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Abstract In within-subject designs, the multiple scores of a given participant are correlated. This

correlation implies that the observed variance can be partitioned into between-subject variance

and between-measure variance. The basic confidence interval about the mean does not separate

these two sources and is therefore of little use in within-subject designs. Two solutions have been

proposed, one (Loftus and Masson) requires the computation of the interaction terms including the

subject and all within-subject factors, the other (Cousineau and Morey) requires a two-step trans-

formation of the data. As shown, these two methods are nearly equivalent. Herein, I present a

correlation-adjustedmethodwhich requires themean correlation across all pairs ofmeasurements.

This solution is shown to be similar to the other two for data satisfying the compound symmetry as-

sumption. It is found to be too liberal for data having homogeneous correlations and heterogeneous

variances but a Welch correction for heterogeneous variances can be used. Finally, it is inadequate

for data that do not satisfy the compound symmetry assumption but satisfy the sphericity assump-

tion. A statistical test of compound symmetry is discussed.
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Introduction
Getting confidence intervals aboutmeans in within-subject

designs has been a recurrent concern over the last decades.

The difficulty comes from the fact that the basic confidence

interval is meant to assess a plausible range of values for

a mean, irrespective of other means in the sample. How-

ever, as argued in Baguley (2012), researchers in psychol-

ogy are rarely interested in a single mean in isolation. In-

stead, they are more often interested in the relative posi-

tions between means. This change in perspective should

be mirrored by changes in the ways that error bars are es-

timated (also see Cousineau, 2017; Pfister & Janczyk, 2013).

A first change, spearheaded by Goldstein and Healy

(1995), Baguley (2012) and Franz and Loftus (2012), is

to use difference-adjusted intervals. When examining a

mean relative to another mean, both have uncertainty

(measured by within-condition variability). However,

their relative positions also bring uncertainty. Assuming

that the variances are homogeneous, it is sufficient to in-

crease the length of the error bars by a factor of

√
2 to take

into account this additional source of uncertainty. Herein,

I will apply this correction factor to all the intervals ex-

amined, resulting in what is called "difference-adjusted

intervals".
1
Difference-adjusted intervals are meaningful

only for pairwise comparisons. For comparisons to a pre-

specified value, use the unadjusted CI.

1
Note that Goldstein and Healy (1995) also suggested dividing the intervals by 2 so that it is the overlap between two CI that indicates an absence of

difference between means. This is called a half-width interval. In Franz and Loftus (2012), both are used simultaneously with a correction factor of√
2/2 = 1/

√
2, complicating the presentation.
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Table 1 Example data set from Loftus and Masson (1994).

The average pair-wise correlation is .983.

Conditions

Descriptive statistics 1-sec 2-sec 5-sec

10. 13. 13.

6. 8. 8.

11. 14. 14.

22. 23. 25.

16. 18. 20.

15. 17. 17.

1. 1. 4.

12. 15. 17.

9. 12. 12.

8. 9. 12.

Sample sizeN 10

MeanMi 11.0 13.0 14.2

Standard deviation Si 5.793 6.074 5.959

1-sec 1 .985 .988

Correlations 2-sec 1 .976

5-sec 1

A second change which is necessary to assess relative

positions of means is to take into account the experimental

design. It is generally accepted that within-subject designs

are more powerful than between-subject designs to assess

differences in means. Consequently, this additional preci-

sion should be reflected in shorter intervals. The source of

this additional statistical power is to be found in the cor-

relation between the variables considered. Hence, I in-

troduce a new proposal that I call a correlation-adjusted

method to compute standard errors and confidence inter-

vals.

In what follows, I first present the correlation-adjusted

method. The advantage of the present proposal is that it

only requires the computation of the average correlation

between variables. Because correlations are useful statis-

tics in repeated-measures designs, for example to assess

statistical power (Goulet & Cousineau, 2019) or Cohen’s d
(Goulet-Pelletier & Cousineau, 2018), the correlation ma-

trix will often be assembled as part of routine data anal-

ysis. I then briefly overview two existing methods and

show under what conditions all three solutions of comput-

ing difference-adjusted CIs are equivalent. As will be seen,

all three methods are equivalent under compound sym-

metry, a technical term describing the structure of the co-

variance matrix whereby a common correlation between

pairs of measures is assumed and a unique variance for all

measures is assumed as well. It implies equality of the di-

agonal and equality of the off-diagonals in the covariance

matrix. In the last section, I perform systematic compar-

isons across methods under various covariance structures.

The results confirm that the easier correlation-adjusted

method returns reliable confidence intervals (CI) mainly

under compound symmetry.

The correlation-adjusted method
The correlation-adjusted (CA) confidence interval is given

by

Mi ±
Si√
Ni
×
√

1− r × tNi−1 (CA;1)

in which Mi is the mean of the measures in the ith con-
dition (i = 1, . . . , C), Si is the standard deviation of
those measures, Ni is the number of measures, r is the
average correlation across all the pairs of measures from

the C repeated measures, and finally, tNi−1 (or in full,

tNi−1(1 − (1 − γ)/2)) is the coverage factor in which γ
—often 95%— is the proportion of coverage desired based

onNi − 1 degrees of freedom.
The second term in Eq. 1, Si/

√
Ni ×

√
1− r × tNi−1,

is sometimes called the interval half-width. This is the

same formula as the basic CI (see below) except for amulti-

plicative adjustment based on the correlation,
√

1− r. The
term Si/

√
Ni is the standard error of the ith mean; by ex-

tension, Si/
√
Ni ×

√
1− r will be called the correlation-

adjusted standard error of the mean. For a difference-

adjusted CI, multiply the CI width by

√
2 (i.e., increase

its length by 41%). All within-subject CI should also be

difference-adjusted CI because it is contradictory to use in-

formation from the other measurements if the purpose is

not to compare them.

As an example, consider the data in Table 1 taken from

Loftus and Masson (1994); also see Nathoo, Kilshaw, and

Masson (2018), Heck (2019). From the correlation matrix,

we find that the average correlation, r, is .983.2Based on
10 – 1 = 9 degrees of freedom, the 95% coverage factor is

t9(.975) = 2.262. Thus, with S1 = 5.793 (see Table 1), the
standard error for Measure 1 is 5.793/

√
10×

√
1− .983 =

0.24 and its correlation-adjusted confidence interval width

is 5.793/
√

10×
√

1− .983×2.262 = 0.54. Multiplied by
√

2,
we get the width of the correlation and difference adjusted

CI: 0.54 × 1.414 = 0.76. The correlation and difference ad-

justed CI for Measure 1 is therefore

11.0± 0.54×
√

2 = [11.0− 0.76, 11.0 + 0.76]

= [10.24, 11.76]

The CI widths for all three measures including the differ-

ence adjustment (

√
2) are given in Table 2. The average

correlation can be obtained in Rwith the following instruc-

2
We used the arithmetic mean. The assumption of homogeneous correlations is mute as to what method could be used to average the correlations.

One reader suggested using the Fisher’s r-to-z transform before performing average, which returns a mean r of 0.984.
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Figure 1 Plot of the mean results for Table 1 data along with difference-adjusted 95% confidence intervals based on

three methods. In red (left-most error bars): the Correlation-adjusted method (CA); in blue (central error bars): the

Cousineau-Morey method (CM); in green (leftmost error bars): the Loftus and Masson method (LM). The Huyndt-Felt

epsilon is 1.0 indicating spherical data; the Welch factor is 0.999, indicating homogeneous variances; the data do not

reject compound symmetry (Winer’s testM = 2.55, χ2(4) = 2.12, p = 0.713 and do not reject sphericity (Mauchly’s test
W = 0.816, χ2(2) = 1.622, p = 0.444. The basic error bars are not shown; they are roughly ten times longer.

tions, assuming that X is a data frame containing only the

repeated measures:

r <- cor(X)
rbar <- mean(r[upper.tri(r)])

Figure 1 shows the error bars including the difference ad-

justment.

Comparison to previous methods
The basic CI is based on the sample standard deviation and

the sample size. The confidence interval is given by

M ± S√
N
× tN−1 (Basic; 2)

This confidence interval can be derived from the two-

sided, one sample t-test, as its rule

RejectH0 if
M − µ0

S/
√
N

> tN−1

can be reformulated into

Do not rejectH0 ifM−
S√
N
×tN−1 < µ0 < M+

S√
N
×tN−1

where µ0 is a hypothesized population mean under H0.

The examination of within-subject design error bars and

confidence intervals was initiated by Loftus and Masson’s

seminal paper (LM; 1994). After examining many possible

solutions, they recommended the use of a standard error

based on the subject × within-subject conditions interac-

tion term,

SLM =

 
SSS×C

(C − 1)(N − 1)

The quantity S2
LM is also notedMSS×C in Loftus andMas-

son (1994), their Eq. 2. The sum of square, taken from

a within-subject design analysis of variance (ANOVA), is

given by

SSS×C =

C∑
i=1

N∑
j=1

(Xij −X·j −Xi· + X)2.

where X is the grand mean. As seen, double-centering

is used (Abdi, 2010), that is, the scores are centered rela-

tive to the subject mean (X·j) and relative to the condition
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Table 2 Standard errors and difference-adjusted 95% Confidence intervals widths based on three methods. Basic: the

basic method; CA: Correction-adjusted method; CM: Cousineau and Morey method; LM: Loftus and Masson method. The

method LM returns a unique width for all conditions because it is based on a pooled standard error.

SE CI width

Equation 1-sec 2-sec 5-sec 1-sec 2-sec 5-sec

Basic (2) 1.83 1.92 1.88 5.860 6.144 6.029

CA (1) 0.237 0.249 0.244 0.759 0.795 0.780

CM (3) 0.191 0.284 0.260 0.609 0.909 0.831

LM (5) 0.248 0.737

mean (Xi·). The Loftus andMasson confidence interval for

within-subject design is thus

M ± SLM√
N
× t(C−1)(N−1) (LM; 3)

Cousineau (2005), complemented by Morey (2008), pro-

posed a different approach (named CM in Baguley, 2012)

whereby the data are first transformed and then basic

confidence intervals are obtained from the transformed

dataset. It is a two-step approach involving, first, a subject-

centering transformation and second, a rescaling:

Yij = Xij −X·j + X (4a)

Zij =

 
C

C − 1

(
Yij −Y·j

)
+ Y·j (4b)

(Cousineau & O’Brien, 2014).
3
Finally, the confidence inter-

val is obtained with the basic method

M ± SZ√
N
× tN−1. (CM; 5)

The reason for this two-step approach is pragmatic: any

graphing software can draw within-subject error bars

from Z if it can draw the basic error bars from X (as is

the case for most statistics software with graphing capabil-

ities).

The second step is meant to increase error variance by

C/(C− 1) because as shown in Morey (2008), the variabil-
ity estimated from Y is biased downward. The method is

thus equivalent to

M ±
 

C

C − 1
× SY√

N
× tN−1 (5’)

It can be shown that both LM and CM methods are

nearly identical except for two variations: (i) LM uses a

pooled standard deviation whereas CM uses distinct stan-

dard deviations for each condition (see Appendix A for a

demonstration); (ii) LM confidence intervals use larger de-

grees of freedom (C − 1)(N − 1)whereas CM usesN − 1.
Consequently, when comparing CI width, the coverage fac-

tor is not the same in both methods and

t(C−1)(N−1)

tN−1
(6)

is the difference between the widths of the confidence in-

tervals of each method. As an example, this ratio is 0.928

for 95% coverage of 3 measures with 10 subjects, as in Ta-

ble 1. Thus, LM CI is roughly 7% shorter than CM CI for

such a small sample size. For larger sample sizes, there is

no sizeable difference.

Finally, Nathoo et al. (2018) proposed a new interval

derived from Bayesian arguments. However, Heck (2019)

observed that this interval suffers from bias. Thus, this

method will not be discussed further.
4

All the formulas are summarized in Table 3. When

comparing the methods, I do not consider the differences

in degrees of freedom (e. g., Eq. 6) as they introduce fairly

negligible differences only.

In what follows, I compare the methods when various

assumptions are not met (the sphericity assumption or the

homogeneity of variances plus the homogeneity of corre-

lations assumptions jointly called the compound symme-

try assumption). Along the way, I demonstrate that un-

der compound symmetry, CA is an unbiased estimator of

the same CI than CM and LM. But first, I briefly consider

the paired-sample design (only two repeated measures); it

3
Confusions abound as to how the transformation of Eq. (4a) should be called. Loftus and Masson (1994), Bakeman and McArthur (1996), Morey

(2008) and others call it a "normalization". However the transformation does not make the data more normally distributed. "Standardization" is found

in O’Brien and Cousineau (2014). I now think that "Subject-centering transformation" is probably the most accurate label.

4
This method, noted NKM herein, is given by SNKM =

√
SSS×C/(C(N − 1)) andM ± SNKM/

√
N × tC(N−1). Heck (2019) recommends the use

of subsampling with Monte Carlo Markov Chains —MCMC— to counteract the bias. The source of the problem is that it is derived from a maximum

likelihood estimate of variance, which is known to be biased, underestimating the population variance. Countering the bias is achieved with subsam-

pling or with the correction factor C/(C − 1) (Morey, 2008). As observed by Heck (2019), p. 29, Nathoo et al.’s (2018) method is no longer different
from LMmethod once a proper unbiased approach is used (subsampling or correction factor). Note that the Nathoo et al.’s method also has the largest

degrees of freedom for the coverage factor.
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Table 3 Overview of the confidence intervals in within-subject designs

Method Eq. Formula in which

Basic (2) Mi ± Si√
N
× tN−1

S2
i = 1

N−1
∑N
j=1(Xij −Xi·)

2

CA (1) Mi ± Si√
N
×
√

1− r × tN−1

CM (3) Mi ± SZ,i√
N
× tN−1

S2
Z,i = C

C−1S
2
Y,i = C

C−1
1

N−1
∑N
j=1((Xij −X·j + X)−Xi·)

2

LM (5) Mi ±
√

SSS×C

(C−1)(N−1) ×
1√
N
× t(C−1)(N−1)

SSS×C

(C−1)(N−1) = S2
Z,pooled = 1

C−1
∑C
i=1 S

2
Y,i

Note. All these intervals should be difference-adjusted, i.e., the length increased by √2 but this adjustment is not
shown in the table. The symbol r is the mean pairwise correlation; SSS×C is the interaction sum of square; C is the
number of repeated measures andN is the number of participants. The mean in the ith condition is notedXi· orMi

and the grand mean is notedX whereas the standard deviation in the ith condition is noted Si.

will set the stage for useful concepts. Because one method

uses a pooled standard error and the others, distinct stan-

dard errors, equivalence between the two methods is said

to be in the root mean squared sense: If one takes the

standard errors from CM, squares them and sums them,

it will return the same total as if the LM standard errors

are squared and summed. In validating the methods, the

prime requisite for a valid CI is that over multiple repli-

cations, at least γ× 100% of the intervals include the true
population parameter. Its complement, 1 − γ, is akin to
type-I error rate if we use CI to reject or not the true situa-

tion.

Correlation-adjusted method in the paired-sample de-
sign
In the paired-sample design, there are only two repeated

measures. The CI interval is then taken directly from the

paired-sample t-test. This test is often seen as

RejectH0 if
|M1 −M2|
SD/
√
N

> tN−1 (8a)

where SD is the standard deviation of the differences be-

tween the pairs of scores (Pfister & Janczyk, 2013). What is

less known is that it can also be expressed as

RejectH0 if
|M1 −M2|√

2 Spool
√

1− r/
√
N

> tN−1 (8b)

where Spool =
√

(S2
1 + S2

2)/2 comes from averaging

the variances (the squared standard deviations). Conse-

quently, the paired-sample t-test is identical to the two-
independent sample t-test except for a correction factor√

1− r (Cousineau, 2010; Afshartous & Preston, 2010).
Demonstrating the equivalence between the two ver-

sions of the test (Eqs. 8a and 8b) requires the homogeneity

of variances assumption. If the two measures’ variances

σ2
1 and σ

2
2 are equal, say, to σ, then the well-known relation

σ2
D = σ2

1 +σ2
2−2σ12 becomes σ

2
D = σ2+σ2−2ρ12σ×σ =

2σ2(1 − ρ12) in which σ12 is the covariance, σ is the com-
mon standard deviation and ρ12 is the correlation between
the two measures. Using Spool to estimate σ and Pear-
son’s r to estimate ρ12 from the observed data, we get that
SD =

√
2Spool

√
1− r. Reorganizing the rule, we find

Do not rejectH0 ifM2 −
√

2 Spool
√

1− r√
N

tN−1 < M1 < M2 +

√
2 Spool

√
1− r√

N
tN−1 (9a)
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or equivalently

Do not rejectH0 ifM1 −
√

2 Spool
√

1− r√
N

tN−1 < M2 < M1 +

√
2 Spool

√
1− r√

N
tN−1. (9b)

Two observations are noteworthy. First, the difference-

adjustment correction

√
2 appears naturally, which shows

its logical necessity. Second, it illustrates well the golden

rule of confidence intervals: "If one mean is included

within the confidence interval of the other mean, the two

can be considered comparable" (Cousineau, 2017). This

rule is valid whichever meanM1 orM2 is used to compare

to a CI.

The equivalence between the correlation-adjusted test

(Eq. 8b) and the test of the differences (Eq. 8a) is critically

based on the homoscedasticity assumption (i. e., the as-

sumption of equal variances). When variances are hetero-

geneous, a correction to the degrees of freedom has been

proposed for the two independent-sample design byWelch

(Welch, 1938; Derrick, Toher, & White, 2016). It involves

substituting the degree of freedom νhomo with νhetero where

νhomo = N1 +N2 − 2 (10a)

νhetero =
(S2

1/N1 + S2
2/N2)2Ä

S2
1

N1

ä2
/(N1 − 1) +

Ä
S2
2

N2

ä2
/(N2 − 1)

. (10b)

When samples are of the same size (N1 = N2 = N ), as is
the case for paired samples, the above expressions can be

simplified greatly into

νhomo = 2(N − 1) (10a’)

νhetero = (1 +Wf )(N − 1) (10b’)

whereWf , that I call the Welch factor, is given by

Wf =
›V 2

V̂ 2

in which ›V 2 is the harmonic mean of the squared vari-

ances observed in the two samples and V̂ 2 is the geometric

mean of the same squared variances. This factor ranges

from 0 (very different variances) to 1 (identical variances).

The Welch factor is a measure of the discrepancy between

the variances; it is applicable to more than two samples

when sample sizes are all equal (although informal simu-

lations suggests that N in Eq. 10b’ can be replaced with

Ñ ). The Welch correction preserves the type-I error rate
but is known to result in a less powerful test of means.

Returning to the correlation-adjusted confidence inter-

vals (Eq. 1), an alternate proposal could be to replace the

coverage factor tN−1 by t(N−1)×Wf
when variances are

unequal (according to a Levene test, for example, but see

Rochon, Gondan & Keiser, 2012). The value (N − 1)×Wf

is always smaller or equal toN − 1.

Comparing the methods
To assess the various methods, it is necessary to consider

the various structures that the covariance matrix can take.

The simplest structure is called compound symmetry (e.g.,

Winer, Brown, &Michels, 1991). Under this structure, vari-

ances are homoscedastic (they are homogeneous for all

the variables measured) and correlations are homosocios-

tic (they are homogeneous for all pairs of variables mea-

sured).
5
This structure is but one possible structure; Figure

2 proposes a general classification.

The sphericity assumption in ANOVAs (which stipulates

that the variance of the differences between all the pairs

of variables is constant) is true when compound symmetry

is true; it can also be true if a very specific pattern of vari-

ance/covariance is found under heteroscedasticity and het-

erosociosticity. There exists a well-known test of spheric-

ity (Mauchly, 1940). Less known, there also exists a test of

compound symmetry (Winer et al., 1991) described in Ap-

pendix B.

Comparing the methods under compound-symmetric
covariances

Under compound symmetry, the variance-covariance ma-

trix contains a common variance along the main diagonal

(say σ2
), and a common covariance outside of the main di-

agonal, obtained from a common correlation (say, ρ, so that
the covariances are all equal to ρ× σ2). The best estimate
of σ is the pooled standard deviation Spool whereas an es-
timate of ρ is the average observed pairwise correlation,

r =
1

C(C − 1)/2

C∑
i=1

C∑
j>i

rij

5
I forged this neologism from the Latin root of association, ad socius, literally together linked.
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Figure 2 Figure 2. Structure of the variance/covariance matrices, divided in four families based on scedasticity (homo-

geneous or heterogeneous) and sociosticity (homogeneous or heterogeneous). In the lower part of the boxes are methods

that are adequate. The grey area represents sphericity. The symbol≡ denotes identical methods in the rootmean squared
sense and = denotes methods that are equivalent in distribution.

in which C is the number of measures, and C(C − 1)/2
returns the number of unique pairwise correlations in the

matrix. It excludes the main diagonal (because the correla-

tion of a variable with itself, rii is always 1) and the lower
triangular region of the covariance matrix (because it mir-

rors the upper triangular region). Because the CA method

is constructed from the compound symmetry assumption,

it is valid in this scenario. Further, under compound sym-

metry, both CM and CA methods are equivalent in distri-

bution. To demonstrate this equivalence, I first show that

the transformation from X to Y (subject-centering trans-

formation, eq. 4a) results in a variance/covariance matrix

whose correlations are all equal to a constant −1/(C − 1)
(see Appendix C). Consequently, under the CA method, the

correction factor
√

1− r results in a correction factor of

√
1− r =

 
1−
Å
− 1

C − 1

ã
=

 
C

C − 1

which is exactly the conversion factor from SY,i to SZ,i

(Appendix A and Eq. 5’). Therefore, CA, CM and LM stan-

dard errors are all unbiased estimates of σe/
√
N under

compound symmetry. The only difference is that LM pools

the estimates so that a unique error bar width is used; in

CA and CM, error bars differ slightly owing to small de-

viations to compound symmetry in the sample. The data

from Table 1 showed a situation where compound sym-

metry is not reject (Welch factor is virtually equal to 1,

Wf = 0.999 according to the Winer’s test M = 2.55,
χ2(4) = 2.12, p = 0.713, but keep in mind that power is
probably very weak in this situation). CM, CA and LM er-

ror bars are quite comparable, as seen in Figure 1.

To confirm the overall absence of difference between

CA, CM, and LMmethods under compound symmetry, I ran

simulations described in Appendix D (source code avail-

able on the Open Science Framework, https://osf.io/zfyb8/).

In a nutshell, I generated random covariancematrices with

the only restriction that they had to satisfy a certain covari-

ance structure. From it, I generated random multinormal

data. Finally, I estimated the proportion of accurate cov-

erage from the three methods. For compound symmetry
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simulations, the assumption is met by sampling a single

correlation and a single variance duplicated in the matrix

(see Appendix D for more details; note that Appendix B ex-

plores deviations from compound symmetry).

The results are shown in Table 4 for the case of 3 and

5 repeated measures. As shown in the table, under com-

pound symmetry, the coverage of all three methods is just

a little above 95% on average and the standard deviations

in the estimated interval widths are very small (0.3%) in-

dicating correct coverage and very homogeneous results

across covariance matrices.

This result is expected, but it provides a baseline to as-

sess the importance of deviations for other variance/ co-

variance matrices. In the subsequent simulations, two

times 0.3% will be used as a threshold to identify inade-

quate methods.

Spherical covariance structure

In this second set of simulations, the covariance matrices

meet the sphericity assumption. They could by chance

also satisfy the compound symmetry assumption but this

is quite improbable so I did not control for this possibil-

ity. Both CM and LM methods are based on difference

scores and therefore, they should be adequate methods

here. However, CA method is based on more stringent as-

sumptions and therefore should not be a proper method in

this scenario.

Simulations confirmed these predictions. The CA 95%

confidence intervals have an average coverage of about

94%, below the threshold set above. Further, variability

for this coverage is about 10 times larger. This large vari-

ability suggests that other factors not captured by the CA

methods should influence its confidence interval width.

Other covariance structures

To have an indication of what might influence CA cover-

age, I also ran simulations under homosociostic and het-

eroscedastic covariance matrices (the upper right quad-

rant of Figure 2). Because CA assumes homogeneous vari-

ances, results should be poor and indeed, they turned out

to be the worst, with a coverage factor of about 90% for

95% confidence intervals. Using theWelch factor to correct

the degrees of freedom ((N−1)×Wf instead of (N−1) as
usual), coverage returned to 95% (95.0 for three repeated

measures and 95.7% for five repeatedmeasures); however,

variability in these mean estimates was huge (8.4% and

9.3% respectively, almost 30 times larger than in the base-

line simulation) so that this additional correction factor is

not a safe approach. Unexpectedly, the CM method was

adequate with this covariance structure (coverage of .953

with a variability of 0.024 with 3 measures; 0.954 with a

variability of 0.025 for 5 measures) whereas LM was not

(coverage of 0.945 and 0.944 for 3 and 5 measures respec-

tively).

In the last two covariance structures identified in Fig-

ure 2 (heterosociostic & homoscedastic and heterosociostic

& heteroscedastic possibly including spherical matrices by

chance), none of the methods were adequate, returning a

coverage slightly below the desired threshold. This is not

that surprising: these situations require multivariate tech-

niques which are not embedded in the present methods.

Discussion
I presented a new method, the correlation-adjusted

method, to computed within-subject standard errors and

confidence intervals. I showed that —under compound

symmetry— this method is equivalent in distribution to

two former methods, the Cousineau-Morey and Loftus

and Masson’s methods. However, the correlation-adjusted

method is not adequate when the data do not meet the

compound symmetry assumption. Hence, Winer’s test of

compound symmetry, akin to Mauchly’s test of sphericity,

was discussed and documented.

The CA method is advantageous in one aspect: it is

based on the mean correlations across replicated mea-

sures. Correlation is an intuitive measure, and most re-

searchers know roughly the amount of correlation to ex-

pect between two repeated measures. For example, if the

correlation is known to be approximately 0.75, then the

basic CI should be reduced by half (as
√

1− 0.75 = 0.5.
Thus, a mere pocket calculator is all that is needed to apply

this correction. Placing correlation to the upfront is not a

bad practice. Furthermore, Goulet and Cousineau (2019)

explained how correlation is involved in statistical power.

However, the CA method is limited to data whose co-

variancematrix satisfies the compound symmetry assump-

tion. Hence, a Winer test of compound symmetry could

be performed prior to using this method. If compound

symmetry is rejected, a Mauchly test of sphericity could

be performed and if it does not lead to rejection, CM or

LM can be used (whether one uses CM or LM is just a mat-

ter of preference as they are equivalent in the root mean

squared sense). Note that (a) these tests may have limited

statistical power; (b) some authors warn against the use

of assumption-checking tests as it alters the error rates of

null hypothesis statistical testing (e.g., Rochon, Gondan, &

Kieser, 2012).

I provided code to perform the Winer test in R; we are

also finishing a graphing module in R to plot descriptive

statistics and corresponding error bars under any of the

methods outlined here (Cousineau, Goulet, & Harding, sub-

mitted). It also includes the effect of sampling method

(Cousineau & Laurencelle, 2015) and extends to other de-

scriptive statistics (Harding, Tremblay, & Cousineau, 2014,
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Table 4 Coverage of the various 95% confidence interval methods under 2 covariance matrix structures. Between

parentheses is the standard deviation of the coverage estimates across 1000 random covariance matrices. In light gray

are cells which do not satisfy a proper coverage of 95%. The highlighted cells are more than 2 baseline standard devia-

tions below the desired 95% coverage.

Covariance matrix 95% confidence interval method

structure CA CM LM

When there are 3 repeated measures

Compound symmetry 0.951 (0.003) 0.952 (0.003) 0.952 (0.003)

Spherical 0.937 (0.034) 0.952 (0.003) 0.952 (0.003)

When there are 5 repeated measures

Compound symmetry 0.952 (0.003) 0.952 (0.003) 0.953 (0.003)

Spherical 0.942 (0.032) 0.952 (0.003) 0.954 (0.003)

2015).

A safe approach would be to uniquely use CM (or LM)

intervals and ignore CA intervals altogether. As a mat-

ter of fact, in the universe of random covariance matrices,

those that are meeting the sphericity assumption are more

numerous than those satisfying the more restrictive com-

pound symmetry assumption. On the other hand, CA is the

first method not based on data transformation.

To conclude, and paraphrasing Amrhein, Greenland,

and McShane (2019), I believe that confidence intervals

should be renamed. These authors proposed compatibil-

ity intervals whereas I already suggested precision inter-

vals (Cousineau, 2017). This change in name is called for to

reduce the blind reliance on these intervals and progres-

sively switch to stronger argumentations and prospective

explanations when discussing results.
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Appendix A: Equivalence between Loftus and Masson’s method and Cousineau and Morey’s method
To demonstrate the equivalence in the root mean squared sense between the two methods, note that
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Y,i =

1

N − 1

N∑
j=1

(Yij −Yi·)
2

=
1

N − 1

N∑
j=1

(Xij −X·j + X−Xi·)
2
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becauseYi· = Xi·, i.e., the means within conditions are unaltered by the transformation. Pooling all the conditions, we

get

S2
Y,pool =

1

C

C∑
i=1

S2
Y,i

=
1

C(N − 1)

C∑
i=1

N∑
j=1

(Xij −X·j −Xi· + X)2

Consequently,

S2
Z,pool =

C

C − 1

Ñ
1

C(N − 1)

C∑
i=1

N∑
j=1

(Xij −X·j −Xi· + X)2

é
=

1

(C − 1)(N − 1)

C∑
i=1

N∑
j=1

(Xij −X·j −Xi· + X)2

=
SSS×C

(C − 1)(N − 1)

Another way to observe this equality is to average the error variances (the squared SE) of the CMmethod. We get exactly

the squared SE of the LM method. In Table 2 for example, the CM standard errors are 0.191, 0.284 and 0.260, so that√
(0.1912 + 0.2842 + 0.2602)/3 =

√
0.0616 = 0.248 is the SE of the LM method.

Appendix: B statistical assessment of compound symmetry
In this appendix, I present a technique to assess the significance of deviation to compound symmetry. I examined a few

proposals (Votaw, 1948; Roy, 1954; a likelihood ratio test based onWilks, 1938, and an F test) but found that Winer (1971,

reedited Winer et al., 1991, p. 517) was themost powerful test. Sadly, this test (actually, the correction factor; see below) is

given without mathematical justification. Hence, I ran extensive tests to determine that it surpasses the other alternative

tests.

The null hypothesis in which the covariance matrix, noted Σ, satisfies compound symmetry can be formalized as

H0 : Σ = V Iq + r V (1q − Iq)

in which V is the average variance, r is the average pairwise correlation, q is the number of repeated-measure variables,
Iq is the identity matrix of size q × q, and 1q is a matrix containing only 1’s of size q × q. Note that in the main text, I use
C to denote the number of repeated-measure variables; here I keep q to follow Winer et al.’s notation.
The test requires the following quantities

M = −(N − 1) ln

(
|S1|
|S0|

)

C =
ν + 2

ν
× q + 1

q − 1
× 2q − 3

6(N − 1)

in whichN is the sample size, and ν is the degree of freedom of the test, that is, ν = q(q + 1)/2− 2. The expression |S1|
is the determinant of the observed covariance matrix whereas |S0| is the determinant of the covariance matrix based on
the null hypothesis. The quantityM is equivalent to twice the log-likelihood ratio, 2(ln l1−ln l0), assuming amultinormal
distribution with means set to the observed means in both case. As shown in Wilks (1938), this ratio has asymptotically

a chi-square distribution with the degree of freedom equal to the difference in the number of free parameters. For the

numerator, the upper triangular half of the covariance matrix (of size q(q+ 1)/2) and the mean vector (of size q) contain
free parameters; for the null model, the means, a common variance and a common covariance are free parameters

(hence, q + 2 free parameters). The difference, q(q + 1)/2 − 2, is therefore the degree of freedom and asymptotically
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Listing 1 Listing 1. R code to perform a test of compound symmetry using Winer’s corrected chi-square test. This

function requires a data frame as input with only the repeated-measure variables; it assesses the significance of the

null hypothesis that the covariance matrix is compound symmetric. This test is found without demonstration in Winer,

Brown, and Michels (1991), p. 517.

WinerCompoundSymmetryTest <- function(X) {
# This function requires a data frame X as input with only the
# repeated−measure variables. It assesses the significance of the
# null hypothesis that the covariance matrix is compound symmetric.
# This test is given without demonstration in
# Winer, Browns, &Michels , 1991, p. 517.
# Get basic descriptive statistics
q <- length(X)
n <- dim(X)[1]
S1 <- cov(X)

# get H0 statistics
vbar <- mean(diag(S1))
cbar <- mean(S1[upper.tri(S1)])
S0 <- vbar * diag(q) + (1-diag(q)) * cbar

# the chi−square test corrected for small sample;
# M is a shortcut for the likelihood ratio
# cf is a correction factor for small samples
# df is the degree of freedom of the test distribution
M <- -(n-1) * log( det(S1) / det(S0) )
cf <- (q * (q+1)^2 * (2*q-3) )/(6 * (n-1) * (q-1) * (q^2 + q -4))
df <- q*(q+1)/2-2
W <- M * (1 - cf)
pW <- 1-pchisq(W, df )

cat("M =", M, ", W(",df,") = ", W, ", p = ", pW, "\n", sep = "")
}

M ≈ χ2(ν). This test performs generally well, but requires large samples to have a type-I error rate close to α. For small
samples (e.g., 16 observations), the error rate inflates to close to twice the value of α.
Winer introduced a correction factor which alters the likelihood ratio so that the test statistic is adequate for all

sample sizes (Winer et al., 1991). The quantity

(1− C)M ∼ χ2(ν)

follow a chi-square distribution with degree of freedom given by q(q+ 1)/2− 2. Listing 1 provides R code to perform the
Winer test given a data frame.

To evaluate the test, I ran systematic tests. In one simulation, I used a common variance for all variables but altered

the correlations so that pairs of adjacent variables (e.g., variables 1 and 2) were sampled from a simulated population

with a true correlation of ρ; pairs of variables two positions remote (e.g., variables 1 and 3) had a weaker population cor-
relation of ρ 2−δ , and so on as we consider pairs further away (ρ i−δ where i denotes the separation between variables).
The parameter δ is the effect size: when set to zero, there is no decay of ρ and consequently, the covariance matrix is
compound symmetric; when δ is 1, there is a rapid decay of the correlations and consequently, an important deviation
to compound symmetry. Wallenstein and Fleiss (1979) examined a closely-related covariance structure, called a simplex

configuration (the difference being that here, the decay follows a power curve whereas in Wallenstein and Fleiss, the

decay in correlation is exponential).

The Quantitative Methods for Psychology 2372

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.3.p226


¦ 2019 Vol. 15 no. 3

Figure 3 Power curves of theWiner’s test for samples of sizes 16 to 128 (lines) and for an effect size ranging from nil

to a strong decay of the pairwise correlation (horizontal axis). Left panel: three repeated measures are generated; right

panel: five repeated measures are generated. In both, the base correlation is .8.

I generated samples of size 16, 24, 32, 64, and 128. I also varied the number of variables and the true value of ρ. In
each cells, I generated 10,000 multivariate samples and ran 10,000 Winer tests with a decision threshold of .05. I counted

the proportion of test suggesting a rejection of the null hypothesis. When δ is zero, the rate of rejections represents the
type-I error rate; when δ is larger than zero, the rate of rejections represents the statistical power of the test.
Figure 3 shows some of the results. As seen, the power curves all start very close to .05, and that, irrespective of the

sample sizes tested, of the number of repeated-measure variables, and of the true correlation ρ. On average across all the
simulations explored, the type-I error rate was 4.91%, very close to 5%. As usual, statistical power increases faster with

larger sample sizes.

In a second simulation, I let ρ be a constant. However, I manipulated the variance. The standard deviation of the
variable in the center of the covariance matrix was 15 (or the two variables in the center if there is an even number

of variables); for every variable away from that central variable(s), standard deviation was decreased by δ. Thus, for δ
of zero, there is no alteration in the variances and the matrix is compound symmetric. Everything else is as in the first

simulation.

Figure 4 shows some of the results. Again, all the power curve starts very close to the α level (mean across the
simulations tested of 4.94%). Statistical power increases rapidly, more so when the effect size is larger and when sample

size is larger. Also, power increases faster when the number of variables is larger. This last result is not quite surprising

as there are more raw data when the number of variables increases.

In summary, theWiner test of compound summary was found to be an excellent way to assess deviation to compound

symmetry with largerW indicating larger deviations. The significance ofW can be evaluated reliably with a p value taken
from a chi-square distribution.

Appendix C: Demonstration that subject-centering transformation results in pairwise correlations of −1/(C − 1)
under compounds symmetry
I begin by assuming a hierarchical linear model

Xij = µ+ αi + βj + εij
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Figure 4 Power curves of theWiner’s test for samples of sizes 16 to 128 (lines) and for an effect size on variances ranging

from nil to a rapid decrease of the variances (horizontal axis). Left panel: three repeated measures are generated; right

panel: five repeated measures are generated. In both, the base correlation is .8.

in which

αi ∼ N (0, σ2
a)

εij ∼ N (0, σ2
e)

where αi, i = 1 . . . N is the subject effect and εij , j = 1 . . . C is random error; both are independent; βj is the effect of
the jth condition, assumed a fixed effect.
As usual under this framework, the correlation is ρ = σ2

a/(σ
2
a + σ2

e) and the variance of the measurements is σ2 =
σ2
a + σ2

e . Finally, the covariance matrix ofX is

ΣX
C×C

= IC
C×C

(σ2
a + σ2

e) + ( 1C
C×C

− IC
C×C

)σ2
a

where IC returns the identity matrix of size C × C and 1C returns a matrix filled with 1s of size C × C.
To get the subject-centering transformation, one approach is to have a transformation matrix, here defined as

K
C×C

= IC
C×C

− 1

C
1C
C×C

such that

Y
C×N

= K
C×C
· X

C×N

is the subject-centered data (add the grandmeanX to getY as defined in themain text, Eq. 4a). From this transformation,
we know that

ΣY
C×C

= K
C×C
·ΣX

C×C

· Kᵀ

C×C

from which we derive that

a) in the main diagonal of the covariance matrix,ΣY(ii) = C−1
C σ2

e

b) off the main diagonal,ΣY(ij, j 6= i) = − 1
C σ2

e .
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Consequently, the correlation ρij is

ρij =
ΣY(ij)√

ΣY(ii)×
√

ΣY(jj)

=
−σ2

e/C

(C − 1)σ2
e/C

= − 1

C − 1

�

Appendix D: Simulations to assess coverage of the confidence intervals and the generation of random data
Simulations were used to test the confidence intervals. Herein, the normality assumption is satisfied so that the present

confidence intervals should behave identically to a test of null hypothesis. In particular, in the absence of a difference,

a 95% confidence interval should contain 95% of the times the null hypothesis. When applied to multiple groups (or

multiple measures here), the difference-adjusted 95% confidence interval of one mean should include 95% of the time

the other means. This is what I called coverage in the main text. Coverage should not be less than the desired confidence

interval for an interval to be a valid confidence interval.

Assuming multinormality, the only two parameters required are the vector of means (all equal when there is no

true population difference) and the covariance matrix. In a typical simulation, I generated a random covariance matrix

(under a given scenario of scedasticity and sociosticity; see next). I then generated 1000 data sets each with 64 simulated

participants, computed the error bars for the first measure, and checked that the last measure was included within that

confidence interval (these conditions were chosen arbitrarily). From those 1000 simulations, I got one estimate of the

proportion of coverage of the method used. I repeated the process a 1000 times to have a thousand random covariance

matrices tested. The mean coverage as well as the standard deviation in the coverage is finally retained.To generate compound symmetric covariance matrices, I used
ρ ∼ U(−1/(C − 1),+1)1

σ ∼ U(0, 25)1

ΣC×C = ICσ
2 + (1C − IC)σ2ρ

in which U(low, high)1 returns a uniform random number between low and high. The subscript 1 at the end of the
notation is used to highlight that a single scalar is returned; in the subsequent scenarios it can return vectors or matrices

of random numbers as well. Correlation is above−1/(C− 1) to make sure that all the matrices are positive definite. The
symbol∼ is used to denote one possible realization of the random number generator. As usual, IC is the C × C identity
matrix and 1C is a C × C matrix filled with 1s.Homosociostic and heteroscedastic covariance matrices are obtained from

ρ ∼ U(−1/(C − 1),+1)1

σC ∼ U(0, 25)C

rC×C = IC + (1C − IC)ρ

ΣC×C = σ.σᵀ × r

where× is the point-to-point multiplication.Heterosociostic and homoscedastic covariance matrices are obtained from
ΣC×C ∼ U(−25,+25)C×C

Σ = Σᵀ.Σ

σC×C =
»
Diag(Σ).Diag(Σ)ᵀ

ΣC×C = Σ/σ2 × U(0, 25)21

whereDiag(Σ) is a vector containing the main diagonal of Σ. On step 2, the outer product of Σ is used to get a positive
definite matrix.
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Spherical covariance matrices are obtained from theH matrices described in Winer et al. (1991), p. 241:
aC ∼ U(−75,+75)C

AC×C = {aC; aC; ...; aC}C×C
l ∼ U(−75,+75)1

Σ = A + Aᵀ + IC l

Finally, heterosociostic and heteroscedastic covariance matrices are obtained with
Σ ∼ U(−25,+25)C×C

Σ = Σᵀ.Σ
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