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Interpretation of main effects in the presence of

non-significant interaction effects
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Abstract Moderated regression models include an interaction, or product term, and can be used

to assess whether the relationship between a given independent variable (IV) and a dependent

variable (DV) depends on a third moderator variable (MV). If the moderation effect is significant,

researchers recommend either ignoring main effects completely, or carefully interpreting them as

conditional effects. However, when the moderation effect is not significant, this implies that the

typical interpretation of main effects as average effects is appropriate. The present study challenges

this claim since lack of significance may be due to lack of power rather than to no true population

effect. To explore this idea, a simulation study is conducted and analytic illustration provided.

Results indicate that when a true moderation effect exists, it may not be detected, implying the

potential for misleading interpretation of main effects. To guard against this, applied researchers

are encouraged to conduct power analyses prior to a moderation study; to mean-center predictors;

to consider exploring themain-effects-only model by omitting the interaction effect; and to consider

information criteria approaches to testing effects.
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Introduction
Interaction effects, or moderation effects, can be estimated

to assess whether a given relationship differs as a function

of a third, moderator, variable. Researchers argue that es-

timation of moderation effects within a discipline provide

an important marker of the progress of the field (Aguinis,

1995; Frazier, Tix, & Barron, 2004; Lorah & Miksza, 2019)

as they provide a more nuanced understanding of the phe-

nomena under investigation. Researchers cite the impor-

tance of examining hypotheses of moderation in various

fields, such as applied psychology (Aguinis, Beaty, Boik,

& Pierce, 2005), organizational research (Champoux & Pe-

ters, 1987), biological, psychological, and social sciences

(Aguinis, 1995) and examining aptitude-treatment interac-

tions in instructional psychology (Cronbach, 1987) in both

theoretical and applied research (Bodner, 2016). In addi-

tion to the increased potential for valuable insights, the

estimation of moderation effects is associated with addi-

tional complexity in interpretation of results both for the

interaction effects themselves, as well as the main effects

estimated in the model.

An example of a test of moderation can be found in

Lorah and Wong (2018) which examines whether the rela-

tionship between perceived burdensomeness and suicide

ideation is moderated by thwarted belongingness after

controlling for depressive symptoms among Asian Ameri-

can college students. They find a significant interaction ef-

fect and plotting results indicates that students who score

high on both perceived burdensomeness to others and un-

fulfilled need to belong to others have uniquely high risk of

suicide ideation. Note that in this case, substantive inter-

pretation proceeds naturally based on plotted results and

there was no need for the authors to interpret main effects

separately. However, if the given interaction effect had

not been significant, it seems likely that the authors may

have wanted to interpret the relationship between per-

ceived burdensomeness and suicide ideation and between

thwarted belongingness and suicide ideation (the main ef-

fects).

The moderated regression model can be estimated as
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follows:

Y = b0 + b1 ×X + b2 ×M + b3 ×XM + ε (1)

where Y is the dependent variable; X is the independent

variable; M is the moderator variable; XM is the inter-

action or product term; b0 is the intercept; all other b rep-
resent slope coefficients; and ε is the random error term
(Aiken &West, 1991). Note that equation 1 specifies a mod-

erator that can be expressed with a single variable,M , but
that in the case of an ordinal or nominal variable with

more than two categories, M will naturally be expressed

as more than one variable. Therefore, the present for-

mulation (equation 1) represents a special case where the

moderator variable is binary or continuous. Analogously,

the same situation applies to the independent variable (X).
Evaluation of significance of themoderation effect can pro-

ceed with a significance test for b3 or any model compari-
son procedure used to compare a model with and without

the product term (Lorah, 2018).

To compute effect size for the moderation effect, an ap-

propriate measure is f2 (Aiken & West, 1991). This repre-
sents the variance accounted for by the interaction effect

relative to total unexplained outcome variance and can be

computed as follows:

f2 =
R2

2 − R2
1

1− R2
2

(2)

where R2
1 represents variance explained for the main ef-

fects only model (equation 1 with no product term) and

R2
2 represents variance explained for the full model (equa-

tion 1). In addition, f2 can be interpreted as a small effect
at values around 0.02; medium at values around 0.15 and

large at values around 0.35 (Aiken & West, 1991).

Despite their importance, tests for interaction effects

have been shown to generally have low power (Aiken &

West, 1991; Frazier et al., 2004) and often fail to manifest

(Jaccard, Turrisi, &Wan, 1990), perhaps due to the fact that

the effect size for these effects is generally quite low in ap-

plied work ((Aiken & West, 1991). Additionally, low power

may be particularly exacerbated in the presence of mea-

surement error which is multiplied to create the product

term (Aiken & West, 1991). Because of this, researchers

have recommended conducting power analyses as a first

step in moderation studies (Lorah &Miksza, 2019) and var-

ious software options are available to do so (see Lorah &

Wong, 2018).

One particularly tricky aspect of moderation analysis is

interpretation of results. Introductory texts tend to empha-

size the difficulty of interpreting significant interaction ef-

fects and recommend and provide procedures to plot these

effects (Aiken & West, 1991; Darlington & Hayes, 2017; Jac-

card et al., 1990; Jose, 2013) and specific extensions of these

plots (Bodner, 2016). Much methodological literature also

specifically explores the idea of mean-centering and how

it can be helpful for interpretation of main effects in the

presence of signification interaction effects (Dalal & Zickar,

2012; Darlington & Hayes, 2017; McClelland, Irwin, Disat-

nik, & Sivan, 2017; Shieh, 2011). Further, the methodolog-

ical literature attempts to address the misconception that

main effects in the presence of significant interaction are

average effects, when in fact they are conditional effects

(Aiken & West, 1991; Darlington & Hayes, 2017; Frazier et

al., 2004; Lorah & Wong, 2018).

The presence of a significant interaction effect addi-

tionally complicates the interpretation of main effects. A

common misconception among applied researchers is that

main effects may be interpreted in the same way as in a

linear regression model (Darlington & Hayes, 2017; Fra-

zier et al., 2004; Lorah & Wong, 2018). However, this is

not the case; instead of average effects, these main effects

are conditional effects that apply only to the case when

the other of the two predictor variables is zero. Some

argue that the appropriate analysis plan involves mean-

centering the predictors and interpreting these conditional

effects (Aiken & West, 1991) while it could also be argued

that simply ignoring the main effects in the presence of

a significant interaction effect is appropriate, since plot-

ting and interpreting the interaction itself essentially illu-

minates all the relationships of interest.

However, there is little guidance regarding interpreta-

tion for the situation where the interaction effect is not

found to be significant. In this case, it is clear that the inter-

action effect should not be interpreted substantively, since

no evidence is provided that it exists. Further, rather than

claiming a null effect, researchers have suggested claim-

ing inconclusive findings and conducting a post hoc power

analysis particularly for cross-level interactions in multi-

level models (Aguinis, Gottfredson, & Culpepper, 2013), al-

though this may be unhelpful as post hoc power analy-

sis has been shown to be inappropriate as a general tech-

nique (Hoenig & Heisey, 2001). Some guidance indicates

that if the interaction is nonsignificant, the researcher may

proceed with multiple comparison procedures from an

ANOVA model (Kirk, 2013) indicating that the interaction

can be ignored and that the analysis can proceed as if the

interaction effect had not been included.

Sadly, the guidance suggesting that main effects may

be interpreted as simple additive effects in the presence of

non-significant interaction effects may be misleading since

the non-significant finding may be correct or it may sim-

ply be a Type II error (failure to find a true effect). One

technique that may be helpful in this case is employing a

model comparison procedure, such as Bayesian informa-

tion criterion (BIC; Raftery, 1995). The BIC is designed to
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provide evidence for or against a simpler model (Weak-

lim, 2004). This indicates that the BIC could be used to

provide evidence for the model excluding the interaction

effect which could helpfully allow researchers to proceed

with interpretation by ignoring the interaction effect. The

BIC is computed by adding the model deviance to the num-

ber of predictors multiplied by the natural log of the sam-

ple size (Hox, 2010). A smaller value indicates a better fit

(Hox, 2010).

Since the actual existence of the interaction effect will

obviously not be known, it is unclear how applied re-

searchers should proceed with interpretation when inter-

actions are non-significant. Further, this is likely a partic-

ularly common scenario in moderation research given the

low effect size that is typical for interaction effects; in addi-

tion, when tested interaction effects are non-significant, it

is likely that the main effects are of particular substantive

interest in the study and so correct interpretation of these

main effects is crucial for the study.

The present study explores this issue with a simulation

study designed to assess the possibilities for misleading in-

terpretation of main effects with non-significant interac-

tions, an analytic illustration of results, and guidance for

applied researchers based on the findings. By simulating

data according to common scenarios in the applied liter-

ature, the interpretation of main effects in the presence

of Type II error (non-significant interaction terms) can be

specified and contrasted to the interpretation if the null hy-

pothesis for the interaction effect had been correctly re-

jected. Specifically, the following research question is ex-

amined: When interpreting main effects in the presence of

a non-significant interaction effect, under what conditions

is the possibility for misinterpretation of these effects se-

vere?

Methods
Monte Carlo simulation was used to simulate data with

known properties. A total of 192 different conditions were

simulated, with 10,000 datasets simulated per condition

(for a total of 1,920,000 unique datasets within the exper-

iment). These 192 conditions were created by varying to-

tal sample size of each dataset (value of 50, 100, 500, or

1000); varying the population mean value ofX , referred to
as centrality condition (value of 0, 1, or 2); and varying the

moderator effect size value (16 conditions: b3 = 0 through
1.5, in increments of .1). These conditions were all fully

crossed for a total of 4×3×16 = 192 conditions. All other
model parameters were held constant.

These conditions were chosen in particular to be rep-

resentative of data typically encountered in the behavioral

sciences and to allow for a clear demonstration of interpre-

tation of results. For minimum sample sizes, researchers

have suggested 104 plus the number of parameters (Hox,

2010) or 15 subjects per predictor (Stevens, 2002). Re-

searchers have suggested that common samples sizes in

applied work include 30 (number of industrialized coun-

tries); 50 (number of U. S. states); 100 (number of U.S. stan-

dard metropolitan statistical areas); and 1000 (small sur-

vey). For the present study, these considerations were used

when selecting theminimum sample size (50) and themax-

imum sample size (1000) and additionally two intermedi-

ate sample size conditions were added. Since variables

are often mean-centered for moderation analyses (Dalal &

Zickar, 2012; Darlington & Hayes, 2017; McClelland et al.,

2017; Shieh, 2011), the independent variable X was simu-

lated with a population mean value of zero. In addition,

population mean values of one and two were considered

in order to demonstrate the impact of coding on model pa-

rameters and the associated interpretation. Since X was

generated with standard deviation of one, these centrality

conditions represent the addition of one and two standard

deviations, respectively.

Similarly, the condition with no moderation effect was

simulated in order to provide a baseline, whereas the re-

maining 15 effect size conditions were simulated in or-

der to demonstrate the potential impact on interpretation.

The values for b3 were chosen to approximate common ef-
fect size conditions (specifically f2 ranging from approxi-
mately 0 to .6; see Table 1 for specific average simulated

values of f2). This is consistent with the benchmarks for
f2 of small = 0.02; medium = 0.15; and large = 0.35 (Aiken
& West, 1991).

Data were generated according to the moderation

model specified in Equation 1. The independent variable

X was generated as a standard random normal variable

with one of three different population mean values: 0, 1,

or 2. Therefore,X is normally distributed with mean of ei-
ther 0, 1, or 2 and variance of one. Themoderator variable,

M , was generated as a binary variable with 50% of scores
at value of -0.5 and 50% at value of 0.5. The random error

term was generated as a standard normal variable (mean

of zero, variance of one).

Values for the dependent variable, Y , were generated
based on Equation 1 with b0 = b1 = b2 = 1 and b3 var-
ied by condition. These chosen slope values imply that the

main effect is constant across simulated conditions.

All data were simulated using R (R Core Team, 2017)

and a moderation model according to Equation 1 was es-

timated using lm() within R. In addition, a main effects
only model (Equation 1 without the product term) was

estimated for model comparison purposes. Simulations

with significant interaction terms were identified using the

Wald test by dividing the coefficient (b3) by its standard er-
ror and comparing this to +1.96. In addition, the interac-
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Table 1 Average observed effect size, f2, for each b3 condition

b3 f2

0 0.009

0.1 0.012

0.2 0.019
0.3 0.032

0.4 0.05

0.5 0.073

0.6 0.101

0.7 0.134
0.8 0.172

0.9 0.216

1 0.264

1.1 0.317

1.2 0.375
1.3 0.438

1.4 0.508

1.5 0.582

Note. Entries in bold used to represent small, medium, and large effect sizes, respectively. Values were computed as
an average across all 3 population mean values forX and all 4 sample size conditions implying that each f2 value is
the mean of 3× 4× 10, 000 = 120, 000 replications.

tion terms were also evaluated using BIC by choosing the

model with the lower BIC value.

For the conditions with no true interaction effect (b3 =
0), the Type I error rate was computed by assessing the
proportion of samples with significant interaction effects

as indicated by both the Wald test and BIC. For the condi-

tions with non-zero interaction effect (b3 not equal to zero),
power was assessed analogously.

To assess the possibility for misinterpretation, samples

with significant versus non-significant interaction effects

are considered separately. The average slope coefficient

forM (b2) was computed for each condition and a correct
and incorrect interpretation is offered. Subsequently, an

analytic illustration is offered.

Results
The effect size value, f2, was computed separately for each
individual b3 condition (Table 1). The values range from
0.009 when b3 = 0 to .582 when b3 = 1.5. Since small,
medium, and large f2 values are expected to be around
0.02, 0.15, and 0.35, respectively (Aiken & West, 1991), it

is concluded that the present range of effect size condi-

tions adequately covers typical interaction effect size con-

ditions that might be observed in the applied literature.

More specifically, a value of b3 of 0.2 approximately cor-
responds with f2 = 0.02; a value of b3 of 0.7 roughly cor-
responds with f2 = 0.15 and a value of b3 of 1.2 roughly
corresponds with f2 = 0.35. Therefore, the present study
will refer to these three values of b3 as small, medium, and

large effect sizes (see rows marked in bold in Table 1 and

Table 2). Note that, as expected the average value for b1
was 1 and the average value for b3 varied by simulated b3
condition, and was consistent with expectations.

The Type I error rate and power was assessed for each

effect size and sample size condition and averaged across

the three centrality conditions (see Table 2 and Figure 1).

Note that before averaging results across the three central-

ity conditions, the results were assessed separately within

these three conditions to ensure they did not differ system-

atically. In fact, the pattern of results assessed separately

for these three conditions were virtually identical for the

Wald test as well as for the BIC. There was no systematic

pattern across these three conditions and the largest dif-

ference in power between the three centrality conditions

within a given effect size/sample size condition was 0.018

for the Wald test and 0.017 for the BIC. These small differ-

ences are assumed due to sampling variation.

As expected, the conditions with no true interaction ef-

fect maintained a Type I error rate very close to the nom-

inal rate of 0.05. The observed rates ranged from 0.051 to

0.057 using the Wald test (see Table 2, Panel A, first row).

Although BIC represents an information criteria approach,

as opposed to hypothesis testing, the rate of false positives

can be assessed for the b3 = 0 conditions. Since BIC explic-
itly considers the value of sample size in its computation,

it is expected that the false positive rate varies as a func-

tion of sample size. This can be seen in the present data

where the false positive rate varies from 0.01 to 0.06 (see

The Quantitative Methods for Psychology 362

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.1.p033


¦ 2020 Vol. 16 no. 1

Table 2 Proportion of samples indicating significant interaction effect (rejected null) by b3 and sample size condition;
b3 = 0 represents Type I error rate; b3 > 0 represents power.

Panel A: Results based on Wald test Panel B: Results based on BIC

b3 N = 50 N = 100 N = 500 N = 1000 b3 N = 50 N = 100 N = 500 N = 1000
0 0.057 0.053 0.05 0.051 0 0.06 0.037 0.014 0.01

0.1 0.071 0.08 0.197 0.355 0.1 0.075 0.058 0.082 0.149

0.2 0.108 0.168 0.601 0.884 0.2 0.114 0.129 0.393 0.698
0.3 0.18 0.314 0.912 0.997 0.3 0.188 0.259 0.796 0.983

0.4 0.283 0.502 0.993 1 0.4 0.291 0.437 0.974 1

0.5 0.403 0.683 1 1 0.5 0.412 0.623 0.999 1

0.6 0.528 0.831 1 1 0.6 0.538 0.786 1 1

0.7 0.652 0.918 1 1 0.7 0.661 0.891 1 1

0.8 0.758 0.967 1 1 0.8 0.765 0.953 1 1

0.9 0.845 0.991 1 1 0.9 0.851 0.984 1 1

1 0.906 0.997 1 1 1 0.91 0.995 1 1

1.1 0.945 0.999 1 1 1.1 0.948 0.998 1 1

1.2 0.971 1 1 1 1.2 0.973 1 1 1
1.3 0.984 1 1 1 1.3 0.985 1 1 1

1.4 0.993 1 1 1 1.4 0.994 1 1 1

1.5 0.997 1 1 1 1.5 0.997 1 1 1

Note. First row of each sub-table (b3 = 0) represents Type I error in detecting interaction effect. Subsequent rows
(b3 > 0) represent power for detecting interaction effect. Type II error rates are represented by 1-power. Entries in
bold used to represent small, medium, and large effect sizes, respectively. Values were computed as an average across

all 3 centrality conditions implying that each proportion is based on 3 × 10, 000 = 30, 000 replications. Results indi-
cated that there were no differences between results for each of the three centrality conditions, which is why results

are presented averaged across these conditions.

Table 2, Panel B, first row). This indicates, for most sam-

ple size conditions, a conservative test, which is consistent

with previous simulation results for interaction effects as-

sessed with BIC (Lorah, 2018).

Power can be observed based on the non-zero b3 rows
in Table 2. The minimum desired power of .80 (Cohen,

1992) is used as a benchmark in the present study. For a

small effect size (b3 = 0.2), power may be as low as 0.108
for a small sample size of N=50 and still remains below 0.8

for N=100 and N=500. For a medium effect size, power re-

mains below 0.8 for N=50 but is higher, at 0.918 for N=100.

For a large effect size, power is approaching 1, but still

lower at 0.971 for N=50. In comparison to the Wald test,

the power for the BIC may be slightly higher at lower sam-

ple sizes and slightly lower at higher samples (See Table 2,

Panel B).

As the goal of the present study is to examine interpre-

tation of main-effects, Table 3 and Figure 2 provide a sum-

mary of the average value of the main effect coefficient for

M (b2) under different conditions and for different subsets
of the simulated datasets for all conditions with N=50. Note

that although the value of b2 is uncorrelated with sample
size condition in the entire sample (r=-0.0004), due to dif-

ferences in power there are systematic differences in this

value among each of the data subsets considered when

sample size is varied. For that reason, only simulations

with N=50 are presented, but results for other sample size

conditions demonstrated similar patterns.

To assess interpretation of main effects, the datasets

were divided into thosewhere a significant interactionwas

found via theWald test and those where a significant inter-

action was not found via the Wald test; then the datasets

were divided again by those with significant versus non-

significant interactions via the BIC. Results for both the

Wald and BIC tests were similar and so BIC results are pre-

sented in the appendix for reference. Presumably, if an

applied researcher finds the interaction effect to be signif-

icant, they will proceed by correctly interpreting the main

effects as conditional effects. However, in the datasets

where the interaction effect test indicates that the interac-

tion is not significant, the researcher would likely proceed

by interpreting the main effect as an average effect. This

is correct for non-significant interaction (b3 = 0) but in-
correct for a true significant interaction (b3 > 0). Thus,
the issue being presently investigated is particularly when

a true interaction exists, but it is found non-significant (i.e.

Type II error, bold in Table 3), what is the appropriate in-

terpretation for main effects?
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Table 3 Mean value of b2 (slope of M ) and its standard error as a function of b3 and population mean value for
X condition; results for N = 50 conditions, full interaction model; subset of samples with non-significant Wald test
for interaction effect (NS Wald); significant Wald test for interaction effect (Sig Wald); and total set of samples (Total)

considered separately.

NS Wald Sig Wald Total

b3 Mean ofX b2 SE of b2 b2 SE of b2 b2 SE of b2 Prop. Reject

0 0 1 0.29 0.98 0.3 1 0.29 0.06

0.1 0 1 0.29 0.99 0.31 1 0.29 0.07

0.2 0 1 0.29 1 0.31 1 0.29 0.12

0.3 0 1 0.29 1.01 0.3 1 0.29 0.19

0.4 0 1 0.29 1 0.29 1 0.29 0.28

0.5 0 1 0.29 1 0.3 1 0.29 0.4

0.6 0 1 0.29 0.99 0.29 1 0.29 0.53

0.7 0 1 0.29 1 0.29 1 0.29 0.65

0.8 0 1.01 0.29 1 0.29 1 0.29 0.76

0.9 0 0.99 0.3 1 0.29 1 0.29 0.84

1 0 1 0.28 1 0.29 1 0.29 0.91

1.1 0 1 0.3 0.99 0.29 0.99 0.29 0.95

1.2 0 1 0.31 1 0.29 1 0.29 0.97

1.3 0 0.97 0.31 1.01 0.29 1 0.29 0.98

1.4 0 1 0.34 1 0.29 1 0.29 0.99

1.5 0 0.97 0.41 1 0.29 1 0.29 1

0 1 1 0.39 1.03 0.74 1 0.42 0.06

0.1 1 0.93 0.39 0.6 0.63 0.91 0.42 0.07

0.2 1 0.85 0.38 0.34 0.42 0.8 0.42 0.1

0.3 1 0.79 0.37 0.3 0.36 0.7 0.42 0.18

0.4 1 0.74 0.37 0.27 0.34 0.6 0.42 0.28

0.5 1 0.68 0.35 0.22 0.34 0.49 0.41 0.41

0.6 1 0.64 0.35 0.18 0.36 0.4 0.42 0.52

0.7 1 0.61 0.34 0.14 0.36 0.3 0.42 0.65

0.8 1 0.57 0.33 0.09 0.36 0.2 0.41 0.76

0.9 1 0.55 0.35 0.02 0.38 0.1 0.42 0.84

1 1 0.52 0.33 -0.06 0.39 0 0.42 0.91

1.1 1 0.50 0.34 -0.13 0.4 -0.1 0.42 0.95

1.2 1 0.43 0.34 -0.22 0.4 -0.2 0.42 0.97

1.3 1 0.45 0.35 -0.31 0.41 -0.3 0.42 0.99

1.4 1 0.46 0.33 -0.41 0.41 -0.4 0.42 0.99

1.5 1 0.53 0.36 -0.51 0.42 -0.51 0.43 1

0 2 1 0.6 0.87 1.4 1 0.67 0.06

0.1 2 0.84 0.59 0.18 1.15 0.79 0.67 0.07

0.2 2 0.71 0.57 -0.29 0.74 0.6 0.66 0.11

0.3 2 0.58 0.55 -0.44 0.52 0.41 0.67 0.17

0.4 2 0.46 0.52 -0.49 0.49 0.19 0.67 0.29

0.5 2 0.36 0.5 -0.57 0.48 -0.01 0.67 0.4

0.6 2 0.29 0.48 -0.64 0.5 -0.2 0.68 0.53

0.7 2 0.21 0.47 -0.74 0.51 -0.41 0.67 0.65

0.8 2 0.16 0.45 -0.84 0.54 -0.59 0.68 0.75

0.9 2 0.10 0.44 -0.96 0.57 -0.79 0.67 0.85

1 2 0.05 0.43 -1.1 0.59 -0.99 0.67 0.91

1.1 2 -0.04 0.41 -1.26 0.62 -1.19 0.67 0.94

1.2 2 -0.06 0.4 -1.44 0.63 -1.4 0.67 0.97

1.3 2 -0.15 0.41 -1.62 0.65 -1.59 0.67 0.98

1.4 2 -0.09 0.45 -1.81 0.66 -1.8 0.68 0.99

1.5 2 -0.12 0.41 -2 0.66 -2 0.66 1

Note. NS Wald = samples where the Wald test indicated no significant interaction effect; Sig Wald = samples where the Wald test indicated a signif-
icant interaction effect; Total = all samples; Prop. Reject = proportion of samples where the null is rejected based on the Wald test. Values in these

columns represent the mean and the standard error (SE), which is computed as the standard deviation of the b2 values for the given condition. Val-
ues where b3 is not zero represent those cases where a Type II error is made and where the potential for misinterpretation is explored. Proportion
of samples rejected represents Type I error when b3 = 0 and power when b3 > 0. Type II error rates can be computed as 1-power.
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Figure 1 Power curves for interaction effect varying b3 and sample size, as evaluated by the Wald test (left panel) and

the BIC test (right panel)

(a) (b)

Based on Table 3, the coefficient forM (b2) is roughly 1
whenever the independent variable, X , is simulated with
population mean of zero. This coefficient of 1, which is

technically a conditional effect, is the same as the aver-

age effect of M (i.e. when b3 = 0, b2 = 1). Thus, with
a population mean value of zero which corresponds to

mean-centering of the independent variable, the average

interpretation rather than conditional interpretation of the

moderator effect is only slightly misleading. For example,

consider the following two interpretation for b2 = 1. The
average effect interpretation is that for one unit increase

in M , Y is expected to increase by one unit when con-

trolling for associated covariates. In contrast, the condi-

tional effect interpretation is that for one unit increase in

M , Y is expected to increase by one unit, but only for sam-
ples where X = 0, controlling for associated covariates.
Switching one interpretation for the other is not ideal, but

only slightly misleading.

When X is simulated with a population mean of one,

the results look different. Again the average effect forM
(visible for conditions with b3 = 0) is one. However, de-
pending on the effect size, the value for b2 varies quite a
bit from one (values range from about .43 to 1 for non-
significant Wald conditions). When X is simulated with

a population mean of two, the deviations are even larger.

For example, the value for b2 ranges from about −.12 to
.86. Note again that these values for b2 are found in the

conditions displaying Type II error. In other words, the re-

searcher is likely to ignore the interaction since it did not

reach significance, and then interpret these main effects as

average effects. For example, consider the condition with

b3 = 1.5 and X is simulated with a population mean of

two. Interpreting the effect as an average effect would re-

sult in the following statement: For a one-unit increase in

M , Y is expected to decrease by .12 units, controlling for
associated covariates. Because we know this is the result of

a Type II error and that actually the statement holds only

when X = 2, the statement appears to be fairly mislead-
ing.

The conditions where the Wald test was significant fol-

low a similar pattern, but the coefficients are slightly dif-

ferent, as these are the datasets where the Wald test for

interaction effect reached significance. These are also the

conditions where the researcher is likely to correctly inter-

pret main effects as conditional effects. Note that patterns

for the BIC are overall fairly similar (see specific results in

the Appendix).

The results from the main-effects-only model (i.e.

Equation 1 without the product term) are displayed in Ta-

ble 4. Although this model is incorrectly specified (i.e. the

model itself omits the interaction effect), the results for the

value of b2 are typically very close to 1. So in general,
when no evidence is provided for a significant interaction,

interpreting the moderator effect as an average effect is
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Table 4 Mean value of b2 (slope ofM ) and its standard error for each population mean value forX condition, averaged
across all other conditions, main-effects-only model

Centrality Mean b2 SE

0 1.0002 0.2005

1 0.9999 0.2004

2 0.9997 0.1999

Note. The mean and standard error (SE) are computed based on all samples implying the values are averaged across
effect size and sample size conditions, which was done after confirming that there were no systematic differences in

results across these conditions. SE is computed as the standard deviation of the b2 values for the given centrality con-
dition.

only particularly misleading when the model includes the

product term and the independent variable is not mean-

centered. However, if no significant interaction is found,

and if the independent variable is mean-centered, or the

product term is omitted from the model, the interpretation

of the main effect as an average effect is fairly reasonable.

Note that these potential interpretations of model re-

sults are offered to demonstrate the possibilities for mis-

leading interpretation, not to suggest that the conditional

main effects interpretation is always appropriate. In the

preceding discussion, the “correct” interpretation was of-

fered only based on knowledge of a true moderation effect

(i.e. true parameters are known in a simulation study). In

an applied setting, the true parameters would be unknown

and so the preceding discussion can simply be taken as a

warning to proceed with caution when interpreting these

models. Based on these results, further guidance and anal-

ysis options for applied researchers are offered in the dis-

cussion section.

Analytic Illustration
The expectation for the main effect for M (b2) can be de-
rived based on the concept of simple slopes (Aiken &West,

1991). This is now demonstrated using the b3 = 1.5 effect
size condition with X simulated with a population mean

of zero versus one. Based on the parameters specified for

the present investigation, the regression equation (Equa-

tion 1) to predict Y is Y ′ = 1 + X + M + 1.5 × XM
which simplifies to Y ′ = 1.5 + 1.75 × X whenM = 0.5
and to Y ′ = .5 + .25 × X when M = −0.5. Recall the
interpretation of b2 (coefficient for M ) for a moderation
model is conditional on the case when X = 0. Specifi-
cally, it is interpreted as the expected increase in Y for one
unit increase inM when X = 0. Therefore, we can com-
pute the predicted value of Y in the case when M = .5
and the case when M = −.5 by substituting X = 0 into
the simple slopes equations just provided and then take

the difference. Doing this results in a predicted Y value
of 1.5 and 0.5, respectively. Taking the difference results in

1.5− 0.5 = 1 which is consistent with the simulated aver-

age value for b2 in conditions whereX is simulated with a
population mean of zero.

However, when X has a different mean, for example

a population mean of one, the intercept is moved one unit

to the left. This can be clarified, again, by examination of

simple slopes. In this case,X becomesX − 1 and the pre-
dicted Y can be specified as Y ′ = 1 + 1 × (X − 1) + 1 ×
M + 1.5× (X − 1)×M . The line for observations where
M = 0.5 can be specified by substituting this value forM
resulting in Y ′ = −.25 + 1.75 × X and for cases where

M = −0.5 as the result is Y ′ = .25 + .25 × X . By sub-
stituting X = 0 into these two equations we can compute
the difference in expected Y for one unit increase inM . In
this case, the expectation of Y whenM = 0.5 is −.25 and
the expectation of Y when M = −0.5 is .25. Therefore,
we would expect that at the point whereX = 0, a one-unit
increase in M is related to a 0.5 unit decrease in Y . This
value of -0.5 roughly corresponds with the average simu-

lated value provided in Table 3. In general, this solution

holds for any set of parameters and centrality condition by

simply applying the simple slopes concept with the appro-

priate values.

These results can be understood visually by plotting the

results obtained from the preceding simple slopes analysis,

as has been done in Figure 3, left panel. Note that the ver-

tical line at X = 0 corresponds to the intercept for the
analysis where X is simulated with a population mean of

zero and the vertical line at X = −1 corresponds to the
intercept for the analysis whereX is simulated with a pop-
ulation mean of one. In contrast, Figure 3, right panel, pro-

vides an example of an analogous plot where no interac-

tion effect exists, for demonstration purposes. This corre-

sponds to the model where the b3 = 0 effect size condition
is used. Note that since the relationship between X and

Y does not depend on the value of M , the slope of X is

identical for any value ofM . The plot shows this for two
example values ofM .
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Figure 2 Average moderator slope (b2) value for simulations with no significant interaction for N = 50 conditions.
Where b3 > 0, these values are associated with Type II error conditions.

Discussion
The results from this study explored the likelihood that

tests for interaction effect may display low power. Fur-

ther, the results demonstrated the possibility for misinter-

pretation of main effects in a moderation model. Although

it is common for researchers to misinterpret the condi-

tional main effects as average main effects in the pres-

ence of significant interaction effects (Darlington & Hayes,

2017; Frazier et al., 2004; Lorah & Wong, 2018), it is ex-

pected that researchers will interpret main effects as av-

erage main effects when the interaction effects are non-

significant. However, particularly due to the possibility of

a Type II error, these interpretations have the possibility to

be misleading.

Conditional main effects provide interpretation specif-

ically when the value of the independent variable is zero.

It is possible for zero to be an implausible value for a given

variable (i.e. age for an elderly population) in which case

interpreting conditional effects as if they are average ef-

fects could be potentially very misleading. Clearly, regard-

less of whether the interaction is significant, researchers

should use caution when interpreting main effects in any

moderation model.

In addition to diligence in interpretation, there are

steps researchers can routinely take to guard against the

possibility of misinterpretation. The first step is to ensure

adequate power to detect a moderation effect before the

start of the study. This involves conducting power analy-

sis specifically for the moderation effect, rather than just

for main effects, which is a recommendation consistent

with the literature (Lorah & Miksza, 2019; Lorah & Wong,

2018). In addition, routinely mean-centering predictors

used in any product term can help guard against substan-

tially incorrect interpretation. As seen in Table 3, and gen-

erally expected, when an interpretation is conditional on

a mean value for another variable, rather than an uncom-

mon value for that variable, it is more useful.

Another way to find evidence for the null model would

be to use an information criteria approach, such as BIC

which, unlike hypothesis testing, can provide evidence for

a null model (Raftery, 1995). This would allow the re-

searcher to feel more confident in ignoring the interaction

effect and proceeding with typical interpretation of main

effects. This was demonstrated in the present study, al-

though results indicated some amount of consistency be-

tween results from theWald test and BIC, implying that use

of BIC alone is insufficient to prevent misinterpretation of

main effects.

Lastly, the researcher should consider estimating a
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Figure 3 Left: Plot demonstrating interaction based on example simulated model with b3 = 1.5 effect size (described
in Analytic Illustration section); right: Plot demonstrating no interaction effect; model corresponds to a model analogous

to the interaction model, but with a coefficient of zero for the product term implying the b3 = 0 effect size condition
(described in Analytic Illustration section)

(a)Demonstrating interactions (b)Demonstrating no interaction

model without the interaction effect. This model will pro-

vide average, rather than conditional main effects, and in

particular, the researchermaywant to compare the regres-

sion coefficients for the main effects from the full interac-

tion model to those from the main effects only model (the

model with no interaction effect). If the regression coef-

ficients are similar, either model could be reported; how-

ever, if they vary substantially, further investigation may

be helpful.

There are a few limitations associated with this study.

First, the results obtained do not necessarily generalize

beyond the simulated conditions examined. Specifically,

the present study examined a binary moderator variable

and a continuous independent variable. Future research

should further examine categorical moderators with more

than two categories and continuous moderators as well as

categorical independent variables. In addition, future re-

search should examine additional models which may be

estimatedwithmoderation effects, such as structural equa-

tion models, hierarchical linear models, and models with

categorical outcome variables.

In summary, the following recommendations are pro-

vided for researchers:

• Conduct power analyses specifically for themoderation

effect before beginning the study.

• Routinely mean-center predictors used in product

terms. Since it can never be certain whether the true

effect exists or not, this step guards against substantial

misinterpretation of main effects.

• Estimate the main effects only model, in addition to the

interaction model. If parameter estimates for main ef-

fects seem substantially different between the models,

further investigation is warranted. If there is no sound

theoretical reason to include the interaction term in the

final model and it is not found to be significant, con-

sider removing it and reporting results for the main ef-

fects only model instead.

• Consider assessing interactions effects with informa-

tion criteria approach, such as BIC, rather than only re-

lying on hypothesis testing procedures, in order to have

the opportunity to provide evidence for a null effect.

This step alone may be insufficient to ensure main ef-

fect interpretation is not misleading. Use of BIC should

be combined with either mean-centering and/or esti-

mation of the main effects only model.

Regardless of whether interactions effects are signif-

icant or not, when estimating moderation models, re-

searchers should exercise caution when interpreting re-

sults from these models, and particularly when interpret-

ing main effects. It is clear that the possibility for mislead-

ing interpretation of main effects in moderation models is

large, and specific steps researchers may take to avoid mis-

leading interpretation have been provided.
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Appendix A:Mean value of b2 (slope ofM ) and its standard error by b3 and populationmean value forX condition;results for N = 50 conditions, full interaction model; subset of samples with non-significant BIC test for interac-
tion effect (NS BIC); significant BIC test for interaction effect (Sig BIC); and total set of samples (Total) considered
separately.

NS Wald Sig Wald Total

b3 Mean ofX b2 SE of b2 b2 SE of b2 b2 SE of b2 Prop. Reject

0 0 1 0.29 0.98 0.3 1 0.29 0.06

0.1 0 1.01 0.29 0.99 0.31 1 0.29 0.07

0.2 0 1 0.29 1 0.3 1 0.29 0.12

0.3 0 1 0.29 1 0.29 1 0.29 0.19

0.4 0 1 0.29 1 0.29 1 0.29 0.28

0.5 0 1 0.29 1 0.3 1 0.29 0.4

0.6 0 1 0.29 0.99 0.29 1 0.29 0.53

0.7 0 1 0.29 1 0.29 1 0.29 0.65

0.8 0 1.01 0.3 1 0.29 1 0.29 0.76

0.9 0 0.99 0.3 1 0.29 1 0.29 0.84

1 0 1 0.28 1 0.29 1 0.29 0.91

1.1 0 1 0.3 0.99 0.29 0.99 0.29 0.95

1.2 0 1 0.31 1 0.29 1 0.29 0.97

1.3 0 0.97 0.32 1.01 0.29 1 0.29 0.98

1.4 0 0.97 0.33 1 0.29 1 0.29 0.99

1.5 0 0.97 0.41 1 0.29 1 0.29 1

0 1 1 0.39 1.02 0.74 1 0.42 0.06

0.1 1 0.93 0.38 0.6 0.62 0.91 0.42 0.07

0.2 1 0.86 0.38 0.35 0.42 0.8 0.42 0.1

0.3 1 0.79 0.37 0.31 0.37 0.7 0.42 0.18

0.4 1 0.74 0.37 0.27 0.35 0.6 0.42 0.28

0.5 1 0.68 0.35 0.23 0.34 0.49 0.41 0.41

0.6 1 0.65 0.35 0.19 0.36 0.4 0.42 0.52

0.7 1 0.62 0.34 0.14 0.36 0.3 0.42 0.65

0.8 1 0.58 0.33 0.09 0.36 0.2 0.41 0.76

0.9 1 0.56 0.34 0.03 0.38 0.1 0.42 0.84

1 1 0.53 0.33 -0.06 0.39 0 0.42 0.91

1.1 1 0.51 0.34 -0.13 0.4 -0.1 0.42 0.95

1.2 1 0.44 0.35 -0.22 0.4 -0.2 0.42 0.97

1.3 1 0.46 0.36 -0.31 0.41 -0.3 0.42 0.99

1.4 1 0.47 0.33 -0.4 0.41 -0.4 0.42 0.99

1.5 1 0.51 0.36 -0.51 0.42 -0.51 0.43 1

0 2 1 0.59 0.89 1.39 1 0.67 0.06

0.1 2 0.84 0.59 0.19 1.14 0.79 0.67 0.07

0.2 2 0.71 0.57 -0.27 0.75 0.6 0.66 0.11

0.3 2 0.59 0.55 -0.42 0.52 0.41 0.67 0.17

0.4 2 0.47 0.52 -0.48 0.49 0.19 0.67 0.29

0.5 2 0.37 0.5 -0.56 0.48 -0.01 0.67 0.4

0.6 2 0.3 0.48 -0.63 0.5 -0.2 0.68 0.53

0.7 2 0.22 0.46 -0.73 0.52 -0.41 0.67 0.65

0.8 2 0.17 0.45 -0.83 0.54 -0.59 0.68 0.75

0.9 2 0.11 0.43 -0.95 0.57 -0.79 0.67 0.85

1 2 0.06 0.43 -1.1 0.59 -0.99 0.67 0.91

1.1 2 -0.02 0.4 -1.26 0.62 -1.19 0.67 0.94

1.2 2 -0.04 0.4 -1.44 0.63 -1.4 0.67 0.97

1.3 2 -0.14 0.41 -1.62 0.65 -1.59 0.67 0.98

1.4 2 -0.06 0.42 -1.81 0.66 -1.8 0.68 0.99

1.5 2 -0.12 0.41 -2 0.66 -2 0.66 1

Note: NS BIC = samples where the BIC indicated no significant interaction effect; Sig BIC = samples where the BIC indicated
a significant interaction effect; Total = all samples; Prop. Reject = proportion of samples where the null is rejected based

on the BIC test. Values in these columns represent the mean and the standard error (SE), which is computed as the

standard deviation of the b2 values for the given condition. Proportion of samples rejected represents Type I error when
b3 = 0 and power when b3 > 0. Type II error rates can be computed as 1−power.
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