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Abstract Evidence accumulation models (EAMs) have been the dominant models of speeded

decision-making for several decades. These models propose that evidence accumulates for deci-

sion alternatives at some rate, until the evidence for one alternative reaches some threshold that

triggers a decision. As a theory, EAMs have provided an accurate account of the choice response

time distributions in a range of decision-making tasks, and as a measurement tool, EAMs have pro-

vided direct insight into how cognitive processes differ between groups and experimental condi-

tions, resulting in EAMs becoming the standard paradigm of speeded decision-making. However,

we argue that there are several limitations to how EAMs are currently tested and applied, which

have begun to limit their value as a standard paradigm. Specifically, we believe that a theoretical

plateau has been reached for the level of explanation that EAMs can provide about the decision-

making process, and that applications of EAMs have started to become restrictive and of limited

value. We provide several recommendations for how researchers can help to overcome these lim-

itations. As a theory, we believe that EAMs can provide further value through being constrained

by sources of data beyond the standard choice response time distributions, being extended to the

entire decision-making process from encoding to responding, and having the random sources of

variability replaced by systematic sources of variability. As a measurement tool, we believe that

EAMs can provide further value through being a default method of inference for cognitive psychol-

ogy in place of mean response time and choice, and being applied to a broader range of empirical

questions that better capture individual differences in cognitive processes.
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Introduction

Evidence accumulationmodels (EAMs) have been the dom-

inant models of decision-making for several decades (see

Ratcliff, Smith, Brown, & McKoon, 2016, fpr a modern re-

view) for a modern review). Generally, EAMs propose that

the evidence in favour of each decision alternative is ac-

cumulated at some rate (known as the “drift rate”), un-

til the evidence for one alternative reaches some level of

evidence that triggers a decision (known as the “decision

threshold”). The general EAM framework has spawned

several variants of models, with these proposals either sug-

gesting differing theoretical accounts of how the decision-

making process operates (Ratcliff, 1978; Busemeyer &

Townsend, 1993; Ratcliff & Rouder, 1998; Usher & McClel-

land, 2001; Brown, Marley, Donkin, & Heathcote, 2008; Ver-

donck & Tuerlinckx, 2014; Tillman & Logan, 2017), or at-

tempting to simplify the process to create measurement

tools that are easy to apply to related theoretical questions

(Brown & Heathcote, 2005; Wagenmakers, van der Maas, &

Grasman, 2007; Brown & Heathcote, 2008; Wagenmakers,

van der Maas, Dolan, & Grasman, 2008; Grasman, Wagen-

makers, & van der Maas, 2009). EAMs have also differed

in whether information is accumulated at discrete points

in time (e.g., LaBerge, 1962; Audley & Pike, 1965; Link &

Heath, 1975; Link, 1975; Townsend & Ashby, 1983; Smith

& Vickers, 1988; Smith & Van Zandt, 2000) or continuously

(e.g., Stone, 1960; Ratcliff, 1978; Usher & McClelland, 2001;

Brown & Heathcote, 2008; Tillman & Logan, 2017); how-

ever, our article primarily focuses on continuous EAMs,

such as Ratcliff and colleague’s extensions to the Wiener

diffusionmodel (Ratcliff, 1978; Ratcliff & Rouder, 1998; Rat-
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cliff & Tuerlinckx, 2002), as these variants are the most

commonly applied EAMs within modern decision-making

research.

Our article discusses the future of EAMs within psy-

chological research, both in terms of potential future di-

rections within the field of decision-making, and their

more general role within cognitive psychology as a whole.

Specifically, we begin by providing a brief discussion of the

recent history of EAMs, and their success both as theories

(i.e., providing accurate accounts of empirical data) and

as useful measurement tools (i.e., estimating latent vari-

ables from data). After this, we discuss the role of EAMs

in the broad field of cognitive psychology, and whether

EAMs provide a good standard model for the field that re-

searchers can use as a benchmark and building-block for

more complex models that aim to explain cognition at a

general level. Lastly, we discuss some important potential

future directions of EAMs – developments which we be-

lieve would either allow EAMs to further increase our un-

derstanding of the decision-making process, or make EAMs

a better measurement tool for making inferences on latent

variables within empirical data.

Past Success

As a theory, EAMs provide a detailed account of how hu-

mans make decisions. Specifically, EAMs provide pre-

dictions for both the response choice and time of each

decision in an experiment, meaning that they provide a

process-level explanation of the two variables of interest

in most rapid decision-making experiments. Although sev-

eral different variants of EAMs exist, most are able to pro-

vide a close quantitative fit to these choice response time

distributions observed in a range of different paradigms,

and have been shown to qualitatively capture a range of

different choice and response time benchmarks (Ratcliff,

1978; Ratcliff & Rouder, 1998; Usher & McClelland, 2001;

Ratcliff & Tuerlinckx, 2002; Brown & Heathcote, 2008; Ver-

donck & Tuerlinckx, 2014). These models have also served

as the basis for extensions to explain the choice response

time distributions in more complex decisions, such as cat-

egorization (Nosofsky & Palmeri, 1997; Nosofsky, Little,

Donkin, & Fific, 2011), multi-attribute choice (Roe, Buse-

meyer, & Townsend, 2001; Usher & McClelland, 2004; Tset-

sos, Usher, & Chater, 2010; Trueblood, Brown, & Heathcote,

2014), absolute identification (Brown et al., 2008), choice

confidence (Van Zandt & Maldonado-Molina, 2004; Ratcliff

& Starns, 2009; Pleskac & Busemeyer, 2010), and stop sig-

nal paradigms (Matzke, Love, & Heathcote, 2017; Matzke,

Hughes, Badcock, Michie, & Heathcote, 2017). Overall,

EAMs are one of the most successful frameworks in the

history of cognitive psychology, providing an accurate ac-

count of data from a range of rapid decision-making tasks,

and serving as a basis for extensions to more complex de-

cisions.

As a measurement tool, EAMs have helped to answer

a range of theoretically relevant questions within cogni-

tive psychology. Specifically, EAMs are able to decom-

pose the choice response time distributions into latent vari-

ables of the decision-making process, such as the drift rate

and the decision thresholds (see Dutilh et al., 2018) for

the consistency between different models and methods).

The drift rate reflects both people’s task ability and the

general ease of the task, whereas the decision threshold

reflects how cautious people are in their decision strat-

egy. Many cognitive theories can be assessed through the

EAM framework based on their predictions for how these

latent variables should change over experimental condi-

tions or groups. For example, a robust finding within the

ageing literature is that older adults are slower at many

cognitive tasks than younger adults (e.g., Brinley, 1965).

The primary theoretical explanation given for older adults

having slower performance than younger adults was that

people undergo a cognitive slowdown as they age (Salt-

house, 1996), which results in a decrease in mental pro-

cessing speed. Ratcliff, Thapar, and McKoon (2001) tested

this theory using the EAM framework, where the cognitive

slowdown account would predict that older adults have a

lower drift rate than younger adults. Interestingly, Rat-

cliff et al. (2001) found that in several tasks younger and

older adults had very similar drift rates, and the slower

performance of older adults was actually the result of

greater caution in responding (i.e., higher decision thresh-

old) and slower perceptual/motor processes (i.e., higher

non-decision time), showing evidence against the cogni-

tive slowdown theory through the EAM framework. EAMs

have been able to answer similarly posed questions in

a range of different paradigms, such as letter identifica-

tion (Ratcliff & Rouder, 2000), lexical decision-making (Wa-

genmakers, Ratcliff, Gomez, & McKoon, 2008), sentence

comprehension (Lerche, Christmann, & Voss, 2019), ge-

netic heritability (Evans, Steyvers, & Brown, 2018), intel-

ligence testing (Ratcliff, Thapar, & McKoon, 2010), recog-

nition memory (Ratcliff, 1978), personality (Evans, Rae,

Bushmakin, Rubin, & Brown, 2017), early life adversity

(Knowles, Evans, & Burke, 2019), and performance op-

timality (Starns & Ratcliff, 2012; Evans & Brown, 2017;

Evans, Bennett, & Brown, 2018).

Current Role in Cognitive Psychology

In the book The Structure of Scientific Revolutions, Thomas

Kuhn suggested the scientific progress proceeds in two sep-

arate types of phases: normal science and scientific revo-

lutions (Kuhn, 1962). The first type of phase, normal sci-

ence, occurs when there is a dominant theory within the
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field that forms the standard paradigm. This standard

paradigm is the basis for how researchers explain and con-

ceptualize the phenomenon of interest (e.g., the textbook

explanation of a process), and research questions within

the field are often answered through the assumptions con-

tained within the standard paradigm. In our opinion, the

field of decision-making currently appears to closely re-

semble Kuhn’s concept of normal science, with EAMs be-

ing the standard paradigm. Specifically, the noisy integra-

tion process of EAMs has had a fundamental impact on

how we conceptualize information processing – the cor-

nerstone of cognitive psychology – as a whole. Decision-

making is generally thought about within the EAM frame-

work, where EAMs form the theoretical basis for a range of

extensions, and researchers often make inferences on the

latent variables estimated through EAMs. The overwhelm-

ing amount of scientific progress in decision-making – and

in some cases, cognitive psychology – made through the as-

sumptions of the EAM framework reflects the process of

normal science, where EAMs have provided a useful basis

for many interesting scientific discoveries (as discussed in

the previous section on “Past Success”).

However, the second type of phase, scientific revolu-

tions, occur when a standard paradigm becomes decreas-

ingly useful, and a new paradigm rises to replace it. This

is often due to increasing evidence against the accuracy

of the paradigm, and increasing evidence in favour of an-

other paradigm, resulting in the new paradigm becoming

a superior explanation of the phenomenon than the old

paradigm. However, a paradigm could also become a can-

didate for a revolt for other reasons, such as no longer

generating testable predictions, becoming increasingly im-

practical and difficult to work with, or making overly gen-

eral predictions that allow for the possibility of phenom-

ena that do not occur. Considering the concept of scientific

revolutions leads to several important questions surround-

ing EAMs and their usage within decision-making and cog-

nitive psychology. Do they still provide an adequate ac-

count of decision-making phenomena? Can they continue

to advance our understanding of human decision-making?

Are they the basis that we should be using for testing and

extending cognitive theories? Most generally, should EAMs

remain the standard paradigm for decision-making, and

to a broader extend, cognitive psychology, or should the

future of cognitive psychology look elsewhere, in a scien-

tific revolution to a new model and paradigm? Here, we

will discuss the reasons in favour of keeping EAMs as the

standard paradigm, the reasons against keeping EAMs as

the standard paradigm, and what the outcome would be of

abandoning EAMs as the standard paradigm.

Benefits of EAMs as the standard paradigm
EAMs provide several benefits for the field of speeded

decision-making, and more broadly cognitive psychology,

both in terms of their explanatory power and their useful-

ness in understanding related cognitive processes. These

benefits have likely led to their status as the standard

paradigm for the field of speeded decision-making. Below

we detail some of the advantages of EAMs, which make a

case for why they should remain the standard paradigm of

speeded decision-making, and the basis for how we under-

stand information processing.

An impressive explanatory benchmark

EAMs have provided one of the best explanations of the

decision-making process to date (Ratcliff et al., 2016),

which can provide intuitively and neurally plausible ex-

planations for how information processing may operate

(Usher & McClelland, 2001). Although many models exist

that can explain the average tendencies in response choice

(i.e., response proportion) and response time (i.e., mean re-

sponse time of correct responses) – summary statistics that

are relatively easy formodels to capture (Luce, 1986) – only

EAMs have been able to provide an accurate account of the

correct and error response time distributions and their re-

lationship across a range of cognitive tasks tasks (Ratcliff &

Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999; Usher

& McClelland, 2001). In addition to providing a close quan-

titative account of the choice response time distributions,

EAMs are also able to explain a range of benchmark phe-

nomena in choice response time. At the most basic level,

EAMs are able to explain the speed-accuracy tradeoff –

where some people perform the task more quickly at the

expense of accuracy, and others are slower while remain-

ing more accurate – through differences in the amount

of response caution that participants have. At a more

detailed level, EAMs can explain (1) the ubiquitous posi-

tive skew found in human response time distributions, (2)

the relation between the mean and variance in response

time, (3) the mean response time for error responses be-

ing slower than for correct responses in most situations,

and (4) themean response time for correct responses being

slower than for error responses in some situations, such as

when quick responding is emphasised. Overall, EAMs ap-

pear to provide an impressive account of decision-making

behaviour and a clear benchmark for future alternative

decision-making frameworks: serious contenders for ex-

plaining the decision-making process should be able to ex-

plain the entire choice response time distributions with at

least the level of accuracy as seen fromEAMs. This suggests

that EAMs continue to function as an adequate standard

paradigm for decision-making, as their underlying archi-

tecture continues to provide a accurate explanation of the
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key trends within empirical data.

A common underpinning for all tasks

EAMs provide one of the most broadly applicable formal-

ized frameworks in cognitive psychology. EAMs describe a

general theoretical process where decisions are made, al-

lowing them to theoretically extend to any cognitive task

that requires a decision to be made, such as those in

the areas of learning (Evans, Brown, Mewhort, & Heath-

cote, 2018), memory (Ratcliff, 1978; Osth & Farrell, 2018),

language processing (Wagenmakers, Ratcliff, et al., 2008;

Lerche et al., 2019), and consumer choice (Trueblood et

al., 2014; Evans, Holmes, & Trueblood, 2019), making them

an excellent standard paradigm for cognitive psychology.

However, EAMs generality also means that they only pro-

vide a vague explanation of the process involved in any

specific cognitive task – similar to signal detection theory

(Green & Swets, 1966) – meaning that they do not to pro-

vide the in-depth explanations of specific cognitive tasks

that less general, task-specific theories can. Researchers

have overcome the vagueness of EAMs by creating specific

extensions of the framework for different cognitive tasks.

Importantly, the EAM framework is simple to extend to

more task-specific models, where researchers can define

a task-specific function – often based on task-specific mod-

els – which takes stimulus information and transforms it

into the drift rates that feed into the EAM framework for

the different alternatives. These are commonly referred

to as front-end models, as the task-specific function acts as

an initial filter for the stimulus information before it feeds

into the back-end EAM process. Front-end models provide

a more constrained model of the task, as the drift rates

are now directly constrained by the stimulus information

rather than being free parameters, and can also provide a

more specific explanation of the process, as the creation of

the front-end function can be guided by task-specific theo-

ries. Front-end models have also proved successful in ac-

counting for empirical data in a range of specific cognitive

tasks, such as the exemplar-based random walk in catego-

rization (Nosofsky & Palmeri, 1997) and memory (Nosof-

sky et al., 2011, see also the exemplar-based linear bal-

listic accumulator; Donkin & Nosofsky, 2012; Osth, Jans-

son, Dennis, & Heathcote, 2018; Cox & Shiffrin, 2017, and

several other front-end extensions in memory research)

, the multi-attribute linear ballistic accumulator in multi-

attribute choice (Trueblood et al., 2014), and RTCON in

choice confidence (Ratcliff & Starns, 2009). This suggests

that EAMs provide a suitable standard paradigm for cog-

nitive psychology, being both sufficiently general to be ap-

plicable to all tasks, and simple enough to easily combine

with task-specific theories for more detailed explanations

of specific cognitive tasks.

A well-developed tool for application

EAMs have become one of the most developed modelling

frameworks within cognitive psychology, which is likely

the result of their ability to decompose observed variables

into latent parameters, allowing for meaningful psycholog-

ical conclusions to be drawn from data within cognitive

psychology. As discussed previously, several simple EAM

variants have been developed that can either be solved

in closed form (Wagenmakers et al., 2007), estimated us-

ing simple methods of moments (Grasman et al., 2009), or

have an analytically tractable likelihood function (Brown

& Heathcote, 2008). These simple variants provide quick

and easy methods for researchers to apply EAMs to esti-

mate the latent variables of the decision-making process,

and use them to answer theoretically relevant questions

about human cognition. Even for the more complex mod-

els, such as the diffusionmodel (Stone, 1960) with between-

trial variability parameters for drift rate (Ratcliff, 1978),

starting point (Ratcliff & Rouder, 1998), and non-decision

time (Ratcliff & Tuerlinckx, 2002) – commonly referred to

as the full diffusion model – several frameworks have been

developed that perform the fitting process for researchers,

such as fast-dm (Voss & Voss, 2007), DMAT (Vandekerck-

hove & Tuerlinckx, 2008), HDDM (Wiecki, Sofer, & Frank,

2013), and DMC (Heathcote et al., 2018). Importantly, these

EAM fitting frameworks allow researchers with basic pro-

gramming skills to easily implement complex EAMs with

state-of-the-art methods, even if they only have a rudimen-

tary understanding of EAMs and these methods, meaning

that researchers can focus on learning how to correctly

interpret the estimated latent variables (see Dutilh et al.,

2018, for a comparison of several methods). These frame-

worksmake EAMs an extremely useful standard paradigm,

being accessible to researchers who are not experts at ap-

plying these models, allowing for broad applications to an-

swer a range of theoretically relevant questions in a range

of different tasks.

Drawbacks of EAMs as the standard paradigm
Although there are many benefits to having EAMs as

the standard paradigm of decision-making, there are also

drawbacks. Specifically, despite EAMs initially provid-

ing rapid progress in our understanding of both decision-

making and the related areas of cognitive psychology that

EAMs were applied to, this progress has begun to reach

a plateau, where EAMs are providing fewer advances to

our understanding of cognitive processes. Note that we

are not attempting to claim that research involving EAMs

is devoid of advances in our understanding of cognitive

processes, and we cite many examples within our “Future

Directions for EAMs as Theories” and “Future Directions

for EAMs as Measurement Tools” sections where we be-
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lieve that our understanding of cognitive processes have

continued to flourish through EAMs. However, we believe

that the overall progress of the field has begun to reach a

plateau, and we hope that discussing these issues will gal-

vanize researchers to explore more novel directions, re-

sulting in the rate of progress once again becoming more

rapid. Below we detail some of the disadvantages of EAMs,

which create some potential reasons for why researchers

may consider searching for alternative frameworks to re-

place EAMs as the standard paradigm of decision-making

and information processing.

A theoretical plateau has been reached

EAMs have provided researchers with an explanation of

the general decision-making process, with EAMs propos-

ing that speeded decision-making is the result of evidence

accumulating for each alternative until one reaches a

threshold. However, progress beyond this general expla-

nation of decision-making has been limited, and few in-

sights have been gained into the more specific dynamics

of the decision-making process. Several different variants

of EAMs exist, which each propose different specific dy-

namics that occur during the accumulation process. For

example, the leaky-competing accumulator (LCA; Usher &

McClelland, 2001) proposes that different alternatives lat-

erally inhibit one another, where alternatives with more

accumulated evidence lessen the accumulation for other

alternatives, whereas the diffusion model (Ratcliff, 1978)

proposes that alternatives interact through feed-forward

inhibition, where evidence for one alternative is evidence

against the other alternatives. However, these different

theoretical accounts display a high level of mimicry, mak-

ing it difficult to assess which specific dynamics provide

the best explanation of decision-making process (Leite &

Ratcliff, 2010; Teodorescu & Usher, 2013). Specifically, most

EAMs provide an accurate account of the choice response

time distributions of most cognitive tasks, making their

predictions difficult to distinguish between in choice and

response time data. EAMs also make several assumptions

that seem implausible based on research in related fields.

For example, EAMs assume that the decision-making and

motor processes occur sequentially, where motor respond-

ing only begins after a response has been chosen, and

the decision-making process has terminated (Ratcliff, 1978;

Usher &McClelland, 2001; Brown&Heathcote, 2008). How-

ever, electromyography (EMG) data – where participants

response movements are recorded – has indicated that the

decision and motor processes are intertwined, with deci-

sions commonly involving people initially beginning a re-

sponse for one alternative, before stopping and responding

for the other alternative (Coles, Gratton, Bashore, Eriksen,

& Donchin, 1985; Schweickert, 1989; Townsend & Fikes,

1995; Burle, Spieser, Servant, & Hasbroucq, 2014; Servant,

White, Montagnini, & Burle, 2015; Servant, White, Mon-

tagnini, & Burle, 2016). These EMG findings suggest that

EAMs currently provide an inadequate explanation of the

complete decision-making process, though little effort has

been directed towards developing variants that do not as-

sume decision and motor processes occur sequentially, as

this assumption does not prevent EAMs from providing

an accurate account of the data that they are usually fit

to: the choice response time distributions (though see Ser-

vant et al., 2016, for an example of how EMG data can be

integrated into the EAM framework). This suggests that

little progress is currently being made in understanding

because of the fixation of decision-making researchers on

only choice response time distributions, resulting in a the-

oretical plateau.

Applications are often restrictive

EAMs have been a useful measurement tool for answer-

ing theoretically relevant questions within cognitive psy-

chology. As discussed earlier in the example from the age-

ing literature, the EAM framework can be used to test the-

ories that make predictions about the latent variables of

the decision-making process, such as drift rate or thresh-

old, instead of attempting to infer changes in these latent

variables from changes in observed variables (e.g., mean

response time). Although the EAM framework has the po-

tential to answer a wide variety of theoretically interesting

questions, EAM applications are often restrictive. Specifi-

cally, we argue that most applications of EAMs fall into a

category colloquially referred to as “EAM account of task

X”, where researchers (1) find a cognitive task that EAMs
are not commonly applied to, but response time and choice

can be measured in, (2) fit an EAM to data from this task,

and (3) estimate what parameters vary over experimen-

tal conditions or groups (e.g., Leite & Ratcliff, 2011; Yap,

Balota, Sibley, & Ratcliff, 2012; Mulder, Wagenmakers, Rat-

cliff, Boekel, & Forstmann, 2012; Philiastides & Ratcliff,

2013; Gomez, Perea, & Ratcliff, 2013; van Ravenzwaaij,

Boekel, Forstmann, Ratcliff, & Wagenmakers, 2014; Rat-

cliff & Strayer, 2014; Ratcliff & Smith, 2015; Gomez, Rat-

cliff, & Childers, 2015; Thompson, Ratcliff, & McKoon, 2016;

Aschenbrenner, Balota, Gordon, Ratcliff, & Morris, 2016).

These applications lead to inferences about (1) whether

or not the chosen EAM provided a good account of the

data, and (2) what parameters varied over the conditions

or groups, and conclusions about (1) the ability of EAMs

to explain data in this task, and (2) how “manipulation Y
causes an effect in parameter Z”. Although these applica-
tions can provide interesting information about the task

and provide theoretically relevant inferences about cogni-

tive processes, they represent a small subset of the poten-
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tial questions that EAMs could be used to answer; some-

thing that we discuss in more detail within our “Future

Directions for EAMs as Measurement Tools” section. Al-

though recent research has attempted extend EAM appli-

cations to new realms, such as joint modelling approaches

that attempt to link multiple sources of data (Turner et

al., 2013; Evans, Rae, et al., 2017; Turner, Rodriguez, Nor-

cia, McClure, & Steyvers, 2016; Evans, Steyvers, & Brown,

2018; Turner, Van Maanen, & Forstmann, 2015; Knowles et

al., 2019; Turner, Wang, & Merkle, 2017; Krajbich, Armel,

& Rangel, 2010), these applications appear to be excep-

tion, rather than the rule. This suggests that the EAM

framework may encourage researchers to answer restric-

tive questions, with EAM applications mostly revolving

around the question “does drift rate or threshold vary be-

tween these conditions or groups?”.

What alternatives exist?
As discussed above, there are several benefits and draw-

backs to having the EAM framework as the standard

paradigm of decision-making. However, before consider-

ing the removal of EAMs as the standard paradigm, there

must be a suitable framework to replace it. Importantly,

this new framework would need to be able to account for

the broad range of empirical data as well as EAMs, and also

provide the same usefulness as EAMs in answering the-

oretically relevant questions that test cognitive theories.

However, as far as we are aware, there are currently no

other modelling frameworks that are able to match EAMs

in either their explanatory power or their broad applica-

bility. In addition, even if another modelling framework

was developed in the not-too-distant future that could im-

prove on EAMs in these areas, the framework would also

need to develop the same level of infrastructure that cur-

rently exists for EAMs, such as the many software pack-

ages available for fitting these models. Therefore, EAMs

appear to still be the most suitable framework for the stan-

dard paradigm of speeded decision-making, and will likely

to continue to be for at least the next decade of decision-

making research.

Although we believe EAMs are still the most suitable

standard paradigm of decision-making, we also believe

that there are two key problems that are the result of how

EAMs are currently used: that we have reached a theoret-

ical plateau in our understanding of the decision-making

process, and that the EAM applications are often restricted

to a narrow range of questions. In the remainder of this

article, we discuss different possible future directions for

EAMs that could help overcome each of these limitations.

However, we note that EAMs are not necessarily the best

possible framework, and that future research should ded-

icate more time and resources to attempting to develop

alternative frameworks to EAMs, which could challenge

their position as the standard paradigm.

Future Directions for EAMs as Theories

One of the key issues we highlighted with EAMs in the

previous section is that recent theoretical progress in un-

derstanding the decision-making process has reached a

plateau. Although the general EAM framework appears to

provide a good description of the general decision-making

process, gaining a more intricate understanding of the dy-

namics of the process has become difficult due to the high

levels of mimicry between the models in explaining the

choice response time distributions. Here, we attempt to

provide several future directions for EAMs that would al-

low further theoretical insight into the decision-making

process, allowing EAMs to continue to increase our under-

standing of how the human decision process operates.

Moving beyond response time and choice
The field of decision-making – and in many cases, cogni-

tive psychology – has been fixated on two sources of be-

havioural data: the response choices that people make,

and the response times that they make them at. As dis-

cussed earlier, EAMs are able to account for these ob-

served variables in unison, which allows them to capture

the speed-accuracy tradeoff. EAMs are also able to cap-

ture the distribution of choices and response times over

an entire experiment, which is more difficult to accurately

predict than the summary statistics of mean response time

and accuracy (Luce, 1986). The fixation on response time

and choice is likely a result of their sufficiency in teas-

ing apart the effects of task ease (i.e., drift rate) and task

caution (i.e., decision threshold), as the choice response

time distributions alone can be decomposed into the latent

parameters of the decision-making process. However, as

discussed previously, EAMs that propose different specific

dynamics for the decision-making process display a high

level of mimicry when assessed in their ability to account

for the choice response time distributions, meaning that

the choice response time distributions do not provide ade-

quate constraint to distinguish between different theoret-

ical perspectives of decision-making. Therefore, from the

theory-based perspective of trying to understand the spe-

cific dynamics of the decision-making process, it appears

that we may have reached the limit of what response time

and choice alone can tell us, and it may be time to move

beyond the choice response time distributions and begin

forcing these models to account for additional sources of

data.

However, if researchers are going to constrain EAMs to

account for additional sources of data, then what sources

of data should they use? Ideally, any additional source
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of data should still allow response time and choice to be

recorded, so the models can be constrained by all of these

variables simultaneously, and the additional source of data

should clearly map onto the current EAM framework, so

that fairly uncontroversial extensions can be made from

the current models to these new sources of data. One pos-

sibility is to change the types of decisions that peoplemake,

so that they provide a rating on how much they prefer one

alternative over another, rather than just a dichotomous

choice on which alternative they prefer. This is commonly

implemented as a confidence rating (Vickers, 1979; Van

Zandt & Maldonado-Molina, 2004; Ratcliff & Starns, 2009;

Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2013), where

participants decide how confident they are in their cho-

sen alternative (though also see “best-worst choice”; Finn

& Louviere, 1992; Hawkins et al., 2014) either during the

initial decision (Ratcliff & Starns, 2009, 2013), or in a sub-

sequent decision (Van Zandt & Maldonado-Molina, 2004;

Pleskac & Busemeyer, 2010). Choice confidence provides a

rich source of information to researchers, providing some

measurement of the preference for one response alterna-

tive over another, and has lead to a range of models be-

ing developed to explain these confidence responses, espe-

cially within the area of recognition memory (Van Zandt &

Maldonado-Molina, 2004; Ratcliff & Starns, 2009; Pleskac &

Busemeyer, 2010; Ratcliff & Starns, 2013). However, as far

as we are aware, no studies have attempted to use confi-

dence responses to distinguish between the more intricate

dynamics of the complete decision-making process. One

reason for this may be that recording choice confidence

requires changing the type of decisions that participants

make, meaning that researchers need to alter their exper-

imental paradigms in order to obtain this information. Al-

though obtaining the additional information is certainly

beneficial, it could also be argued that changing the type of

decisions that participants make from dichotomous choice

to a scale qualitatively changes the way that people make

these decisions. Indeed, several models of choice confi-

dence assume that the process is changed to at least some

extent, such as RTCON (Ratcliff & Starns, 2009), which as-

sumes that each confidence category is now a completely

separate response alternative with a separate accumula-

tor. Furthermore, researchers must also be wary of how

theymeasure confidence, as the time ofmeasurement (e.g.,

during the initial decision [Ratcliff & Starnsm,2009] or in

a subsequent decision [Pleskac & Busemeyer, 2010])and

the type of measurement (e.g., ordinal [Ratcliff & Starns,

2009] or a bounded continuum [Vaghi et al., 2017]) de-

termines how confidence manifests at an observed level.

Therefore, although choice confidence is an interesting

additional source of data that can help us better under-

stand certain aspects of decision-making, inferences made

in these paradigmsmay lose direct applicability to the stan-

dard two-alternative forced choice paradigms used inmost

decision-making tasks.

Another possibility for obtaining additional sources of

data is to change the amount of information recorded from

the decision-making process, attempting to integrate in-

formation from several points in time during the deci-

sion. One simple method would be to record additional re-

sponses that occur after the initial response is made, which

reflect some change in preference (e.g., a “change ofmind”;

Resulaj, Kiani, Wolpert, & Shadlen, 2009; Yeung, Botvinick,

& Cohen, 2004; Hasbroucq, Burle, Akamatsu, Vidal, &

Possamai, 2001) in the decision-making process. Rabbitt

and colleagues (Rabbitt, 1966, 1967, 1968, 1969; Rabbitt &

Rodgers, 1977; Rabbitt, Cumming, & Vyas, 1978; Rabbitt

& Vyas, 1981; Maylor & Rabbitt, 1987; Rabbitt, 2002) pro-

vided initial investigations of these post-decision responses

in isolation, using paradigms with “error-correcting re-

sponses”, where participants are explicitly instructed to

correct their errors if they believe they have made them.

Even when participants are not instructed to correct their

errors, second responses for the opposing alternative –

something that we termed “double responding” in pre-

vious work – are often anecdotal observed, though are

rarely studied (Evans, Dutilh, Wagenmakers, & van der

Maas, in press). Importantly, Evans, Dutilh, et al. (in press)

showed that double responses can be used to further con-

strain EAMs, with data from two experiments showing

strong evidence for lateral inhibition being required to si-

multaneously account for the choice response time distri-

butions and double responding behaviour. Post-decision

behaviour – such as double responses or error correct

responses – provide a source of data that can further

constrain the different variants of EAMs and require no

changes (or in the case of error correcting responses, min-

imal changes) to the experimental paradigm. However,

future research could aim to obtain even more measure-

ments of the decision-making process, such as measure-

ments at several discrete points in time, or even using con-

tinuous measurement.

From encoding to responding
The EAM framework has been focused on explaining the

human decision-making process. As discussed earlier,

EAMs have provided an accurate account of the choice re-

sponse time distributions from a range of cognitive tasks,

displaying their success in accounting for the decision-

making process. However, when thinking more broadly

in terms of all of the mental processes required to make a

decision, EAMs only attempt to explain the point of the pro-

cess where the response is being chosen, leaving all other

aspects of the complete process undefined. For example,

The Quantitative Methods for Psychology 792

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.2.p073


¦ 2020 Vol. 16 no. 2

EAMs do not attempt to explain how the information from

the stimulus is converted into the accumulated evidence

that drives the decision process, how the evidence from

the previous decision “resets” for the new decision, or how

reaching the decision threshold results in the motor re-

sponse being made; these components are simply placed

into the “non-decision time” bracket. Although being ag-

nostic to the other parts of the complete process helps

to make EAMs a computationally tractable and generaliz-

able measurement tool, leaving these parts undefined also

means that EAMs cannot provide a complete, mechanis-

tic explanation of the process from stimulus input to re-

sponse completion. Therefore, although EAMs provide an

accurate account of the response selection part of decision-

making, they do not provide an explanation for the com-

plete process involved in making a decision.

One problematic consequence of EAMs ignoring the

other parts of the complete decision process is that they

make the implicit assumption that these sub-processes are

separate and independent. For example, EAMs assume that

moment-to-moment samples of evidence are independent,

meaning that there is no interaction between encoding and

accumulation, and that themotor action does not begin un-

til the response selection process is completed, which can-

not be changed once the decision has been triggered. How-

ever, these assumptions seem somewhat implausible given

research in related areas. For example, the EMG research

discussed earlier suggests that people occasionally make

initial movements towards one alternative before chang-

ing their response to the other alternative, suggesting that

people begin their motor responding before the final re-

sponse is selected. It also seems likely that there can be

some level of dependency in the moment-to-moment sam-

ples of evidence taken from the environment, as either

actual auto-correlation in the environment or perceived

auto-correlation by participants, meaning the independent

samples assumption seems somewhat implausible. There-

fore, it seems that to understand the complete process of

decision-making, researchers need to extend EAMs beyond

their current explanation of only the response selection

process to account for the other sub-processes involved in

decisions.

One promising method that could provide a more com-

plete understanding of the process is the recent wave

of joint modelling techniques within cognitive modelling.

Joint modelling involves creating a single modelling frame-

works that attempts to capture multiple sources of data

that would traditionally be assessed separately with sep-

arate analyses or modelling frameworks. Joint modelling

techniques vary greatly from study to study, such as cre-

ating a full covariance matrix across all parameters from

two models of two different types of data (Turner et al.,

2013), estimating the correlation between model parame-

ters and a different source of data (Knowles et al., 2019),

estimating the correlation between the same parameters

across different people or experimental conditions (Evans,

Steyvers, & Brown, 2018), or restricting a specific parame-

ter of a model to be a function of another source of data

(Evans, Rae, et al., 2017). The types of data also varies

greatly from study to study, with previous research hav-

ing combined EAMs with neural data (Turner et al., 2013;

Turner et al., 2016; Turner et al., 2015; Turner et al., 2017),

personality data (Evans, Rae, et al., 2017), eye-tracking data

(Krajbich et al., 2010), genetics data (Evans, Steyvers, &

Brown, 2018), EMG data (Servant et al., 2016) and devel-

opmental data (Knowles et al., 2019). Importantly, these

methods can be combined with psychophysiological data,

such as neural recordings (e.g., single cell recordings, elec-

troencephalography [EEG], functional magnetic resonance

imaging [fMRI]) and motor recordings (e.g., EMG), which

would provide further insight into how these data that re-

flect other sub-processes relate to the latent parameters

within EAMs. However, these joint modelling techniques

would only provide a measurement of the relationship be-

tween the different sub-processes that make up a decision,

and would not provide a complete, mechanistic model of

decision-making.

Another method for gaining a more complete explana-

tion of the decision process is to combine knowledge across

fields. Just as the response selection process is well stud-

ied and understood within the area of decision-making,

perceptual encoding and motor responding are also well

studied and understood within their respective fields of re-

search, with theories and models for how these processes

operate. However, these fields of research have tradition-

ally been separate from decision-making, where different

fields each attempt to understand their part of the process.

One clear method for obtaining a more complete under-

standing of the entire process would be combining these

separate research traditions by integrating the different

models – and sources of data analysed – in order to cre-

ate a complete, mechanistic account of the entire decision

process. This could potentially be achieved through meth-

ods that already exist within cognitive modelling, such as

the “front-end” model approaches discussed earlier. An-

other possible initial step would be building more com-

plex models of the decision-making, which involve inter-

actions between different sub-process and/or processing

channels (e.g., Loftus, Busey, & Senders, 1993; Townsend

& Wenger, 2004; Wenger & Townsend, 2006; Eidels, Houpt,

Altieri, Pei, & Townsend, 2011; Townsend, Houpt, & Silbert,

2012) at different stages of the entire process (e.g., the de-

cision input, decision process, or decision output). These

models could still remain within the EAM framework, but
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would contain more specific predictions about both the

decision-making process itself, and the process that occur

before (e.g., perception) and after (e.g., motor) the deci-

sion. However, given that the different existing EAM vari-

ants already strongly mimic each other in their predictions

for choice response time distributions, which often pre-

vents researchers from distinguishing between their dif-

ferent proposals for dynamics of the decision-making pro-

cess, it seems likely that these increasing complex mod-

els would require novel experimental paradigms – or new

sources of data, as discussed in the previous subsection –

to properly constrain their predictions and make them dis-

tinguishable. One other – though more difficult – solution

would involve developing EAMs into a complete cognitive

architecture (Newell, 1990), similar to the ACT-R (Ander-

son, 1993; Anderson et al., 2004; Anderson, 2007; ; see Rit-

ter, Tehranchi, & Oury, 2019, for a recent review), SOAR

(Milnes et al., 1992; Laird, 2008), and EPIC (Kieras & Meyer,

1994; Meyer & Kieras, 1994; Meyer et al., 1995) architec-

tures used in others areas cognitive research. These archi-

tectures each aim to provide a universal theoretical frame-

work based on how these cognitive processes may be im-

plemented in the brain, while also allowing the develop-

ment of sub-theories for specific tasks that researchers

may be interested in. Although the development of a com-

plete cognitive architecture based on the EAM framework

would likely be a difficult and lengthy process, an easier

goal may be attempting to connect EAMs with existing cog-

nitive architectures, which may help to provide EAMs with

amore complete explanation of the entire decision-making

process.

Explaining “random” variability
Every model within the EAM framework incorporates at

least one source of “random” variability within its archi-

tecture, either as moment-to-moment fluctuations in pa-

rameter values, or decision-to-decision fluctuations in pa-

rameter values. These random fluctuations make the pro-

cess with EAMs stochastic, allowing different responses to

be made at different times for identical decisions. Specif-

ically, models have been proposed within the EAM frame-

work that include one or more of the following four types

of random variability: (1) moment-to-moment variability

in evidence accumulation (Stone, 1960; Laming, 1968; Rat-

cliff, 1978; Ratcliff & Rouder, 1998; Usher & McClelland,

2001; Ratcliff & Tuerlinckx, 2002), (2) decision-to-decision

variability in evidence accumulation (Laming, 1968; Rat-

cliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx,

2002; Brown & Heathcote, 2005, 2008), (3) between deci-

sion variability in the amount of starting evidence (Rat-

cliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002; Brown

& Heathcote, 2005, 2008), and (4) between decision vari-

ability in the time for non-decision processes (Ratcliff &

Tuerlinckx, 2002). Each type of random variability is gov-

erned by some moment-to-moment or decision-to-decision

distribution, with these distributions usually being simple,

convenient, analytically tractable distributions, such as the

normal, truncated normal, or uniform (though see Terry

et al., 2015, for other potential distributions; and Jones &

Dzhafarov, 2014, for the importance of distributional as-

sumptions). The number of random variability parame-

ters differs between different EAMs, ranging from the LCA

that only contains a single source of random variability –

moment-to-moment variability in drift rate – to the full dif-

fusion model that contains all four sources of random vari-

ability mentioned above. Importantly, these differences in

the number of random variability parameters results in

different explanations for benchmark response time phe-

nomena. While the full diffusion model provides a gen-

eral explanation, suggesting that these benchmark phe-

nomena arise due to random variability between decisions

in drift rate and starting point, the LCA provides a more

specific explanation about the dynamics of the decision-

making process, suggesting that these benchmark phenom-

ena arise due to lateral inhibition between alternatives and

leakage of evidence over time.

One of the key reasons for inclusion of random vari-

ability parameters is their ability to account for bench-

mark response time phenomena while remaining compu-

tationally tractable. For example, the full diffusion model

is able to explain these benchmark phenomena while

still retaining a computationally tractable likelihood func-

tion, which with modern frameworks can be implemented

within a reasonable amount of time (e.g., Voss & Voss,

2007), whereas the addition of lateral inhibition and leak-

age dynamics make the LCA computationally intractable,

meaning that the model is mostly fit through simulation-

based methods (Evans, 2019a). However, this computa-

tional tractability comes at the expense of explanation.

From a theoretical perspective, it seems unlikely that the

variability captured by the random variability parameters

is actually due to some non-deterministic process, and in-

stead the variability is likely due to sources that are ei-

ther unknown, difficult to quantify, or difficult to explicitly

model. However, the random variability parameters pro-

vide little explanation about how the process operates, and

what exactly causes these sources of variability (Evans,

Tillman, & Wagenmakers, in press).

One method to explain these random sources of vari-

ability is to measure more factors that we believe may be

the sources of the variability. Theoretically, if all factors

that contributed to the variability in a parameter – such as

drift rate – could bemeasured, then all variability would be

accounted for, and there would be no need to include ran-
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dom variability parameters in the model. Some of these

factors are easy to capture and are already modelled in

most applications of EAMs, such as item effects (e.g., Evans,

Hawkins, Boehm,Wagenmakers, & Brown, 2017, where ac-

cumulation was constrained to be a linear function of the

stimulus coherence). Other factors may be easy to mea-

sure, but difficult to incorporate into EAMs, such as se-

quential effects in decision-making (though see Usher &

McClelland, 2001; Brown et al., 2008; Jones, Curran, Mozer,

& Wilder, 2013). There are also factors may be more diffi-

cult to measure, such as fluctuations in attention over the

course of the experiment (though see Hawkins, Mittner,

Boekel, Heathcote, & Forstmann, 2015), which may require

novel experimental manipulations to measure and assess

their impact on the process. However, regardless of the dif-

ficulty, future research should strive to uncover systematic

sources of variability that are captured by these random

variability parameters, in order to gain a more complete

understanding of the decision-making process.

Future Directions for EAMs as Measurement Tools

The other key issue that we highlighted with EAMs is that

recent uses of the framework as a measurement tool have

become restrictive, and that different approaches may be

able to provide new, interesting insights into cognition.

Here, we attempt to provide several future directions for

EAMs that would allow greater insight into cognition to be

gained from applications of the framework.

A standard focus on latent parameters
In most fields within cognitive psychology, research ques-

tions focus on whether specific experimental conditions/-

groups are either (1) faster/slower than one another by as-

sessing the mean correct response time, or (2) more/less

accurate than one another by assessing the task accuracy.

As discussed previously, these observed variables do not

directly translate to latent parameters of the underlying

cognitive process, and changes in either of these observed

variables could reflect changes in task ability or task cau-

tion. These assessments of observed variables can result

misleading conclusions being drawn, such as Salthouse’s

1996 cognitive slowdown theory, which then need to be

corrected by subsequent “EAM account of task X” studies,
such as Ratcliff et al. (2001). Therefore, we argue that the

continuing focus of cognitive psychology on observed vari-

ables – which are used to make indirect inferences about

latent variables – creates a need for subsequent EAM stud-

ies (i.e., “EAM account of task X” applications) to properly
test the conclusions of these original studies using latent

parameters, and distracts researchers in decision-making

from exploring other types of questions that may provide

interesting and informative results.

One potential method for increasing the number of

novel applications of EAMs is to remove the void left by

mean response time and accuracy analyses, and make the

latent parameters with EAMs the standard focus for anal-

yses within cognitive psychology. Specifically, we believe

that the latent parameters of EAMs should be made the

default variables for analyses within cognitive psychology,

where researchers continue to perform the same standard

statistical analyses that they have previously, but using the

latent parameters of drift rate and decision threshold in-

stead of mean response time and accuracy. Althoughmany

previous studies – which we cite throughout our article –

have taken this approach for their specific research ques-

tion, our proposal is a broader one; that the entire mindset

of cognitive psychology should shift from the current de-

fault focus on observed variables, to a default focus on the-

oretically meaningful, latent parameters. We believe that

if EAMs were the standard focus for cognitive psychology

studies that made inferences about the underlying cogni-

tive process, then subsequent EAM studies would no longer

be required to properly test the original claims, remov-

ing the current burden on decision-making researchers to

heavily invest their time into “EAM account of task X” ap-
plications. Using the ageing example discussed earlier,

researchers initially focused on the observed variable of

mean response time, finding that older participants are

slower than younger participants, and inferring that this

reflected a cognitive slowdown. Essentially, this standard

focus on mean response time in cognitive psychology cre-

ated the need for the subsequent study of Ratcliff et al.

(2001), to properly test the cause of the slower perfor-

mance in older participants. However, if EAMs were the

default method of analyses for cognitive psychology, then

previous research would have found that older partici-

pants are generally more cautious than younger partici-

pants, the cognitive slowdown theory (Salthouse, 1996) –

which is still commonly cited – would never have been

proposed, and the study of Ratcliff et al. (2001) would not

have been required. Importantly, if these latent param-

eters were the default for cognitive psychology, then re-

searchers would need to justify their use of mean response

time and accuracy instead of these parameters, especially

in cases were researchers attempt to use these observed

variables as a proxy to the cognitive process.

In order to make the latent parameters from EAM the

default analysis for cognitive psychology analyses, further

research is needed to better integrate EAMs with the sta-

tistical techniques currently used by cognitive psychology

researchers (and potentially psychometric researchers; see

Batchelder, 2010; Pe, Vandekerckhove, & Kuppens, 2013,

for the concept of “cognitve psychometrics”). Currently,

the methods of statistical inference within the EAM frame-
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work is highly variable between studies, with different

studies using different methods – which can lead to dif-

ferent conclusions (Evans, 2019b, 2019c) – to answer sim-

ilar types of questions. Therefore, for EAMs to become

the default analysis within cognitive psychology, some de-

fault, uniform method of applying EAMs must first be cre-

ated within decision-making. One potential reason for this

lack of uniformity across studies is that common statistical

analysis methods are not always feasible in the context of

more complex cognitive models. For example, Bayes fac-

tors (Kass & Raftery, 1995) have become one of the more

common methods of statistical analysis for observed vari-

ables (Rouder, Morey, Speckman, & Province, 2012). How-

ever, when applied to EAMs and other complex cognitive

models, Bayes factors become analytically intractable to

calculate. However, recent research has proposed several

methods for calculating Bayes factors for cognitive mod-

els, which reduce the computational burden required to

estimate Bayes factors for these complex models (Evans &

Brown, 2018; Gronau et al., 2017; Annis, Evans, Miller, &

Palmeri, 2019; Evans & Annis, 2019), and an R package has

been developed to implement one of these methods (bridge

sampling; Gronau, Singmann, &Wagenmakers, 2019). Con-

ceptually, the combination of Bayes factor approximation

methods with EAMs could be thought of as a latent vari-

able version of linear mixed-effect models, where a gen-

eral linear model (e.g., t-test, ANOVA) operates on top of

the EAM, with the latent parameters are estimated in a

Bayesian manner and the uncertainty in these parameters

(i.e., the posterior distributions) replacing the measure-

ment error in the observed variable used in standard lin-

ear mixed-effects models. Furthermore, to be practically

accessible formost cognitive psychology researchers, these

integrated analysismethods for EAMswould need to be im-

plemented in easy-to-use packages for common statistical

programming languages.

Another important issue is establishing the consistency

between different EAM variants in their conclusions as

measurement tools. Although most EAMs provide close

mimicry of one another when accounting for the choice re-

sponse time distributions, this does notmean that these dif-

ferent variants will provide similar estimates of the latent

parameters – or, as is most often the question of interest,

come to similar conclusions about which latent parame-

ters vary between experimental conditions and/or groups.

Previous research has found that several different vari-

ants of the diffusion model show a close mapping with

the parameters of the LCA (van Ravenzwaaij & Oberauer,

2009), and that the diffusion model and the linear bal-

listic accumulator (LBA) provide close agreement on esti-

mated parameters when the accumulation process in the

LBA is constrained to more closely reflect the diffusion

model (Donkin, Brown, Heathcote, & Wagenmakers, 2011),

which suggests that the conclusions drawn fromEAMsmay

be fairly independent of the specific EAM applied. How-

ever, the recent many-lab study of Dutilh et al. (2018) –

where each research team had to decide which latent pa-

rameters varied across experimental conditions in 14 dif-

ferent experiments
1
– found reasonable discrepancies in

conclusions between teams that used the diffusion model

and teams that used the LBA, whichweremuch larger than

discrepancies between teams that used the same model.

Furthermore, recent parameter recovery studies have pro-

vided a pessimistic perspective of the measurement prop-

erties of more complex EAMs, showing poor recovery for

models with decision urgency that varies over the course

of a decision (Evans, Trueblood, & Holmes, 2019), the LCA

(Miletić, Turner, Forstmann, & van Maanen, 2017), and

even the diffusion model when all random between-trial

variability parameters are included (Lerche & Voss, 2016;

Boehm et al., 2018). However, the inability to recover ab-

solute parameter values does not necessarily mean that

the relative differences between conditions in the values

of specific parameters cannot be recovered, or that these

more complex EAMs will differ from simpler EAMs in their

conclusions about which latent parameters vary between

experimental conditions and/or groups. In order to make

EAMs a more robust default analysis for cognitive psychol-

ogy, future research should focus on more clearly deter-

mining the consistency (or lack thereof) between differ-

ent EAMs in their conclusions about cognitive processes in

realistic situations, as well as assessing the measurement

properties of more complex EAMs in the context of relative

changes in parameter values.

Answering different types of questions
As discussed previously, most applications of EAMs appear

to take the form of “does parameter Y differ over condi-
tion/group Z”, and assess whether there is some reliable
population difference between the conditions or groups. In

some cases these applications answer important theoreti-

cal questions, such as the ageing example discussed pre-

viously, where Ratcliff et al. (2001) found older adults to

be more cautious than younger adults. However, focus-

ing most applications on these types of questions seems re-

strictive, and likely to ignore amany potentially interesting

questions that EAMs could be used to answer.

One different potential application involves asking

questions about how many participants display specific ef-

fects. Recent research within cognitive psychology has be-

1
It should be noted that Dutilh et al. (2018) did not actually use different experiments, and instead collected data from a single, large experiment,

which they split into 14 “pseudo-experiments”.
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gun to explore whether certain classic cognitive effects ap-

ply to all individuals, and whether any individuals dis-

play no effect, or reverse effects. For example, Haaf and

Rouder (2018) developed a series of Bayesian hierarchi-

cal models to answer these questions for the Stroop ef-

fect (Stroop, 1935) – the classic cognitive effect whether

people are slower to name the colour ink that a word is

in if the word is the name of a different colour – finding

that all participants appear to display the Stroop effect.

These questions are no longer focused on whether there

is some reliable population difference between the condi-

tions or groups, but instead whether the entire group ap-

pears to behave in a homogeneous manner, providing a

better understanding of potential individual differences.

These types of questions could also provide valuable in-

sights for cognitive models, such as assessing whether all

participants become worse at tasks as difficult increases,

or whether all participants become less cautious when in-

structed to respond with an emphasis on speed. In cases

where not all participants display an effect, these ques-

tions could also be extended to assessing howmany partici-

pants display the effect, such as whether most people show

a decrease in drift rate (Rae, Heathcote, Donkin, Averell, &

Brown, 2014) and/or non-decision time (Voss, Rothermund,

& Voss, 2004) when instructed to respondwith an emphasis

on speed. These types of questions seem particularly rele-

vant to EAMs, where a small number of participants with

strong evidence in favour of an model/effect can provide

overwhelming evidence in favour of it, meaning that the

population difference between the conditions or groups is

only reflective of a few participants. Future research using

EAMsmay benefit from a lesser focus on population differ-

ence between the conditions or groups, and a greater focus

on whether effects appear to occur in all, or most, people.

Another potential application involves using EAMs

as diagnostic tools in applied settings. Most applica-

tions of EAMs focus on better understanding cognition

through novel theoretical and/or empirical insights, assess-

ing whether there is some relative difference between ex-

perimental conditions or groups. However, applications of

EAMs rarely focus on the absolute values of the parameters

and how they may be potentially useful, such as for diag-

nostics in applied setting. For example, previously studies

have found strong, robust links between drift rate and IQ

(Ratcliff et al., 2010, 2011), suggesting that there is a strong

link between drift rate on basic decision-making tasks and

people’s intelligence. Importantly, this finding is not only

theoretically interesting and an external validation of the

meaning of the drift rate parameter; it also shows that drift

rate can serve as a complement, or substitute, to intelli-

gence testing in clinical diagnostics. IQ tests can often be

time consuming to implement, and can suffer from poten-

tial culture-based biases and practice effects. Based on pre-

vious findings linking drift rate to intelligence, the mea-

surement of drift rate in basic cognitive tasks appears to

present a promising complement to standard intelligence

testing, especially in situations where many intelligence

tests may not be appropriate, such as the measurement of

cognitive decline over a period of time where constant re-

testing is required. Another example is the measurement

of cognitive control in applied fields, which is commonly

measured through the interference effect in the Stroop

task (Stroop, 1935) or the flanker task (Eriksen & Erik-

sen, 1974), or through specifically designed inhibition tasks

such as the stop-signal task (Lappin & Eriksen, 1966). How-

ever, EAMs have been specifically developed to account for

these conflict tasks (Hübner, Steinhauser, & Lehle, 2010;

White, Ratcliff, & Starns, 2011; Ulrich, Schröter, Leuthold,

& Birngruber, 2015; Matzke, Dolan, Logan, Brown, & Wa-

genmakers, 2013), and can used to provide a latent mea-

surement of cognitive control. Therefore, researchers in

these applied fields would be better served using the mea-

surement of cognitive control from one of these models as

a default, instead of the raw response times, providing any

instance where the absolute parameter values in EAMs can

serve as a useful diagnostic tool.

Concluding Remarks

Although evidence accumulation models continue to pro-

vide a useful standard paradigm for decision-making re-

search, we believe that there are several limitations re-

garding how EAMs are currently tested and applied.

Specifically, we believe that a theoretical plateau has been

reached in our understanding of human decision-making

through EAMs, and that applications of EAMs to better

understand cognition have become restrictive and of lim-

ited value. Within the current article we propose several

potential future directions for EAMs, and believe that ex-

ploring some of these future directions will allow EAMs to

again provide researchers within valuable insights into the

decision-making process, and more generally, cognition.
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