

estimation methods. The last the three columns in bottom

half of the table ("Transformations of CI of b to CI of d") re-
ports CIs obtained for the GMA ds obtained with the post
hoc equations approach. That is, the bottom half of the ta-

ble reports corresponding results obtained by transform-

ing the CI of b to the CI for GMA d for each type of CI with
Equation 2 (with CLs of b substituted for b). These CIs were
virtually identical to respective CIs for GMA d calculated
directly by Mplus (reported in the top half of the table), ir-

respective of the Mplus estimation method.

2
In multilevel modeling (MLM) approaches to GMA (e.g., Raudenbush & Bryk, 2002), there is a single Level 1 variance in the model output. In the

competing latent growth/structural model equation modeling framework for GMA used by Mplus, there is a separate residual variance associated with

the Y at each time point, and the average of these residuals is the Level 1 variance in the MLM approach.
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Table 1 SEs and CIs for GMA ds from Linear Models as a Function of Estimation Methods

Covariates in Example 6.10 Dataset Included in the Linear GMA

x1 Only All 3 Covariates

Method SE 95% CI SE 95% CI SE 95% CI SE 95% CI

Mplus Outputted CI
delta method .134 [.767, 1.294] .136 [.746, 1.279] .133 [.734, 1.255] .105 [.666, 1.078]

pbootstrap .132 [.756, 1.291] .134 [.741, 1,278] .131 [.724, 1.252] .104 [.679, 1.074]

rbootstrap .131 [.764, 1.270] .133 [.762, 1.273] .129 [.748, 1,255] .096 [.676, 1.070]

Transformation of CI of b to CI of d
delta method NA [.767, 1.293] NA [NA, NA] NA [NA, NA] NA [.666, 1.078]

pbootstrap NA [.755, 1.291] NA [NA, NA] NA [NA, NA] NA [.680, 1.074]

rbootstrap NA [.763, 1.271] NA [NA, NA] NA [NA, NA] NA [.676, 1.070]

Note. GMA = growth modeling analysis,N = 500. SE = standard error; CI = 95% confidence interval, pbootstrap = per-
centile (standard) bootstrap, rbootstrap = residual bootstrap, SD1 = 1.748, SD2 = SD estimated with y11 residual vari-

ance, SD3 = SD estimated with mean of all y (y11-y14) residual variances, NA = not applicable. CIs for time-varying
GMA ds from the single covariate model (x1 only) cannot be compared with respective CIs from the multiple covari-
ates model (using 3 covariates) because point estimates differ between the two types of models.

Single covariate model. An analysis was first conducted
with only x1 as a covariate to illustrate calculation of GMA
d from a single covariate model with a specified SD. How-
ever, in a GMA with a single covariate capturing group, SD

does not have to be specified but can be estimated from

the model using the variance of the intercept growth fac-

tor and residual variances of y with either of two equa-
tions. The first equation for estimating SD from the model

takes the square root of the sum of the intercept growth

factor variance and the mean of all the residual variances

of y (Feingold, 2015)–and is most appropriate when the
residual y variances are assumed homogeneous (or are
specified to be equal in a Monte Carlo study). The second

equation takes the square root of the sum of the intercept

growth factor variance and the residual y variance associ-
ated with a time code of 0 (y11 in this example).
Listings 6, 7 and 8 from Appendix C provide the input

for a single covariate model for each SD estimation ap-

proach: (1) specified SD (see Listing 6), (2) SD estimated

from mean of all residual variances of y (Listing 7), and
(3) SD estimated using the y11 (baseline) residual variance
(Listing 8). Note that Listings 1 and 2 from Appendix A

indicate the input for use of the default delta method for

CI estimation for each SD estimation method. To obtain

bootstrap CIs instead of delta method CIs, the bootstrap

must be specified by adding an analysis command between

the MODEL CONSTRAINT and OUTPUT commands, and
the bootstrap specification must be added to the output

CINTERVAL command (as shown in Listing 4 and Listing
5 in Appendix B for the input for the multiple covariates

model).

The twomodel-estimated approaches for SD estimation

produce identical SDs (and thus the same GMA ds calcu-
lated using that SD as the denominator) when the residual

y variance associatedwith a time code of 0 equals themean
of all the other residual y variances. In addition, with the
equation using a single residual y variance, the GMA ds
(but not their CIs) are nearly the same as the GMA ds ob-
tained with the predetermined SD using the previously de-

scribed two-step approach. Because there is no specified

value for SD when SD is estimated from the model, the co-

efficient for the group difference in slopes (b) and the GMA
d derived from it are obtained simultaneously in a single
step.

In the illustrative GMA for this model that included

only x1 as a covariate and specified SD = 1.478 in MODEL
CONSTRAINT (Listing 6 input in Appendix C), GMA d =
1.030. When the SD was estimated from the GMA using
the average of the 4 y residual variances (Listing 7), GMA
d = .994. When the SD was estimated from the GMA us-
ing the y11 residual variance (Listing 8), GMA d = 1.010.
Thus, a GMA d of about 1.00 was obtained regardless of
the approach used to estimate SD in the single covariate

model, and was thus larger than the GMA d of .87 that
was observed when the other covariates were included in

the model in the previous illustrative analysis of the same

data.

The first 9 columns in Table 1 reports the SEs and CIs

calculated with the different methods of SD and CI esti-

mation, including the CIs for the post hoc approach that

were not calculated directly by Mplus but were obtained

by transforming delta method or bootstrap CIs for b to CIs
for GMA d (see bottom half of table headed "Transforma-
tion of CI of b to CI of d.") The observed differences among
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the different CIs for respective GMA ds were not meaning-
ful.

Monte Carlo Study of the Validity of the Mplus Esti-
mates for GMA d

The validity of the estimates obtained with different meth-

ods used byMplus for SE and CI for GMA d needs to be com-
pared with the validity of the respective statistics obtained

with the widely used post hoc equations (reported in Fein-

gold, 2015). Errors in parameter estimates (bias) can be

assessed with Monte Carlo simulation studies (e.g. Cheung,

2009; Hedges, Pustejovsky, & Shadish, 2012; Lau & Cheung,

2012; MacKinnon, Lockwood, & Williams, 2004). A Monte

Carlo study was previously conducted by Feingold (2015)

to examine bias in the estimates of the SE and CI for the

GMA d obtained with post hoc equations (Equations 2 and
3, which used the SEb estimated by the deltamethod). Bias

was found to be small, particularly in large samples.

Objectives of Current Article

A key purpose of this article is to illustrate an approach

for obtaining effect sizes (and estimation of their SEs and

CIs) from classical analysis and linear GMA that uses sta-

tistical software (specifically, Mplus) to create new param-

eters. However, this approach produces different types

of SEs and CIs, raising questions about which statistics

should be reported in program evaluations. Previous re-

search using this approach with non-linear GMA models

found that directly produced CIs obtained by Mplus with

the delta method were less biased than respective boot-

strap CIs (Feingold, 2019). Thus, a major objective of this

article is to determine whether that finding generalizes to

the GMA d obtained with a linear growth model. The prior
study also found that sample sizes greater than 150 were

needed for relatively unbiased effect sizes from quadratic

GMAs. Thus, the current study examines whether a simi-

larN is needed for linear GMA effect sizes. Evaluations of

bias in bootstrap SEs and CIs for b for linear GMA were not
possible in an earlier study (Feingold, 2015) because the

Mplus version then available did not have its current ca-

pability of producing bootstrap statistics in a Monte Carlo

study. Thus, bootstrap SEs and CIs for b are examined here
to afford comparisons with respective biases in bootstrap

SEs and CIs for GMA d that are derived from b.

Method
Feingold (2015) used Monte Carlo analysis to examine

bias in the SE and the 95% CI for b for the treatment ef-
fect computed with the delta method in 10 Monte Carlo

simulations–each using 10,000 replications and specify-

ing two parameters for the slope differences (.10 and .20)

crossed with five sample sizes (ranging from 50 to 500).

Each replication manufactured and analyzed data for a

balanced linear GMA with a dichotomous time-invariant

covariate (i.e., two groups of equal size), 4 equidistant time

points differing by 1 point between them) and a continuous

outcome (for a complete sample Mplus input statement,

see Appendix A in Feingold, 2015, or the non-bolded text

in Listing 9 in Appendix D of this article).

Biases in the delta method SEs and CIs for b, and in
the GMA d obtained with post hoc equations using delta
method CIs, were both examined in Feingold (2015) follow-

ing conventional practices for interpreting Monte Carlo re-

sults (L. K. Muthén & Muthén, 2002). The current study of

bias in GMA d and associated statistics used the same 10
GMAmodels and input statements as the previous study to

afford meaningful comparisons between biases in SEs and

CIs obtained directly by Mplus in this study vs. the previ-

ously reported biases in respective statistics obtained with

post hoc equations. However, commands and optionswere

added to the earlier inputs to also generate GMA d within
Mplus, along with its SE and CI. Thus, the expanded input

statement (see Listing 9 in Appendix D, with added text in

bold) used in this new Monte Carlo study obtained (a) the

prior results for biases in b with the delta method, (b) ad-
ditional results for biases in b obtained with the bootstrap,
and (c) bias in SE and CI for GMA d calculated by with both
the delta method and the standard bootstrap.

The commands and options used in the current study

were Monte Carlo counterparts to the Mplus inputs pre-

sented in the introduction for the illustrative study (i.e.,

the expansions of the input statement in Example 6.10 in

the Mplus user’s guide), with the SD in the parameter cre-

ation equation calculated with the single-step method by

Mplus using the mean y residual variances to estimate SD
in each replication (see Listing 6 in Appendix C). The key

differences between the two types of input statements are

that the Monte Carlo study inputs include specifications of

the effect size parameters for both b and GMA d but omit
the CINTERVAL option. Given the intercept growth factor

and residual variances, the b of .10 for the smaller treat-
ment effect is associated with a GMA d of .3464, and the b
of .20 for the larger effect corresponds to a GMA d of .6928
in these models (Feingold, 2015).

Input Statements for Current Monte Carlo Simulations

For the 5 simulations evaluating the smaller effect size

(b = .10 and GMA d = .3464), the bolded text in Listing
9 in Appendix D was added to the Feingold (2015) input

statements to conduct Monte Carlo simulations examining

SEs and CIs for the GMA d produced with the default delta
method by Mplus. In the input statements for the 5 simu-

lations specifying the larger effect size, .20 replaced .10 in

the first line added to the MODEL COMMAND, and .6928
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replaced .3464 in the first line in MODEL CONSTRAINT. To

examine the standard bootstrap estimates instead of delta

method estimates, the same ANALYSIS command specify-

ing bootstrap was included that is used in an empirical

study (see Listing 4 and Listing 5 in Appendix B for exam-

ples of bootstrap specification in Mplus).

A preliminary Monte Carlo analysis with the smallest

specified sample size (N = 50, where the bias in the SE
was the greatest with the default delta method) found that

the Bollen-Stine residual bootstrap CIs evinced greater bias

than respective delta method CIs, which had also been ob-

servedwith effect sizes for quadratic GMA (Feingold, 2019).

Accordingly, only biases in SEs and CIs obtained with the

delta method and standard percentile bootstrap were ex-

amined in all 10 analyses,

Note that there is no option for CIs specified in the in-

put for a Monte Carlo study via a CINTERVAL command be-

cause Mplus evaluates bias in CIs with coverage: the pro-

portion of the replications in which the CI contains the pa-

rameter (L. K. Muthén & Muthén, 2002). Thus, perfect cov-

erage for the 95% CI is .950, and the smaller the bias in the

SE, the closer the coverage is to .950. In addition, Feingold

(2015) proposed a CI bias statistic obtained by subtracting

.950 from the coverage value, which is also reported in the

results of CI bias in the current Monte Carlo study.

Results
The Monte Carlo analysis found that the GMA d obtained
by Mplus in each model was identical to the previously re-

ported respective GMA d calculated with Equation 2 using
statistics from the GMA (Feingold, 2015). Thus, bias in the

point estimates was the same whether GMA d was calcu-
lated directly by Mplus or with Equation 2 (see Feingold,

2015, for demonstration that the bias in the point estimate

of the GMA effect size parameter is ignorable).

Table 2 reports the results from the Monte Carlo anal-

ysis evaluating the bias in the SE and CI for the GMA d ob-
tained with each of three different approaches: (a) post

hoc equations (Equations 2 and 3) with a delta method

SEb (from Feingold, 2015), (b) delta method calculated in

Mplus, and (c) bootstrap in Mplus. The first three columns

in the table report (a) the specified N for the Monte Carlo

results in that row, (b) the effect size parameter (small or

medium delta), and (c) the empirical distribution of the

generated GMA ds in each analysis, calculated as the SD
of the GMA ds across the 10,000 replications used in each
simulation. The next three columns (4-6) report the av-

erages of the SEs of GMA ds across the same replications
that were calculated using (a) Equation 2, as previously re-

ported (Feingold, 2015), (b) the delta method, and (c) the

percentile bootstrap, respectively. The coverage values for

each CI estimation method are reported in the same order

in columns 7-9.

The next six columns report the biases in the SEs ob-

tained using different methods, with columns 10-12 report-

ing raw bias and columns 13-15 reporting percent bias.

For respective biases in the point estimates, see Feingold

(2015). The raw biases in columns 10-12 were calculated

by the standard practice of subtracting the empirical distri-

bution of SEs in column 3 from the corresponding average

SEs in columns 4-6 (L. K. Muthén & Muthén, 2002). These

raw biases were the divided by the SD of GMA ds across
replications (column 3) and multiplied by 100 to obtain the

percent biases that are reported in columns 13-15. The fi-

nal 3 columns of the table report the CI bias index, calcu-

lated by subtracting .950 from coverage values in columns

7-9.

The last row in Table 2 reports the medians of the

coverage values, percent biases, and CI biases across the

10 simulations. These statistics indicated that the delta

method produced less biased SEs and CIs for the GMA d
than the post hoc equations that used the delta method

SEb, and the percentile bootstrap afforded less biased SEs

and CIs than the delta method. Indeed, the median cover-

age for the bootstrap was a perfect .950.

An examination of the rows in the table indicates that

the bias in statistics obtained with both post hoc equations

(as previously reported in Feingold, 2015) and the delta

method in Mplus were the greatest at the smallest sample

size and decreased rapidly as N increased. With the boot-

strap, by contrast, minimal bias was found at the small-

est sample size and there was no evident trend in bias re-

lated to N , with all observed variations in biases across
the different simulations likely ascribable to sampling er-

rors in the simulation analysis. Thus, the benefits of using

the bootstrap over the other two approaches diminished as

sample size increased.

Most important, the advantage of the bootstrap over

the delta method for estimation of SE and CI for GMA d
was also observed for b (see Table 3). However, unlike
with GMA d, where the benefits of the bootstrap were ap-
preciable at most sample sizes, the reduction in the bias in

CI for b found with the bootstrap CI compared to the delta
method CI was meaningful only with the smallest sample

size (N = 50).
A Monte Carlo simulation was also conducted with a

very large sample size (N = 2000) for each estimation
method but with an otherwise identical input statement.

Essentially zero bias was observed in the point estimate,

the SE, and the CI obtained with all methods for both b and
GMA dwhenN was very large, suggesting bias in the equa-
tion and delta method statistics was small sample size bias.

That the estimation of both the effect size parameter and its

SE improved with increases in sample size indicated that

the GMA dmeets the important effect size criterion of con-
sistency (Preacher & Kelley, 2011).
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Discussion
The Monte Carlo study found that the GMA d calculated by
Mplus was identical to the GMA d obtained with the use of
Equation 2 following the GMA (the conventional post hoc

approach). However, the bias in the CIs for the GMA d cal-
culated by the standard bootstrap with was smaller than

the bias in CIs obtained with the delta method, although

the latter was smaller than the bias in CIs obtained with

post hoc equations that transformed delta method CIs for b
to CIs for GMA d.
Bootstrap CIs have been found to have advantages in

estimation over conventional approaches to CI estimation

for other statistics as well (Banjanovic & Osborne, 2016),

especially the indirect effects in mediation analysis (Hayes,

2013; MacKinnon, 2008; Shrout & Bolger, 2002). However,

the delta method yielded better time-varying GMA ds than
the bootstrap in quadratic GMA, where the effect sizes are

determined from effects of group on linear and quadratic

slopes (Feingold, 2019).

The observed biases decreased rapidly as the specified

sample size increased, as did the differences among meth-

ods in manifested bias in estimates. With an extremely

large sample size (e.g., N = 2000), there was essentially
zero bias in point estimates, SEs, and CIs for GMA d, ir-
respective of estimation method. Because the illustrative

study using a modified Mplus user’s guide example had a

large sample size (N = 500), it was no surprise that SEs
and CIs for GMA d were essentially identical across meth-
ods used in that example.

However, even at the smallest sample size examined in

the Monte Carlo study (N = 50), the bias in the SE was
always less than the 5% threshold for acceptable bias pro-

posed by L. K. Muthén and Muthén (2002), whereas a sam-

ple size of 100 was insufficient to yield SEs with ignorable

bias for effect sizes from quadratic GMA (Feingold, 2019).

In addition, coverage was always excellent for the linear

GMA d (94-.96).
Thus, the bias in the statistics obtained with Equations

2 and 3 should not be problematical for researchers using

software that cannot output the more accurate SEs and CIs

for GMA d produced directly by GMA software like Mplus
that has user-prescribed parameter functions. Also, the

post hoc equations are needed for meta-analysis, where it

is necessary to calculate the v for the GMA d from reported
statistics rather than from raw data (Feingold, 2017).

Although previous examinations of the validity of esti-

mates from post hoc equations included delta method SEs

or CIs in those equations (Feingold, 2015), the terms used in

those equations can include bootstrap SEs and CIs reported

for b (see example in Table 1), which would be expected to
yield less biased SEs and CIs for GMA d than when these

equations included delta method statistics. Indeed, the il-

lustrative study found that transforming the bootstrap CI

for b to the CI for GMA d yielded essentially the same CI
as the bootstrap CI obtained directly in Mplus. Thus, the

transformations equations could be used with software

that provides bootstrap CIs or SEs for b but cannot directly
produce GMA d. counterpart. For example, when an em-
pirical researcher using GMA has reported a bootstrap SE

or CI for b, a meta-analyst should have no qualms about
using it to calculate the v of GMA d with extant methods
(Feingold, 2015, 2017). Indeed, the Monte Carlo findings in-

dicate that meta-analysts should calculate v with the boot-
strap CI for GMA d rather than the delta method CI when
retrieved studies reported both CIs.

GMA ds from a linearmodels aremodel-estimated stan-
dardized mean differences (Cohen’s d equivalents) at the
end of the study only when the design uses randomization

(e.g., in an RCT) or matching to ensure that the expected

mean difference between the two independent groups at

baseline is zero. Because Equation 2 does not include

a term for the effect of group on the random intercepts

from the GMA, GMA ds are derived exclusively from dif-
ferences between the groups in rate of growth from their

respective–and potentially different–baselines. As a result,

the GMA d is effectively adjusted for baseline differences,
as in ANOVA (see Feingold, 2019, for an extended discus-

sion of this issue, which applies to GMA ds from both linear
and quadratic models).

Cohen’s d and the GMA d from a linear model are ex-
amples of standardized effect sizes. However, there are

circumstances in which unstandardized effect sizes are

preferable (Baguley, 2009). The equations for unstandard-

ized effect sizes for classical analysis (raw score mean dif-

ference) and linear GMA (model-estimated mean differ-

ence at end of study) are simply the numerators in Equa-

tions 1 and 2. Moreover, only minor modifications to the

input statements for d and GMA d would be needed for
Mplus to produce respective unstandardized effect sizes

and their CIs. Specifically, the denominator in the each

equation specified in MODEL CONSTRAINT would be elim-

inated, and labels applied to parameters for residual vari-

ances used to estimate SD are unnecessary.

Although the focus of this study was on the use of d
and GMA d for findings from RCTs, where the standard-
ized effect size is for the difference between the treatment

and control groups (or between two different treatment

groups), the methods are applicable to comparisons be-

tween any two independent groups. For example, the clas-

sical d that compares treatment and control groups is the
same classical d that would be used to compare men on
women to examine sex differences (e.g., Feingold, 1994).

The GMA d can also be used in research that comparesmen
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Table 3 Monte Carlo Analyses of Unstandardized Coefficients (bs) for the Group Difference in Slopes for a Linear Latent

Growth Model as a Function of Sample Size and Estimation Method

Monte Carlo Results Bias Estimates

parameters Avg Coverage SE Percent CI

N SD Delta BTSP Delta BTSP Delta BTSP Delta BTSP Delta BTSP

50 .1258 .1216 .1250 .937 .942 –.0042 –.0008 3.34 .64 .013 .008

100 .0878 .0866 .0876 .943 .944 –.0012 –.0002 1.37 .23 .007 .006

150 .0720 .0708 .0713 .942 .943 –.0012 –.0007 1.67 .97 .008 .007

250 .0554 .0550 .0552 .947 .949 –.0004 –.0002 .72 .36 .003 .001

500 .0394 .0390 .0391 .945 .946 –.0004 –.0003 1.02 .76 .005 .004

Median .943 .944 1.37 .64 .007 .006

Note. Avg = average SE of b across replications, Coverage = 95% coverage for b, CI = 95% confidence interval, Delta =
delta method, BTSP = bootstrap.. Unlike in Table 1, results are not reported separately for small and medium effect

sizes because findings did not vary by effect size for b, and the equations approach is not applicable.

and women in outcome trajectories (e.g., Huttenlocher,

Haight, Bryk, & Seltzer, 1991; Leahey & Guo, 2001). Thus,

methods of calculation (including the Mplus code to con-

ducts such calculations) of d and GMA d are applicable to
a broader range of research areas than evaluation of inter-

vention efficacy.

In summary, users of GMA software with the appropri-

ate capability to obtain GMA d and its CI directly should
obtain and report the GMA d and its bootstrap CI, although
the default delta methods CIs are only slightly more bi-

ased than the bootstrap CIs, especially when both are cal-

culated directly by software. However, meta-analysts who

do not have access to raw data, and empirical researchers

who use a less versatile statistical software package than

Mplus–and thus must rely on the post hoc equations (i.e.,

Equations 1-3) to calculate the SE and/or CI for d or GMA
d–need not be unduly concerned about the bias in the SEs
and CIs for the GMA d obtained with those equations. This
is particularly true when the statistics included in those

equations are bootstrap CIs for b that can be transformed
to CIs for GMA d with a simple modification of Equation 2
that replaces the b with the CLs for b.
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Appendix A: Mplus Input for Calculating d
Listing 1: Input for Computing d from Single Covariate Model
TITLE: Example 1 of computation of Cohen’s d with Mplus
DATA: FILE IS example.dat;
VARIABLE: NAMES ARE x y;
MODEL: y ON x (b);

y (r);
MODEL CONSTRAINT:

new(d);
d = b/sqrt(r);

OUTPUT: CINTERVAL;

Listing 2: Input for Computing d from Multiple Covariates Model
TITLE: Example 2 of computation of Cohen’s d with Mplus
DATA: FILE IS example.dat;
VARIABLE: NAMES ARE x1 x2 y;
MODEL: y ON x1(b)

x2;
MODEL CONSTRAINT:

new(d);
d = b/SD;

OUTPUT: CINTERVAL;

Note to Listing 2. The SD in the MODEL CONSTRAINT command in the multiple covariates model is the pooled within-

group SD of y obtained in prior analysis that must be specified. In other words, the numerical value of SD replaces "SD"

in the input. So if SD is, say, 1.5, the second line under MODEL CONSTRAINT would be: d=b/1.5;
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Appendix B: Expanding Mplus Example 6.10 to Produce GMA d for Multiple Covariates Model
Listing 3: Input for Delta Method for CI Estimation
TITLE: Computation of GMA d for x1 in multiple covariate model

with delta method for CIs
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;
DEFINE: IF (x1 GE -.073) THEN x1=1;

IF (x1 LT -.073) THEN x1=0;
MODEL: i s | y11@0 y12@1 y13@2 y14@3;

i s ON x1 x2;
y11 ON a31;
y12 ON a32;
y13 ON a33;
y14 ON a34;
s on x1(b);

MODEL CONSTRAINT:
new(d);
d = (b*3)/1.478;

OUTPUT: SAMPSTAT CINTERVAL;

Listing 4: Input for Standard Bootstrap for CI Estimation
TITLE: Computation of GMA d for x1 in multiple covariate model

with standard bootstrap for CIs
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;
DEFINE: IF (x1 GE -.073) THEN x1=1;

IF (x1 LT -.073) THEN x1=0;
MODEL: i s | y11@0 y12@1 y13@2 y14@3;

i s ON x1 x2;
y11 ON a31;
y12 ON a32;
y13 ON a33;
y14 ON a34;
s on x1(b);

MODEL CONSTRAINT:
new(d);
d = (b*3)/1.478;

ANALYSIS:
BOOTSTRAP=500;

OUTPUT: SAMPSTAT CINTERVAL(BOOTSTRAP);

Listing 5: Input for Residual Bootstrap for CI Estimation
TITLE: Computation of GMA d for x1 in multiple covariate model

with residual bootstrap for CIs
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;
DEFINE: IF (x1 GE -.073) THEN x1=1;

IF (x1 LT -.073) THEN x1=0;
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MODEL: i s | y11@0 y12@1 y13@2 y14@3;
i s ON x1 x2;
y11 ON a31;
y12 ON a32;
y13 ON a33;
y14 ON a34;
s on x1(b);

MODEL CONSTRAINT:
new(d);
d = (b*3)/1.478;

ANALYSIS:
BOOTSTRAP=500(RESIDUAL);

OUTPUT: SAMPSTAT CINTERVAL(BCBOOTSTRAP);

Note to Listing 5. Bold type indicates an addition or modification to the input statement for Example 6.10 in the Mplus

user’s guide to produce effect sizes in addition to standard statistics.

Appendix C: Modifying Mplus Example 6.10 to Produce GMA d for Single Covariate Model
Listing 6: Input Using a Specified SD in Model Constraint
TITLE: Computation of GMA d for x1 in single covariate model with

specified SD
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;

USEVARIABLEs=y11-y14 x1;DEFINE: (*IF (x1 GE -.073) THEN x1=1;
IF (x1 LT -.073) THEN x1=0;

MODEL: i s | y11@0 y12@1 y13@2 y14@3;
i s ON x1;
s on x1(b);
i(v1);
y11-y14(r1-r4);

MODEL CONSTRAINT:
new(d);
d = (b*3)/sqrt(1.478);

OUTPUT: SAMPSTAT CINTERVAL;

Listing 7: Input Using SD Estimated from All Y Residual Variances
TITLE: Computation of GMA d for x1 in single covariate model

using all Y residual variances
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;

USEVARIABLEs=y11-y14 x1;
DEFINE: IF (x1 GE -.073) THEN x1=1;

IF (x1 LT -.073) THEN x1=0;
MODEL: i s | y11@0 y12@1 y13@2 y14@3;

i s ON x1;
s on x1(b);
i(v1);
vy11-y14(r1-r4);

MODEL CONSTRAINT:
new(d);
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d = (b*3)/sqrt(v1 + r1/4 + r2/4 + r3/4 + r4/4);
OUTPUT: SAMPSTAT CINTERVAL;

Listing 8: Input Using SD Estimated from Y11 Residual Variance
TITLE: Computation of GMA d for x1 in single covariate model

using Y11 residual variance
DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34;

USEVARIABLEs=y11-y14 x1;
DEFINE: IF (x1 GE -.073) THEN x1=1;

IF (x1 LT -.073) THEN x1=0;
MODEL: i s | y11@0 y12@1 y13@2 y14@3;

i s ON x1;
s on x1(b);
i(v1);
y1 (r1);

MODEL CONSTRAINT:
new(d);
d = (b*3)/sqrt(v1 + r1);

OUTPUT: SAMPSTAT CINTERVAL;

Note to Listings 6-8. GMA = Growth Modeling Analysis. An analysis command can be added to each model to request

either standard bootstrap or residual bootstrap be used in SE and CI estimation instead of the default output produced by

these input statements. Bold type indicates an addition or modification to the input statements for Example 6.10 in the

Mplus user’s guide.

Appendix D: Mplus Input for Monte Carlo Study for GMA d = .3464 and n = 250

Listing 9:
MONTECARLO: NAMES ARE y1-y4 x;

CUTPOINTS = x (0);
NOBSERVATIONS = 250;
NREPS = 10000;
SEED = 53487;
CLASSES = C(1);
GENCLASSES = C(1);

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR = ML;

MODEL MONTECARLO:
%OVERALL%
[x@0]; x@1;
i BY y1-y4@1;
s BY y1@-3 y2@-2 y3@-1 y4@0;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.3;
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s ON x*.1;

%C#1%
[i*0 s*.2];

MODEL:
%OVERALL%
i BY y1-y4@1;
s BY y1@-3 y2@-2 y3@-1 y4@0;
[y1-y4@0];
[i*0 s*.2];
i*.25;
s*.09;
i WITH s*0;
y1-y4*.5;

i ON x*.3;
s ON x*.1;

%C#1%
[i*0 s*.2];
s on x.1(b);
i(v1);
y1-y4(r1-r4);

MODEL CONSTRAINT:
new(d*.3464);
d = (b*3)/sqrt(v1 + r1/4 + r2/4 + r3/4 + r4/4);

OUTPUT: TECH9;

Note to Listing 9. Bold type indicates input added to the input statement in Appendix A of Feingold (2015) to examine bias

in the GMA d produced by Mplus. The specified GMA d of .3464 was for the small standardized effect size associated with

a b of .10 and the specified residual variances. This input yields SEs and CIs for the default delta method. A bootstrap

command must be added to produce bootstrap statistics.
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