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Abstract Most graphs in psychology articles fail to show distributional information other than

the mean. Although many articles have suggested solutions to this problem for between-subjects

designs, there has been relatively little discussion on how to show distributional information for

within-subjects designs. Graphs of within-subjects data should be constructed so that between-

subjects variation does not appear as uncontrolled error. This article presents a variety of methods

for graphing data fromwithin-subjects designs including jittered dot plots of difference scores, sum-

difference plots, box plots of difference scores, and plots of trend components. These graph types

show descriptive distributional information while controlling for between-subjects variation.
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Introduction

Wilkinson and the APA Task Force on Statistical Inference

(1999) argued that a common deficiency of graphs is their

failure to display distributional information. Criticizing

the use of graphs such as bar charts that do not portray

distributional information, they argued that other graph

types such as box plots and stem and leaf plots are prefer-

able and should be used instead. They further argued that:

A common deficiency of graphics in psycholog-

ical publications is their lack of essential in-

formation. In most cases, this information is

the shape or distribution of the data. Whether

from a negative motivation to conceal irreg-

ularities or from a positive belief that less is

more, omitting shape information from graph-

ics often hinders scientific evaluation. (p. 601)

Numerousmore recent articles concur withWilkinson and

the APA Task Force on Statistical Inference (1999) on this

(Correll & Gleicher, 2014; Duke et al., 2015; Krzywinski &

Altman, 2014; Lane & Sandor, 2009; Larsen-Hall, 2017; Mar-

tinez, 2015; Marmolejo-Ramos & Matsunaga, 2009; Weiss-

gerber, Milic, Winham, & Garovic, 2015).

Graphing distributional information from within-

subjects designs faces a difficulty not found for between-

subjects designs: in within-subjects designs, variance due

to differences between subjects is controlled and there-

fore should not be displayed as random variation. This is

similar to the problem of displaying confidence intervals

for data from within-subjects designs for which between-

subjects variation should not affect the confidence inter-

vals. Methods for constructing confidence intervals for

within-subjects designs that do not confound between- and

within-subjects variations have been presented by Baguley

(2012), Cousineau and O’Brien (2014), and Loftus and Mas-

son (1994).

Graphs can portray distributions and/or differences be-

tween distributions as well as relevant inferential statis-

tics such as confidence intervals and significance tests.

Although methods for including inferential statistics in

graphs is an important topic and has been addressed in de-

tail (Cousineau & O’Brien, 2014; Cumming & Finch, 2005;

Wright, Klein, &Wieczorek, 2019), it is beyond the scope of

this article to discuss the pros and cons of the various ap-

proaches or to recommend a specific one. Therefore, the

example graphs shown here do not contain any inferential

statistics. This should not be taken as a suggestion that au-

thors should not supplement the kinds of graphs discussed

here with inferential statistics in the manner they deem

most appropriate.
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This article uses four datasets to illustrate ways of dis-

playing data for a variety of designs. Three of the datasets

are from real experiments whereas the fourth contains fic-

titious data created to facilitate the illustration of graphi-

cal methods. The example graphs all portray distributions

and/or differences between distributions in ways that con-

trol for between-subjects variance.

The first dataset is used to illustrate ways to display

(a) paired data with and without a between-subjects vari-

able and (b) linear contrasts among conditions. The sec-

ond gives two examples of how to display data from a one-

way within-subjects design withmore than two levels. One

example shows a method for graphing differences in suc-

cessive levels of a variable and the other shows how the

number of graphs necessary to accurately reflect the data

can be reduced if the assumption of sphericity is at least ap-

proximatelymet. The third dataset is used to illustrate how

to display data from a design with a between-subjects vari-

able and a within-subject variable when the assumption of

sphericity is not met. The fourth dataset illustrates how

to graph the results of a trend analysis in a design with a

between-subjects variable and a within-subjects variable.

Anderson, Benjamin, and Bartholow (1998): Illustrating
graphs for paired data and for linear contrasts

This section contains examples of displaying (a) paired

data with and without a between-subjects variable and (b)

linear contrasts among conditions. The data for this study

are from an experiment by Anderson et al. (1998). Their

experimental design consisted of one between-subjects

variable: (gender) and two within-subjects variables: type

of priming word (weapon or non-weapon) and type of tar-

get word (aggressive or non-aggressive control). The de-

pendent variable was the time to name the target word.

There were 32 subjects in the experiment.

Paired data, no between-subjects variables

An excellent way to portray paired data is to connect the

points of the paired observations creating a graph type

called a “comparative graph” (Harris, 1999), a “parallel co-

ordinate graph” (Schriger, 2017), or a strip chart with lines

in R documentation (Millard, 2013). The lines connecting

the two points for each observation are important because

they show the consistency or inconsistency of differences

across subjects. Figure 1a is a comparative graph showing

times for aggressive words primed by non-weapon words

(NA) and primed by weapon words (WA) from a randomly-

selected subset of 14 out of the 32 subjects. Figure 1a shows

that the times for the WA condition were consistently al-

though not uniformly shorter than the times for the NA

condition. In addition to what could be learned from a

graph of means, Figure 1a show that the effect is very small

for most subjects, fairly large for two, moderately large for

three, and strongly in the opposite direction for one. It also

shows that there are no outliers in overall response time or

in the effect of conditions.

Much less informative is available in Figure 1b that

shows the same data without the lines connecting the

paired observations. Without the lines, the large differ-

ences among subjects obscure the consistent difference be-

tween conditions. The report of the significant effect of

conditions, t(13) = 2.64, p = 0.020, in conjunction with
a graph such as Figure 1b would likely seem incongruous

to many readers.

Comparative graphs are most effective when there are

relatively few observations (Harris, 1999; McNeil, 1992) al-

though Harris (1999) noted that comparative graphs can be

effective even with a large number of observations when

the emphasis is on patterns and trends. Graphs show-

ing difference scores can more easily accommodate large

numbers of observations than can comparative graphs

and, therefore, can be a good choice when comparative

graphs are not effective. Among the possible ways to graph

difference scores are box plots, histograms, stem and leaf

displays, jittered dot plots, and density plots. Figure 2

shows a jittered dot plot of differences between the NA and

WA conditions for all 32 subjects in the experiment. Unlike

a graph of means, Figure 2 shows that although the differ-

ences were primarily positive (NA higher than WA), the ef-

fect was in the opposite direction for about one third of the

subjects, the data are not highly skewed, and that there are

no outliers.

Although plots of difference scores reveal all the infor-

mation relevant to the usual significance test, other infor-

mation of possible theoretical importance is hidden. Sum-

difference graphs
1
proposed by John Tukey (described in

Cleveland, 1994) show more information. In these graphs,

differences between pairs are shown on the Y-axis, their

sums on the X-axis, and a horizontal line is drawn at zero.

For example, Figure 3a shows sum-difference graphs for

the data from Anderson et al. (1998). This figure shows

that the differences between NA and WA tend to be larger

for both low and high values of the sum. This is consistent

with the results of a polynomial regression finding a sig-

nificant quadratic term, t(29) = 2.70, p = 0.012. Gender
differences are considered in the next section.

A different pattern is apparent in Figure 3b which

shows fictitious data created so that the difference scores

are identical to those in Figure 3a but observations with

generally larger scores (higher sums) have larger differ-

1
Sum-difference plots are equivalent to a Bland-Altman analysis (Altman & Bland, 1983) although the latter were originally created for a different

purpose.
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Figure 1 Comparative graph (left) and jittered dot plot (right).

ences. The correlation between sums and differences is

0.49 and the slope is 0.114, p = 0.004. The key point is
that two sum-difference graphs can show very different

patterns even when graphs of difference scores are iden-

tical.

Paired data with a between-subjects variables

Many experimental designs contain both between-subjects

and within-subjects variables. The effect of groups, the ef-

fect of trials, and the Groups × Trials interaction are typi-
cally of interest in these designs.

Whenever there is a non-trivial difference between

groups, it is important for graphs of a within-subjects effect

to show the data for the groups separately. Otherwise, dif-

ferences between groups will increase the apparent vari-

ability of the difference scores. For example, this would oc-

cur if the difference scores were much larger in one group

than another.

There are many ways to graph differences between

groups. Although bar charts are very common, they are

a poor choice because they reveal no descriptive distribu-

tional information other than the means themselves. Bet-

ter alternatives include box plots, back-to-back stem and

leaf plots, and dot plots. Figure 4 contains box plots of dif-

ferences between the NA and WA conditions as a function

of gender. No evidence of a Gender x Condition interaction

(gender difference in the difference between NA and WA)

is apparent. Further, the distributions do not appear to be

highly skewed and there are no outliers. Although there

are many varieties of box plots, those that show the means

have the advantage of being consistent with the inferential

statistics when the inferential statistics reported are tests

of means.

Sum-difference graphs can be designed to include a

between-subjects variable. For example, Figure 3a uses

filled rectangles for females and unfilled rectangles for

males. Although the slope of the relationship between the

sum and the difference scores is steeper for the females

(-0.062) than for the males (-0.005), neither the slope for

females, t(13) = −0.99, p = 0.340, the slope for males,
t(5) = −0.12, p = 0.908, nor he difference in slopes is
significant, F (1, 28) = 0.50, p = 0.484. Although the
mean for the males (8.18) is slightly higher than the mean

for the females (6.00), this difference is not significant ei-

ther, F (1, 30) = 0.11, p = 0.742. Finally, although the
quadratic component is stronger for males than for fe-

males, the Gender x Quadratic component is not signifi-

cant, F (1, 26) = 1.76, p = 0.196. These inferential statis-
tics show the importance of using inferential statistics to

keep from over interpreting patterns observed in graphs.

Linear contrasts

Comparisons more complex than simple pairwise differ-

ences are often required to investigate the primary re-

search question. The study by Anderson et al. included

a control-word condition with the critical question being

whether the difference in priming between a weapon-

word prime and a non-weapon-word prime is greater

when the primed word is an aggressive word than when it

is a non-aggressive control word. Defining WC and NC as a
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Figure 2 Jittered point plot of difference scores for all 32 subjects in the experiment.

control word primed by aweaponword and a control word

primed by a non-weapon word respectively, the critical

question is whether (NA−WA)− (NC−WC) is greater
than zero. This difference between differences is an inter-

action contrast because it compares the size of the prim-

ing effect on aggressive words with the size of the priming

effect on control words. The sum-difference plot in Fig-

ure 5 portrays the distribution of this contrast and shows

that scores are predominantly positive with the larger val-

ues of the contrast occurring for small and for large values

of the sum. As with the difference between NA and WA,

the quadratic component of the relationship is significant,

t(29) = 2.58, p = 0.015. In this graph, the size of the in-
teraction contrast is plotted as a function of total response

time. Alternatively, it is possible to plot the size of an in-

teraction contrast as a function of one or more of the main

effects. For example, the main effect of prime type could

be represented on the X-axis asNA+NC −WA−WC.

Pearson et al. (2004): Graphs of successive differences
and when sphericity is met

This section gives examples of graphs from a one-way

within-subjects design with four levels. The first exam-

ple displays differences between successive dosage lev-

els whereas the second displays all pairwise differences

using a method that assumes that the variances of all

pairwise differences are equal, an assumption known as

“sphericity.” The data are from a study of the effect of

methylphenidate on the performance of 24 children diag-

nosed with ADHD (Pearson et al., 2004). Each child’s per-

formance on a delay of gratification task was measured for

each of the dosage levels 0 mg, 15 mg, 30 mg, and 60 mg.

Successive dosages

It is natural to consider performance differences as a func-

tion of successive dose increases. Figure 6 contains box

plots of successive differences between the 0 mg, 15 mg,

30 mg, and 60 mg conditions. These graphs are consistent

with the inferential statistics showing that only the D30-
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Figure 3 Sum and difference plots of the NA and WA conditions. Figure 3a (left) contains the actual data from the

experiment whereas Figure 3b contains modified data with the difference scores unchanged.

D15 difference is significant, two-tailed p = 0.006. Further,

they show that theremay be some positive skew in the D15-

D0 difference and that there is one outside value in the

D60-D30 difference.

Assumption of sphericity met

Graphs of all pairwise comparisons would have resulted in

six box plots thus making it somewhat difficult to compre-

hend all the results quickly. Alternatively, one graph can

be created to accurately represent all four condition by ad-

justing the data to control between-subjects differences. As

noted by others (Bakeman &Mcarthur, 1996; Loftus, 1995),

between-subjects differences can be controlled by adjust-

ing each of a subject’s scores for the overall level of perfor-

mance of that subject. The steps are:

1. Compute the mean across conditions separately for

each subject.

2. Subtract each subject’s mean from each of their scores.

3. Add the mean for each condition to each subject’s score

in that condition.

For example, if the four scores for a subject were 4, 6,

9, and 13, then the mean for the subject would be 8 and the

deviations from the subject means would be -4, -2, 1, and 5.

If the mean of all subjects in this subject’s condition were

6, then adding this mean to the scores would result in ad-

justed scores of 2, 4, 7, and 11. Since the effect of subjects is

controlled, the sum of squares for subjects would be 0 in a

model predicting these adjusted scores based on condition

and subject. The F for condition would match the F in a

standard repeated measures ANOVA.

Figure 7 contains box plots of the four conditions of the

Pearson et al. (2004) study for the raw scores and the ad-

justed scores. This figure shows that the means for the raw

and adjusted scores are the same whereas the variability

of the adjusted scores is considerably reduced. Therefore,

effect sizes measured in terms of mean differences rela-

tive to variability are increased by the adjustment. Figure

7 also shows that the variability of the adjusted scores in

the D0 condition is considerably lower than in the other

conditions except for the presence of two outside values.

Finally, Figure 7 shows that the adjusted scores in the D60

condition are negatively skewed.

The use of adjusted scores does not accurately portray

the variability of differences between conditions unless the
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Figure 4 Box plots of difference scores. The "+" signs represent the means.

assumption of sphericity that the variances of all pairwise

differences are equal is at least approximately met. The

variances of difference scores for Pearson et al.’s data are

65.91, 67.21, 56.82, 56.06, 94.39, and 90.33 which are simi-

lar and, as a result, the deviation from sphericity is not sig-

nificant, χ2(5) = 4.05, p = 0.543. Therefore, the adjusted
box plots in Figure 7 adequately represent the variability

of differences between conditions.

In-class experiment illustrating graphs when the
sphericity assumption is not met

This example presents a graph based on data for which

the assumption of sphericity that all pairwise differences

among the levels of a within-subjects variable are equal

is violated. The data are from a Stroop experiment con-

ducted in an undergraduate statistics class in which 47

students named a set of colored rectangles (colors), color

names (words), and the ink color of colored words for

which the ink color and the color name conflicted (inter-

ference).

The variances of differences between times for colors

and words, colors and interference, and words and inter-

ference were 8.91, 55.80, and 61.52 seconds squared re-

spectively thus greatly violating the assumption of spheric-

ity. Adjusted box plots would be misleading because they

would not reveal these differences in variability. There-

fore, for these data it is better to display all three box plots

of pairwise difference scores as is done in Figure 8. Since

there is a between-subjects variable (gender), there are two

box plots for each pairwise difference. The differences in

variability noted above are clear from Figure 8. Also no-

table is that the distribution of interference minus colors

shows a positive skew whereas there is little if any skew in

the other distributions. Finally, there is an outside value

for the females in the interference minus colors condition.

This approach of plotting all pairwise differences can

be problematic when there are many levels of the within-

subjects variable. For example, there are 45 comparison

among 10 levels. In general, there arem(m−1)/2 pairwise
comparisons if there are m levels of the within-subjects

variable. One approach in these cases is to select a sub-

set of comparisons that are of particular importance and
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Figure 5 Sum and difference plot for the contrast (NA-WA)-(NC-WC).

only graph distributional data for those.

Fictitious Data Illustrating Graphs of Components of
Trend

In repeated measures and longitudinal designs, correla-

tions between trials occurring closer in time tend to be

more highly correlated than those farther apart, a pat-

tern referred to as a “simplex configuration” (Wallenstein

& Fleiss, 1979). Since higher correlations between trials

are associated with lower variances of difference scores,

the simplex configuration results in unequal variances of

difference scores and thus violates sphericity. The implica-

tions of this are explored in the context of a hypothetical

learning experiment with two treatment groups (experi-

mental and control) and six trials.
2

Figure 9 shows a line graph of the means over trials

for the two conditions. Since adding descriptive distribu-

tional information to this graph would at least partially ob-

scure the pattern, descriptive distributional information is

shown in a separate graph.

Figure 9 reveals that performance increases over tri-

als for both groups and that the increase is greater for the

experimental group. Further, the function is close to lin-

ear for the experimental group and negatively accelerated

2
The data were generated by sampling randomly from a normally-distributed population with the following covariance matrix.

10 5 4 3 2 1
5 10 5 4 3 2
4 5 10 5 4 3
3 4 5 10 5 4
2 3 4 5 10 5
1 2 3 4 5 10

(1)

and the following means

Experimental : 10 11, 12, 13, 14 15
Control : 10, 11, 12, 12, 13, 13

(2)
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Figure 6 Box plots of successive dosage differences, The "+"signs represent the means.

for the control group. Assume that, as is often the case in

learning experiments, the researchers were, a priori, inter-

ested in the linear and quadratic components of trend but

had little interest in higher-order trend components.

A test of trend components shows that both the Group

× Trials (linear), F (1, 58) = 5.79, p = 0.019, and the
Group × Trials (quadratic), F (1, 58) = 8.28, p = 0.006,
interactions are significant. The linear component is sig-

nificant for the the Control Group, t(29) = 4.27, p < 0.001,
and the Experimental Group, t(29) = 8.37, p < 0.001. The
quadratic component is significant for the Control Group,

t(29) = 4.96, p < 0.001 but not for the Experimental
Group, t(29) = −0.19, p = .849. Thus, there is strong evi-
dence that the linear component is stronger for the Experi-

mental Group than for the Control Group while the reverse

is true for the quadratic component. There is strong evi-

dence of a linear component for both groups but evidence

of a quadratic component only for the Control Group.

Displaying box plots for all 15 pairwise differences

would fail to bring the linear and quadratic components

of trend into focus whereas displaying adjusted box plots

would be misleading because of the violation of sphericity.

The alternative shown in Figure 10 involves computing the

linear and quadratic components separately for each sub-

ject and constructing box plots comparing the conditions

for each component.

Figure 10 was constructed first by normalizing
3
the

trend coefficients for the linear and quadratic trends

so that the sum of squared coefficients for each set

of coefficients is 1. The normalized coefficients are

−0, 60,−0.36,−0.12, 0.12, 0.36, and 0.60 for the linear
trend and 0.55,−0.11,−0.44,−0.44,−0.11, and 0.55 for
the quadratic trend. The next step was to create new vari-

ables by applying these coefficients to the raw data as fol-

3
Normalization is achieved by (a) summing the squared coefficients, (b) taking the square root of the sum, and (c) dividing each coefficient by this

square root. For the linear trend coefficients, this is done by dividing each of the typical linear trend coefficients

(
−5 −3 −1 1 3 5

)
by

the square root of (25 + 9 + 1 + 1 + 9 + 25) to get−0.60,−0.36,−0.12, 0.12, 0.36, 60.
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Figure 7 Box plots of the raw score and adjusted scores (adj) as a function of dose.

lows: for each set of coefficients, the first score is multi-

plied by the first coefficient, the second score by the sec-

ond, etc. Then these six products were summed. The data

for one of the subjects was 12.59, 10.45, 7.68.7.30, 12.96,
and 9.70. The sum of cross products of these scores with
the coefficients for the linear trend results in a score on

the linear component of −0.9. See Maxwell and Delaney
(2004) for further details.

Figure 10 plots these two variables as a function of

group. This figure shows a sizable group difference in lin-

ear trends with the median of the experimental group be-

ing only slightly below the 75th percentile of the control

group and the 25th percentile of the experimental group

being only slightly below the median of the control group.

The size of the group difference is similar for the quadratic

trend except that the quadratic trend is larger for the con-

trol group. No outside values or skew are apparent in this

figure.

Summary and Conclusions

There are a variety of reasons descriptive distributional in-

formation is important. First, it allows the assessment of

any violations of the assumptions made in the inferential

statistics or other aspects of distributions that may call into

question the validity of the conclusions. It is important to

display descriptive distributional information even when

such problems are not apparent so that readers can make

their own assessments. Second, just as Stephen Gould fa-

mouslywrote “Themedian isn’t themessage” (Gould, 2013)

a strong case can be made that the mean is not the entire

message either. Shapes of distributions can be theoreti-

cally important in their own right and not just relevant to

assumptions required to test for mean differences. For ex-

ample, a finding that there is a bimodal distribution could

be theoretically interesting. Finally a graph of a distribu-

tion may reveal that an effect may be different for differ-

ent portions of the population. One example can be found

in the data portrayed in Figure 5 which suggests the crit-

ical interaction effect is greater for subjects who, overall,
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Figure 8 Box plots showing difference scores as a function of gender.

respond quickly and those who respond slowly than those

whose overall response times are closer to the mean.

The main thesis of this article is that descriptive distri-

butional information in within-subjects designs should be

shown in a way that is not obscured by between-subjects

variability. The graphs shown here are examples of the

types of graphs that serve this purpose but clearly are not

the only graph types that do so.

The choice of graph type depends on many factors.

Comparative graphs can be very effective when there are

relatively few observations. However, the number of ob-

servations that can be displayed effectively depends on the

nature of the data. If the differences between conditions

are very similar across subjects so that the lines are ap-

proximately parallel, then a graph with a large number of

subjects can be apprehended easily. However, if the dif-

ferences are not consistent, with some being positive and

some being negative, the graph will have numerous inter-

secting lines and will not communicate the results well.

Plotting difference scores is a good alternative to com-

parative graphs when there are many observations. Ex-

amples given here include jittered dot plots and box plots.

Other possibilities include stem and leaf displays, his-

tograms, and density plots. The latter two of these are usu-

ally the better choices with very large datasets.

Sum-difference graphs portray more information than

plots of difference scores and should routinely be cre-

ated. If a sum-difference plot does not reveal anything of

theoretical importance not found in graphs of difference

scores, the plot of difference scores would typically suffice

in a published report.

The number of pairwise comparisons and associated

graphs is large when there are many levels of a within-

subject variable. However, if the variances of pairwise dif-
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Figure 9 Line graph of the means as a function of condition.

ference are similar, the number of graphs necessary to por-

tray the distributions can be markedly reduced by adjust-

ing the scores in the manner shown previously. When the

levels of the within-subjects variable are numerically or-

dered, graphing of trend components rather than all pair-

wise comparisons can often communicate the most rele-

vant aspects of the distributions effectively. Complex com-

parisons such as components of interactions can be por-

trayed similarly.

The principle that variables controlled in the statistical

analysis should also be controlled in the graphs is applica-

ble to designs other than within-subjects designs. For ex-

ample, in analysis of covariance (ANCOVA), the variance

accounted for by the covariate should not be portrayed as

random error in graphs as it would be if the raw scores

were plotted. Since significance tests in ANCOVA are tests

of adjusted means with the error term based on the vari-

ance remaining after controlling for the covariate, graphs

should show adjusted means and variability remaining af-

ter controlling for the covariate. This can be done by plot-

ting adjusted scores computed as follows: The first step in

computing adjusted scores is to save the residuals from a

model containing both groups and the covariate. These

residuals are not suitable for graphing, however, since

the effect of groups is controlled making the means of all

groups the same. The next step, therefore, is to add the ad-

justed mean (sometimes called least squares mean or es-

timated marginal mean) of each group to the residual for

each subject in the group. Adjusted means are routinely

computed by major statistics software such as R, SPSS,

and SAS. If the covariate explains a substantial amount of

variance, then variability shown in the graph of adjusted

scores will be considerably lower than in a graph of raw

scores.

There are similar issues in regression analysis. Al-

though in simple regression, a scatterplot that includes the

regression line is a very informative way to display the

relationship between the predictor variable and the crite-

rion, a scatterplot of a single predictor and the criterion

has two problems in a multiple regression analysis: (1) the

multiple regression equation contains the partial regres-

sion slope for the predictor variable under consideration

rather than the simple regression slope represented in the

line in the scatterplot and (2) variance explained by other

predictor variables in the model would be represented as

random error in the scatterplot. A partial regression plot

(Velleman & Welsch, 1981) is a better way to show the re-

lationship between a predictor and the criterion in multi-

ple regression. The basic idea is to create a plot in which

the effects of all predictor variables except the one under

consideration are controlled so that the slope of the line in

the scatterplot is the partial slope and the error variance

is correctly displayed. Specifically, a partial regression plot

of predictorX(i) is constructed by (a) finding the residuals
in Y after being regressed on all variables exceptX(i), (b)
finding the residuals in X(i) after being regressed on all
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Figure 10 A version of box plots sowing linear and quadratic trend components as a function of condition. The horizon-

tal lines going through the boxes represent means whereas the lines within the boxes represent medians. The points are

jittered to reduce overlap.

predictor variables except X(i), (c) adding the mean of Y
to its residuals, (d) adding themean ofX(i) to its residuals,
and (e) creating a scatterplot of the Y andX adjusted vari-
ables that includes a regression line. The slope of this re-

gression line will equal the regression coefficient for X(i)
in the multiple regression equation whereas the slope of

the simple regression of Y on X(i) using the raw scores
would not.

Showing more data in graphs does not mean that you

invariably learn something you would not know from the

means themselves. However, even if nothing important is

revealed, the very fact that the readers have the opportu-

nity to see for themselves that there are no data irregular-

ities is important. This includes whether assumptions are

severely violated and whether there are very influential

data points.

Tufte’s (2001) first principle of graphical excellence is

to show the data. As noted by Wilkinson and the APA Task

Force on Statistical Inference (1999), failure to show data

often hinders scientific evaluation. The graph types illus-

trated here show data from within-subjects designs in a

way that controls for between-subjects variation. More-

over, they are relatively easy to produce, and, in many

cases, take approximately the same amount of space as the

much more common but information-poor bar charts of

means.
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Appendix: Data Sources

Anderson et al. Weapons Effect. http://onlinestatbook.com/2/case_studies/guns.html. Note that in the original article,
the groups were specified by the kind of target word followed by the kind of priming word so that, for example, AW

represented an aggressive word primed by a weapon word. To make the coding consistent with the temporal order of

events, the code letters are reversed in this article so that WA represents the condition in which a weapon word prime

was followed by an aggressive target word.

Pearson et al. ADHD Study. http://onlinestatbook.com/2/case_studies/adhd.html
Stroop Effect. http://onlinestatbook.com/2/case_studies/stroop.html
Repeated Measures with linear and quadratic trends. See Supplemental material on journal website

Open practices

The Open Data badge was earned because the data of the experiment(s) are available on the journal’s web site.
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