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Linking the Ex-Gaussian Parameters to Cognitive Stages:
Insights from the Linear Ballistic Accumulator (LBA)

Model
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Abstract m The ex-Gaussian distribution has been routinely used by researchers as a descriptive
tool to characterize response time data in speeded two-choice tasks. It has also served as a psy-
chological theory of the underlying cognitive processes. The latter practice requires that the ex-
Gaussian parameters should map in a one-to-one correspondence to distinct cognitive stages or
process model parameters. The current investigation assessed the correspondence between the ex-
Gaussian parameters and the parameters of a well-established process model - the linear ballistic
accumulator (LBA, Brown & Heathcote, 2008), using simulations and analyses of empirical data.
The results showed the ex-Gaussian parameters bear lawful relations with the LBA’s parameters,
but that these relations are not unique. These results are in accordance with two earlier studies by
Matzke and Wagenmakers (2009) and Rieger and Miller (2019), who assessed the relations between
the ex-Gaussian and the diffusion’s model parameters. The outcome of the current study suggests
that researchers should exercise caution when deploying the ex-Gaussian parameters as a means
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Introduction

Analysis of response times (RT) is a central methodology
in psychology (Luce, 1986; Townsend & Ashby, 1983) in
which the mean or median RTs are routinely used as de-
pendent variables. However, the means can conceal im-
portant patterns that lurk in the RT distributions. The last
decades have seen a growing number of researchers who
go beyond the mean and use the statistical properties of the
RT distribution (Ratcliff, 1978; for review, see Algom, Ei-
dels, Hawkins, Jefferson, & Townsend, 2015). Several prob-
ability distributions have been used in cognitive science
to fit RT distributions. Among these distributions are the
Weibull (Logan, 1988), the shifted Wald (Schwarz, 2001),
and the log-normal (Van der Linden, 2006). But the ex-
Gaussian distribution stands out as one of the most pop-
ular and influential approaches to modelling RT distribu-
tions (Ratcliff & Murdock, 1976; Hohle, 1965; Luce, 1986).
The ex-Gaussian has been used as either a descriptive tool
of the RT distribution or a theoretical account of the un-

derlying cognitive processes (Balota & Spieler, 1999). In its
two roles, the ex-Gaussian has been applied successfully to
many research questions (Balota & Yap, 2011), having ma-
jor impact on theorizing in many areas of cognition (Leth-
Steensen, Elbaz, & Douglas, 2000; Possamai, 1991; Rotello &
Zeng, 2008; Steinhauser & Hiibner, 2009; Schmiedek, Ober-
auer, Wilhelm, Suf}, & Wittmann, 2007; Tse, Balota, Yap,
Duchek, & McCabe, 2010).

In order to use the ex-Gaussian distribution as a
theoretical account, one needs to assume that the ex-
Gaussian parameters map uniquely to cognitive stages or
processes (Balota & Yap, 2011; Ratcliff & Murdock, 1976).
This assumption has been corroborated in earlier studies
(Schmiedek et al., 2007; Schwarz, 2001). However, recent
studies by Matzke and Wagenmakers (2009) and Rieger
and Miller (2019) have challenged this assumption. These
authors have argued that the ex-Gaussian parameters do
not correspond uniquely (i.e. in a one-to-one fashion) to
experimental manipulations that are known to influence
distinct cognitive stages. According to these researchers,
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the ex-Gaussian parameters also do not map uniquely to
the parameters of a well-established process model — Rat-
cliff’s diffusion model (Ratcliff, 1978) — and to its related
offspring — the EZ diffusion (Wagenmakers, Van Der Maas,
& Grasman, 2007). These studies are important, but it is
not clear whether they generalize to other process models
than the diffusion model. One model that comes to mind is
the linear ballistic accumulation (LBA, Brown & Heathcote,
2008) — a prominent competitor of the diffusion model.
Albeit their similarity, the diffusion and LBA models
can, under certain circumstances, lead to divergent conclu-
sions (van Ravenzwaaij & Oberauer, 2009; Osth, Bora, Den-
nis, & Heathcote, 2017). Therefore, the goal of the current
study has been to link the ex-Gaussian parameters to those
of the LBA. The rationale for the current study deploys the
same logic guiding Matzke and Wagenmakers (2009) and
Rieger and Miller (2019) in their studies. The present study
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The mean and the variance of the ex-Gaussian function
are:

E(xz)=p+ 7
Var (z)= o+ 72

The ex-Gaussian often provides excellent fit to RT distribu-
tions (Luce, 1986; Ratcliff & Murdock, 1976). The x and o
reflect the location and scale of the ex-Gaussian, while the
ratio 7 /o reflects its shape (Rouder, Lu, Speckman, Sun, &
Jiang, 2005). The quantity 272 is its skew. Moreover, the
ex-Gaussian offers a tight constrain on the mean of an em-
pirical distribution because it is the sum of ; and 7. This
fact allows a direct connection to the mean RT literature.
Researchers fit the ex-Gaussian parameters to empir-
ical distributions to assess the influence of experimental
manipulation on hypothetical cognitive stages (Heathcote
et al., 1991; Hohle, 1965; Luce, 1986). The major tactic is
to test the influence of different experimental conditions
(e.g., congruent vs. incongruent) or groups (e.g., ADHD vs.
normal) on the three parameters of the ex-Gaussian dis-
tribution. In routine applications, the three ex-Gaussian
parameters p, 7, and o are estimated for each participant
in each condition, and are then subjected to analysis (e.g.,
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adopted the same tools deployed by these earlier studies,
namely, simulations and analyses of empirical data. The
work provides further evidence concerning the suitabil-
ity of the ex-Gaussian parameters as a theoretical account,
and sheds light on the relations between the diffusion and
LBA models.

The ex-Gaussian distribution

The ex-Gaussian (see Figure 1) is a convolution of a Gaus-
sian and an exponential distribution (Ratcliff & Murdock,
1976; Heathcote, Popiel, & Mewhort, 1991; Hohle, 1965;
Luce, 1986). The Gaussian part is represented by two pa-
rameters, the mean ; and standard deviation o, and the ex-
ponential part is represented by its mean 7. The probabil-
ity distribution function (pdf) of the function is expressed
as:

(t—p)/o—(o/T)
—(t—u)/T> < exp (~4%/2) dy

— 00

A

ANOVA)!. This approach has been applied successfully to
various questions in diverse areas such as word reading
(Balota, Yap, Cortese, & Watson, 2008), individual differ-
ences in the Stroop task (Heathcote et al., 1991), memory
(Hockley, 1984; Rohrer, 1996; Rohrer & Wixted, 1994), re-
search on ADHD (Buzy, Medoff, & Schweitzer, 2009; Leth-
Steensen et al., 2000) and Alzheimer’s disease (Jackson,
Balota, Duchek, & Head, 2012; Gordon & Carson, 1990).

The Ex-Gaussian as a Descriptive and Theoretical
Model

As noted at the outset, the ex-Gaussian distribution can
serve as a either a descriptive or a as theoretical model.
Descriptive models of RT distributions, such as the Weibull
(Logan, 1988) and the ex-Gaussian afford researchers the
least-committed level of interpretation. They allow robust
measures of location, scale, and shape (Rouder et al., 2005),
and accurate measurement of the effects of manipulations
and type of group, without the need to surmise specific cog-
nitive construct or process. These descriptive measures
can be used to constrain theories and motivate new ones
(see Heathcote et al., 1991).

In its role as a theoretical model, the ex-Gaussian dis-

1A Reviewer rightly noted that this popular practice is problematic when insufficient amount of data is collected. Firstly, fitting distributions require
thousands of trials per participant. Secondly, researchers ignore the hierarchical structure lurking in the data (i.e., trials are nested within partici-
pants), which in turn can lead to biased conclusions. Hierarchical models of the multilevel data can provide a better unbiased alternative (see Boehm,

Marsman, Matzke, & Wagenmakers, 2018; Rouder et al., 2005).
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Figure 1m The shape of the ex-Gaussian distribution as a function of changes in the ex-Gaussian parameters. (A) u = 400,
o = 100, 7 = 100 (default parameters), (B) x = 800, ¢ = 100, 7 = 100 (increasing ), (C) u = 400, ¢ = 150, 7 = 100
(increasing o), and (D) p = 400, o = 100, 7 = 200 (increasing 7).
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tribution has been decomposed into its Gaussian (mu and
sigma) and exponential (tau) parameters, with each mem-
ber of the duo being attributed to a specific type of cog-
nitive process or construct. The Gaussian parameters mu
(1) and sigma (o) have been related to “more stimulus
driven automatic (nonanalytic) processes whereas the 7
component is related to a more central attention demand-
ing (analytic) processes” (p.348) (Balota & Spieler, 1999). A
closely related partition has ascribed the Gaussian param-
eters to sensory stages, while the exponential parameter to
decisional stages (Gordon & Carson, 1990; Possamai, 1991;
Rotello & Zeng, 2008). This may be because the exponential
parameter exclusively affects the tail of the distribution.
The ex-Gaussian distribution has been applied to a wide
range of research questions. For example, in the domain
of memory and control, it has been argued (Schmiedek
et al., 2007; Tse et al., 2010) that the exponential compo-
nent, tau is exclusively related to working memory capac-
ity and control. Schmiedek et al. (2007) tested participants
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on several choice RT task which measure working memory
and fluid intelligence. They revealed that individual differ-
ences in tau were correlated with working memory capac-
ities. Similarly, Tse et al. (2010) compared performance of
early dementia (DAT) patients with that of healthy patients.
They found that performance of the DAT patients was pre-
dicted by their tau scores, which in return, were also cor-
related with psychometric measures of working memory,
long-term episodic and semantic memory, and processing
speed.

Another example concerns the case for tau as a poten-
tial marker of task conflict in the Stroop task (Steinhauser
& Hibner, 2009). Stroop stimuli, both congruent (RED in
red) and incongruent (RED in green) call for two opposing
demands - reading (the word) and naming (the ink color),
while neutral stimuli (e.g. ******* in red) do not create task
conflict because they activate only the color naming task.
It is often found that RTs are faster in the neutral than in
the congruent condition. This effect has been ascribed to
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task conflict. While the regular Stroop effect (RT incongru-
ent — RT congruent) manifests as an influence on the mu
component, the task conflict effect is manifested only as an
influence on tau component (Heathcote et al., 1991; Stein-
hauser & Hiibner, 2009).

For yet another example in the area of attention, con-
sider the study by Kobor et al. (2015). They tested children
with and without ADHD in a Stroop task. At the level of
the mean RTs, a Stroop effect was found for both groups,
and overall ADHD children responded slower than nor-
mal children. Analyses on the ex-Gaussian parameters re-
vealed that the Stroop effect influenced only the ;. param-
eter, whereas the group effect was manifested only in the
7, with increasing values of 7 for the ADHD group. This in-
crease has been attributed to lapses of attention in the that
group (see also Leth-Steensen et al., 2000).

But can one ascribe clear-cut psychological stages/oper-
ations to the ex-Gaussian parameters? Several researchers
have criticized the deployment of the ex-Gaussian distri-
bution as a psychological model. This criticism has been
largely based on the relations of the ex-Gaussian parame-
ters to those of the diffusion model (Matzke & Wagenmak-
ers, 2009; Rieger & Miller, 2019). Since the diffusion model
(Ratcliff, 1978) plays a central role in the attack, and since
the current study sought to extend the investigation with
respect to a rival model - the LBA (Brown & Heathcote,
2008) — the next section provides a brief introduction of the
two models.

The diffusion and LBA models

Sequential sampling models (s60; Usher & McClelland,
2001) have a long tradition in psychology. They have been
developed to account for the speeded performance in two-
choice tasks (e.g., a lexical decision task). In this class of
models, information is gradually accumulated, and each
response is associated with a decision boundary. Among
the various sequential sampling models developed, the
diffusion decision model (DDM Ratcliff, 1978) stands out
as the most effective in accounting for two-choice behav-
ior (for reviews see Forstmann, Ratcliff, & Wagenmakers,
2016; Ratcliff, Smith, Brown, & McKoon, 2016; Ratcliff &
Smith, 2004). The model assumes that evidence is con-
tinuous and varies momentarily during accumulation (i.e.,
stochastic). The DDM has four major parameters: drift rate
(v), threshold (a), starting point (z) and nondecision time
(tp). The drift rate quantifies the mean rate of evidence
accumulation which is affected by the quality of the stim-
ulus or task difficulty. Threshold measures the separation
between the two response boundaries and is affected by
response caution. A high threshold entails that more ev-
idence should be accumulated before the decision bound
is reached. The starting point parameter quantifies the
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initial evidence value before accumulation starts, reflect-
ing participant’s a priori response bias. Nondecision time
measures the duration of processes that include encoding
time and response execution. Nondecision time varies be-
tween trials uniformly over range St. The RT equals the
sum of nondecision time and the decision time which is the
time it takes the accumulator to reach the boundary. The
model can account for RTs in error trials and correct tri-
als. Additional parameters include Sv, a Gaussian variabil-
ity with standard deviation, according to which the drift
rate varies, and Sz, a uniform range over which the start-
ing point varies from trial-to-trial.

Brown and Heathcote (2008) have proposed a compet-
ing model to the DDM (Ratcliff, 1978), which they term the
linear ballistic accumulation model (LBA, Brown & Heath-
cote, 2008). There are two major features that differentiate
the LBA from the diffusion model. First, the LBA assigns a
separate accumulator to each possible response. So, for ex-
ample, in a lexical decision task, one accumulator accrues
evidence in favour of the “word” response and another ac-
cumulates evidence in favor of the “non-word” response
(see Figure 2B). Second, unlike in the diffusion model, ac-
cumulation of evidence does not vary from moment-to-
moment but propagates in a linear fashion (see Figure 2,
bottom panel).

The activation in each accumulator starts at a value
randomly sampled from the interval [0, A]. The accumu-
lation of evidence is ballistic (noiseless) and linear. Each
accumulator is associated with an average slope called
drift rate, v1, and v,. These drift rates vary from trial-to-
trial with a standard deviation s. When evidence in ei-
ther of the accumulators reaches its threshold, b1 or b2,
the response is made. The model also assumes that non-
decision processes take time 7,,.. The LBA has been applied
successfully to many research questions, accounting very
well for both correct and incorrect RTs in both binary and
multiple-choice tasks (Donkin, Brown, & Heathcote, 2011;
Forstmann et al., 2016).

Links between the ex-Gaussian and diffusion model pa-
rameters

At first look, one may justly ask why should the parame-
ters of an a-theoretic model such as the ex-Gaussian be re-
lated to high cognitive functions? Even researchers who
are sympathetic with the idea that the ex-Gaussian can
guide theoretical inferences have acknowledged that: “a
theoretical interpretation of the ex-Gaussian parameters
is not straightforward” (Schmiedek et al., 2007, p. 415).
The first attempts to demonstrate a linkage between the
ex-Gaussian distribution parameters and cognitive stages
relied on the diffusion model (Schwarz, 2001).

Simulations by Schwarz (2001) have demonstrated the
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Figure 2 m Schematic illustrations of the diffusion (panel A) and LBA (panel B) models.
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tau 7 component to be strongly related to the drift rate,
with larger values of drift rate leading to smaller values
of 7, whereas ;. was found to be related to response cri-
terion, with less conservative values of response criterion
related to smaller estimates of y. In a more sophisticated
approach, Schmiedek et al. (2007) investigated a network
of hypotheses, linking the ideas that: (a) working mem-
ory performance is related to the slower RTs portion of the
RT distribution, a hypothesis known as the worst perfor-
mance rule (Coyle, 2003), (b) the hypothesis that 7 should
be related to working memory through (a), and (c) the hy-
pothesis that both working memory performance and 7
should be related to changes in the drift parameter of the
EZ-diffusion. Using structural equation modeling (SEM),
these researchers found strong evidence for this network
of hypotheses.

The studies by Schmiedek et al. (2007) and Schwarz
(2001) provide substantial support in the idea that the ex-
Gaussian parameters can be mapped to distinct cognitive
processes, and particularly to the parameters of the EZ-
diffusion and diffusion models. However, two recent stud-
ies by Matzke and Wagenmakers (2009) and Rieger and
Miller (2019) raised strong reservations against the prac-
tice of using the ex-Gaussian parameters as a psycholog-
ical theory. These researchers have argued that the ex-
Gaussian parameters are not selectively influenced by ex-
perimental manipulations, showing that each of the ex-
Gaussian parameters map to more than one distinct pro-
cessing stages. In one part of the Matzke and Wagen-
makers (2009) study, they simulated RT distributions from
known parameters in the DDM and then fit the ex-Gaussian
parameters to them. They then plotted each of the ex-

>
Decision Time

Gaussian parameter against each of the four central DDM
parameter. They did find consistent relations between the
two types of parameters. However, the parameters of the
ex-Gaussian did not map uniquely to those of the diffu-
sion model (Ratcliff, 1978). Of course, for this practice to
be valid one must assume that the DDM’s parameters map
directly to distinct cognitive stages (Voss, Rothermund, &
Voss, 2004). In a second part of their study, they fit the ex-
Gaussian parameters to published data that featured ma-
nipulations of task difficultly, response caution, and a pri-
ori bias. Prior analyses showed that each of the latter ma-
nipulations affected a unique diffusion model parameter
(Voss et al., 2004). In both cases, they found the associa-
tions between the parameters were not unique. In partic-
ular, the ex-Gaussian parameter, i was influenced by the
diffusion model parameters a, starting point z, and non-
decision time 7,.,.. On the other hand, 7 was sensitive to
changes in both drift rate v and boundary separation a.
These results were taken as strong evidence against the
practice of assigning cognitive meaning to ex-Gaussian pa-
rameters.

The study by Rieger and Miller (2019) tested a similar
hypothesis regarding the linkage between model param-
eters and cognitive stages using the ex-Gaussian, the ex-
Wald (Schwarz, 2001), and the EZ diffusion model (Wa-
genmakers et al., 2007). The authors fit these models to
several experiments in which hand vs. foot responses
were compared. The effect on RTs in these studies could
be safely attributed to the response stage. But neither of
the tested models exhibit a clear linkage of its parameters
to motor and pre-motor stages. When Rieger and Miller
plotted the values of EZ-diffusion against the ex-Gaussian
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parameters they found u to be correlated with the non-
decision time 7, and 7 to be correlated with the decision
time Td. The decision time parameter in the EZ-diffusion
model is strongly related to the drift rate parameter (see
also Schmiedek et al., 2007), but it is also affected by other
parameters (e.g., a boundary separation).

In sum, both studies have cast serious doubts on the
psychological validity of the ex-Gaussian parameters based
on their results from the diffusion model. However, an ob-
vious fact that has been often overlooked in these studies,
but should be stated from the outset, is that mathemati-
cally speaking, it is impossible to have a bijective mapping
between the parameters of the two models (the diffusion
and the ex-Gaussian). This is an inevitable consequence of
the structural differences between the diffusion model and
the ex-Gaussian distribution. The diffusion model has 7 pa-
rameters to describe two RT distributions (error and cor-
rect responses), but the ex-Gaussian, applied to each dis-
tribution separately, has only 6 parameters in total. Sim-
ilarly, the LBA can be fitted to a 2AFC setting, whilst the
ex-Gaussian distribution can only be fitted to a single ex-
perimental condition at a time. The best thing that can be
hoped for in both cases, is that a subset of the diffusion (or
in the current work, LBA) parameters would exhibit a one-
to-one correspondence with the ex-Gaussian parameters.

The current study

The present study sought to test whether the ex-Gaussian
parameters can be linked in a one-to-one correspondence
to the parameters of the LBA (Brown & Heathcote, 2008).
The current investigation follows the exact methodologi-
cal procedures performed by Matzke and Wagenmakers
(2009). It also uses the same published data sets they have
analyzed. In study 1, I generated RT distribution from
LBA models with known parameters and then fit the ex-
Gaussian parameters to them, assessing the associations
between each ex-Gaussian parameter and the LBA param-
eters. In study 2, I fit both LBA and ex-Gaussian models
to published data by Wagenmakers, Ratcliff, Gomez, and
McKoon (2008), assessing the relations between the param-
eters of the two models, and their relations to the original
experimental manipulations they were subjected to.

Study 1

In each simulation, the pertinent LBA parameter (e.g., v)
was increased in small steps while all the other four pa-
rameters (A, b, s, T,,) were held fixed.? The ranges of val-
ues of the fixed and varied parameters are presented in Ta-
ble 1. These ranges were used by (Donkin, Brown, Heath-
cote, & Wagenmakers, 2011) in simulations. The general
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procedure consisted of: (a) increasing the value of the per-
tinent LBA parameter, (b) generating a synthetic RT distri-
bution, and (c) fitting the ex-Gaussian parameters to this RT
distribution, (d) repeating (a)- (c), each time, increasing the
relevant LBA parameter in small amount and deriving the
best fitting ex-Gaussian parameters. I have also made the
common assumption that the non-decision parameter 7.,
the starting point A, and the standard deviation of the drift
rates s are equal for the two accumulators (see also Brown
& Heathcote, 2008; Donkin, Brown, & Heathcote, 2011). The
simulations focused on the case where the decision process
is unbiased, with the assumption that the average distance
from the start point to the response criterion is equal for
the two accumulators (i.e., by = b3). I run simulations
twice. In the first version, the mean drift rates of the two
LBA accumulators sum up to one (v; + vo = 1) (see also
Donkin, Brown, & Heathcote, 2011). In the second version,
the mean drift rates did not sum up to (i.e., v; + vo # 1)
because v, was fixed to a single unchanging value (0.2).

Along these lines, there were 4 separate simulations,
one for each of the four LBA parameters (v, 4, T, and b [ s
was always held fixed]). In each simulation, the pertinent
LBA parameter (e.g., v) was changed in small steps while
all the other four parameters (A4, b, s, T¢,-) were held fixed.
After increasing the value of the pertinent LBA parameter,
I generated a synthetic RT distribution with 10,000 samples
from the resulting LBA model. Then, I fit the ex-Gaussian
parameters (i, o, and 7) to this RT distribution. This pro-
cedure was repeated 1000 times, each time, increasing the
relevant LBA parameter in small amount and deriving the
best fitting ex-Gaussian parameters (u, o, and 7). I then
plotted for each simulation and ex-Gaussian parameter (u,
o, and 1), the value of the ex-Gaussian parameter against
the value of the pertinent LBA parameter (see Figure 3 and
4).

The procedure of fitting ex-Gaussian distribution con-
sisted of finding the values of the ex-Gaussian parame-
ters: p (mu), sigma (o), and tau (7) that best predicted
the observed (LBA generated) data. The fitting procedure
was performed on RT distributions excluding incorrect or
very long RTs (>4000 ms). The fitting procedure consisted
of two stages. At a first stage, initial parameter values
were identified using a grid-search procedure. At a sec-
ond stage, these values were fed into a SIMPLEX optimiza-
tion algorithm (Nelder & Mead, 1965). The validity of the
fitting method used here was confirmed in a parameter re-
covery study (see Supplementary Materials). It should be
mentioned that more modern methods exist for optimizing
the parameter values of sequential sampling models which
can move through the correlated dimensions often seen in

21t should be noted that more advanced methods of covering the parameter space, such as Latin hypercube sampling do exit (Evans, Holmes, &

Trueblood, 2019).
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these models (Evans, 2019; Evans & Servant, 2020).

Assessment of fit was achieved by superimposing the
estimated ex-Gaussian function on a histogram of the cor-
responding data to the 0.1, 0.3, 0.5, 0.7, and 0.9 quan-
tiles and computing the chi-square (Heathcote et al., 1991).
Best-fitting parameters were those that minimized the chi-
square function.

The values of best fitting ex-Gaussian parameters were
plotted against their corresponding LBA parameters for
the case in which the two mean drift rates sum up to 1 (Fig-
ure 3), and for the case where the two mean drift rates did
not sum up to 1 (Figure 4). The results in the two cases were
highly comparable. The LBA and the ex-Gaussian param-
eters exhibited lawful relations in most cases. But these
relations were not unique because most of the LBA param-
eters corresponded to more than one ex-Gaussian parame-
ter, and all ex-Gaussian parameters corresponded to more
than one LBA parameter. The boundary separation (b) was
strongly and positively related to x and 7 and moderately
and positively to o. The starting point (A) was strongly and
negatively related to ; and moderately and positively to o
but had no relations with 7. The drift rate parameter (v)
was strongly and negatively related to x and 7. The only
LBA parameter that exhibited an association with a single
ex-Gaussian parameter was the non-decision time (7,.).

Table 2 summarizes the observed relations between
the ex-Gaussian and LBA parameters along with those
found for the diffusion model by Matzke and Wagenmak-
ers (2009). Notably, the parameters of the two models show
high level of agreement. Both decision bounds parame-
ters exhibit a substantial positive association with p and 7,
and a weak positive association with ¢. Both non-decision
time parameters exhibit substantial positive relations with
1, and no relations with o or 7. The drift rate parame-
ters show a similar but not identical pattern. The start-
ing points (A and z) agree only with respect to . Given
that the LBA and the diffusion model are different accounts
of cognitive processes, the level of alignment between the
two is remarkable. Most importantly, the associations be-
tween the ex-Gaussian and LBA parameters were found to
be non-unique. These results converge on the conclusion
that one cannot unambiguously map the ex-Gaussian pa-
rameters to those of either of the evidence accumulation
models.

Study 2

In this study I present a concrete empirical illustration of
the simulations results by applying the LBA analyses to the
same data sets used by Matzke and Wagenmakers (2009).
These data are from two lexical decision experiments by
Wagenmakers et al. (2008). In the first experiment (N =
17), task difficulty was manipulated by varying word fre-
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quency (high, low, and very low), and response caution
was manipulated by emphasizing either response speed or
response accuracy. The experiment consisted of a 3 (word
frequency) x 2 (speed-accuracy level) design. Wagenmak-
ers et al. (2008) fit the diffusion model and found the effect
of word frequency to be accounted for by changes in drift
rate (v) and the effects of speed-accuracy instructions by
changes in boundary separation (a). In a second experi-
ment (N = 19), task difficulty was manipulated again by
varying word frequency, and in addition response bias was
manipulated by varying the proportion of word to non-
word stimuli in a list (i.e., 75% words or 75% nonwords).
These resulted in a 3 (word frequency) x 2 (word-nonword
proportion) design. In this experiment the effect of dif-
ficulty (i.e., frequency) was exclusively accounted for by
changes in drift rate (v) and the effect of response bias (i.e.,
word non-word proportion) was associated with changes
in starting point (z), such that the starting point z was
higher in the 75% word condition than in the 75% nonword
condition.

Fitting the ex-Gaussian to these data, Matzke and Wa-
genmakers (2009) reached the conclusion that: “the ex-
Gaussian parameters do not respond selectively to the ef-
fects of the word frequency, speed-accuracy, and propor-
tion manipulations.” (p.809). The p was sensitive to all
three experimental manipulations: speed-accuracy em-
phasis, word-nonword proportion, and word frequency.
Since each manipulation is affecting a single diffusion
model parameter, they concluded that p was sensitive to
changes in all three diffusion model parameters [drift rate
(v), boundary separation (a), and starting point (z)]. The o
was moderately influenced by word frequency and there-
fore by drift rate (v). The 7 was sensitive to changes in both
word frequency and speed accuracy emphasis and there-
fore by drift rate and boundary separation. (see p.809).

Using the same published data sets by Wagenmakers
et al. (2008), I tested whether the experimental manipu-
lations that had exerted selective influence on the diffu-
sion model parameters exhibit similar selective influence
on the LBA parameters. In addition, I tested whether and
how the ex-Gaussian parameters are associated with the
LBA parameters in these data. I first fit the ex-Gaussian
parameters to the two experiments using the same meth-
ods reported in study 1. After deriving the best fitting ex-
Gaussian parameters for each participant in each exper-
imental condition, I conducted three separate ANOVAs on
the means of the three ex-Gaussian parameters (i.e., i, o, 7)
to assess the influence of the experimental manipulations
on these parameters. The results of the ANOVA analyses
are presented in Table 3. They replicate those of Matzke
and Wagenmakers (2009), such that in the first Experiment
(see Figure 5A), word frequency and speed accuracy in-
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Table 1 m Range of parameters used in the simulations. v; is the mean drift rate for the first accumulator, v, is the mean
drift rate for the second accumulator. In the first version of the simulations (Figure 3), the mean drift rates sum up to
one (v; + v2 = 1). In the second version of the simulations (Figure 4), the mean drift v, was held fixed and the mean

drift rates did not sum up to 1 (i.e., v1 + vy # 1).

Model b7A A T., s U1 Vg
Min 0 0.15 0.1 0.15 0.5 -
Max 0.5 0.45 04 0.35 1 -
Default 0.12 0.25 0.25 0.27 0.74 0.2

Table 2 m The association between parameters of the Ex-Gaussian distributions and parameters of the Linear Ballistic

Accumulator (LBA) (left) and Diffusion model (right).

LBA parameters Diffusion model parameters
(Matzke & Wagenmakers, 2009)
Ex-Gaussian
Parameter b A T, v a z Te, v
M ++ — ++ — ++ — ++ -
o + + X X + - X -
T ++ X X — ++ - X —

Note. ++, substantial positive association; +, weak positive
ative association; X, no association.

structions influenced all three parameters: y, o, and 7 in-
creased as word frequency decreased. Similarly, higher p
and 7 values were found in accuracy compared to speed
instructions. In Experiment 2 (see Figure 5B) word fre-
quency strongly influenced 7, and to a lesser degree . In
addition, words proportion affected x and o, but not 7.

Next, I fit the LBA model to the the RTs of each par-
ticipant’s data individually, excluding individual RTs ac-
cording to the criteria of the original studies. The drift
rate (v), starting point (A), boundary (b) and non-decision
time (7%,) were free to vary across the experiment con-
ditions. In the data of Experiment 1 there were 12 con-
ditions composed of 2 between-block levels of speed vs.
accuracy emphasis instruction, and 6 within-block levels
of word-frequency, which were themselves created by the
factorial design of 3 levels of word frequency (high, low,
very low), and 2 levels of stimuli-type (word, non-word).
In the data of Experiment 2 there were also 12 condi-
tions, which were composed of 2 between-block levels of
word/non-word proportion (75% word vs. 75% nonword),
and 6 within-block levels of word-frequency, as in Experi-
ment 1. In fitting both data sets the LBA models consisted
of 49 free parameters. There were 4 LBA parameters (v, b,
A, Ty, free to vary across 12 conditions and an additional
parameter (s) that was held fixed. The models were fit by
minimizing the QMPE applied to the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles, using SIMPLEX algorithm.

The means of the best fitting parameters are presented
in Figure 6A and 6B. Statistical inferences were supported

association; —, substantial negative association; -, weak neg-

by ANOVA (see Table 3). Note that conducting ANOVA on
the diffusion and LBA parameters is a common practice
(see Donkin, Brown, & Heathcote, 2011; Wagenmakers et
al., 2008).

The manipulation of speed vs. accuracy instructions
emphasis affected only the boundary parameter (b), such
that the speed condition was associated with a lower
boundary than the accuracy condition. Donkin, Brown,
and Heathcote (2011) have used the value of b” A/2 as the
most directly comparable quantity to the response thresh-
old a of the diffusion model. Analysis on this quantity
showed that it was indeed affected exclusively by the ma-
nipulation of instructions. Word frequency affected drift
rate (v) and starting point (A) in both experiments. Note
thatif b and A are replaced by the (single) response caution
parameter b~ A/2 selective influence holds for this manip-
ulation. The word/nonword proportion affected starting
point (A) and non-decision time (7%,.). Taking together, the
results entail that in general, selective influence held for
the LBA parameters, and therefore, the LBA can be used to
test the unique correspondence of the ex-Gaussian param-
eters.

The association between the ex-Gaussian and LBA pa-
rameters can be inferred indirectly by identifying the ex-
perimental manipulations that affected both. A similar
logic has been used by Matzke and Wagenmakers (2009)
and by Rieger and Miller (2019). The results show that p
and o were affected by the three experimental manipu-
lations, and are therefore likely associated with the three
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Figure 3 m Relations between the ex-Gaussian and LBA parameters revealed by simulations with the mean drift rates for

two accumulators summing up to 1 (i.e., v; + v = 1).
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LBA quantities: v, b — A/2, and T,.. In addition, 7 was af-
fected by word frequency and speed-accuracy instructions,
and is likely associated with v and b. The empirical find-
ings are therefore supported by the numerical simulations
of Study 1.

Taken together, the results from the two studies con-
verged on the conclusion that while the ex-Gaussian pa-
rameters maintain lawful relations with the parameters of
the LBA, those relations are not unique. The two classes of
parameters do not map in a one-to-one fashion. These re-
sults accord well with earlier findings by Matzke and Wa-
genmakers (2009) and by Rieger and Miller (2019).

General Discussion

The numerical simulations and the analysis of empirical
data conducted in two studies lead us to five main con-
clusions: (a) the LBA parameters are associated with the
ex-Gaussian parameters in a lawful way, (b) the correspon-
dence is not unique because a single ex-Gaussian parame-
ter maps to more than one LBA parameter and vice versa,

100 200 300 400 250 350 450 550 650 750

Non decision time (Tgr) Boundary (b)

(c) this correspondence is similar to that found with the dif-
fusion model by Matzke and Wagenmakers (2009), (d) the
experimental manipulations that exert selective influence
on the diffusion model similarly affect the LBA parameters,
and (e) the ex-Gaussian parameters do not map exclusively
to the cognitive operations mimicked in the LBA parame-
ters.

How does this study inform research on the ex-
Gaussian distribution? The current study shows that
the ex-Gaussian parameters do not map uniquely to the
LBA parameters, and it strengthen previous studies who
reached similar conclusions with respect to the diffu-
sion and EZ-diffusion parameters (Matzke & Wagenmak-
ers, 2009; Rieger & Miller, 2019). One conclusion that can
be drawn from these studies is that researchers should be
cautious when using and interpreting the ex-Gaussian pa-
rameters in terms of cognitive stages or operations. Matzke
and Wagenmakers (2009) and Rieger and Miller (2019) rec-
ommended their readers to completely withdraw from the
deployment of the ex-Gaussian as a theoretical model, and
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Figure 4 m Relations between the ex-Gaussian and LBA parameters revealed by simulations with the mean drift rates for

two accumulators not summing up to 1 (i.e., v + vo # 1).
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they encouraged researchers to keep deploying it as de-
scriptive tool. While endorsing the latter recommendation,
I do not share the former wholesale rejection of the ex-
Gaussian as a theoretical account due to the following rea-
sons. First, the evidence coming from the sequential sam-
pling models (the current study included) can speak only
to these models. There might exist other cognitive mod-
els (currently unknown to us or not tested for this prop-
erty) whose parameters do map uniquely to those of the
ex-Gaussian. As a result, one cannot categorically reject
the theoretical utility of the ex-Gaussian based on only one
class of models. Second, the recommendation against us-
ing the ex-Gaussian parameters as a psychological account
is coming mainly from the sequential sampling models and
is based on a critical assumption that their parameters
are selectively influenced by distinct experimental manip-
ulations (Voss et al., 2004). However, if this assumption
turns out to be invalid, then the recommendation is not

150 250 350 450 250 350 450 550 650

Non decision time (Ter) Boundary (b)

valid anymore. A recent study by Rae, Heathcote, Donkin,
Averell, and Brown (2014) demonstrated a failure of selec-
tive influence in both the diffusion and LBA models. In
their study, the experimental manipulation of emphasizing
speed versus accuracy, which is considered to selectively
influence boundary parameters (Voss et al., 2004), has also
been found to influence the drift rate parameters (see also
Vandekerckhove, Tuerlinckx, & Lee, 2011; Starns & Ratcliff,
2010). If the assumption of selective influence is incorrect,
then the results coming from the Matzke and Wagenmak-
ers (2009), the Rieger and Miller (2019), and the current
effort, should not be taken as strong evidence against the
psychological validity of the ex-Gaussian parameters.
Third, it is well known that the estimation of parame-
ters can introduce correlations between estimated values,
a problem known as parameter dependency. This problem
can afflict both estimation in the diffusion model (Ratcliff
& Tuerlinckx, 2002) and the ex-Gaussian model (Spieler,

3Ratcliff and Tuerlinckx (2002) have argued that: “a potentially major problem in recovering parameters for a model is that the value of the estimate
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Table 3m ANOVA results on the best fitting ex-Gaussian parameters for experiment 1 and experiment 2 of Wagenmakers,
Ratcliff, Gomez, and McKoon (2008). S = Speed Accuracy instructions (speed, accuracy), Fr = word frequency (High, Low,
Very low), W = word/nonword proportion (75% word, 75% nonword)

I o T

MSE F P MSE F P MSE F P
S 66579 2857  *** 2904 489 ok 408869 8232  ***
Fr 16801 1090  *** 2501 329  kx* 27368 1105  ***
S x Fr 2650 394 Rxx 22 5.19 * 2212 174 ***
w 218816 9327  *** 6120 141 ok 7607 96.95  ***
Fr 9853 440 R 1378 34.23  *** 134685 4597  ***
W x Fr 295 25wk 2002 54.56  *** 2691 107 ***

Note. *p<0.05, **p<0.01, *** p<0.005

Table 4m ANOVA results on the best fitting LBA parameters for experiment 1 and experiment 2 of Wagenmakers, Ratcliff,
Gomez, and McKoon (2008). S = Speed Accuracy instructions (speed, accuracy), Fr = word frequency (High, Low, Very low),
W = word/nonword proportion (75% word, 75% nonword)

v b A Ter b— A/2
MSE F p MSE F p MSE F p MSE F p MSE F p

S 0.10 3.4 688146 29.9  *** 1167 0.07 33518 3.9 660100  30.2  ***
Fr 1.07 36.5  *** 3833 0.23 36380  4.20 * 8071 1.32 24261 1.88
S x Fr 0.12 4.3 * 50112  3.68 * 11737  1.64 1292 0.17 32695 2.12
w 0.16 2.0 19737  0.31 221497 9.6 ok 345510 27.4  *** 1441229 3.5
Fr 197 312 3578 0.13 184392 145  *** 11538  1.88 74530 2.6
W x Fr 044 8.3 ok 102144  3.30 * 22062 1.5 12751 1.44 137473 4.0 *

Note. *p<0.05, **p<0.01, *** p<0.005.

2001).% It can lead to the creation of non-unique relations
between the ex-Gaussian and the diffusion or LBA mod-
els. The upshot is that a categorical rejection of the ex-
Gaussian distribution as a psychological account is unjust
at this stage. However, the current and previous studies
can contribute to the understanding of these models, and
the relations between their parameters.

Fourth, a theoretical approach that is based on converg-
ing operations (Garner, Hake, & Eriksen, 1956; see also Al-
gom & Fitousi, 2016; Fitousi, 2015; Fitousi & Wenger, 2013;
Von Der Heide, Wenger, Bittner, & Fitousi, 2018) can be
used to remedy the problem. According to Garner et al.
(1956), converging operations are: “any set of two or more
experimental operations which allow the selection or elim-
ination of alternative hypotheses or concepts which could
explain an experimental result. They are called converg-
ing operations because they are not perfectly correlated
and thus can converge on a single concept” (Garner et al.,
1956, p. 150-151). An excellent example to the converg-
ing operation method appears in the study by Schmiedek
et al. (2007), in which they relate the parameters of the ex-
Gaussian distribution and those of the diffusion model to

constructs of working memory. These authors have tested
simultaneously several constraining hypotheses with re-
spect to the theoretical concept of working memory. In
their investigation models of latent variables revealed im-
portant relations of the ex-Gaussian parameters with other
high cognitive functions. The upshot is that statistical regu-
larities in the ex-Gaussian parameters might be correlated
with theoretical constructs, allowing a psychological inter-
pretation (see Fitousi, 2020a).

How does this study inform research on the LBA and
diffusion models? The current study sheds light on the
question of whether the LBA and the diffusion models pro-
duce converging or diverging inferences. The evidence
so far has been mixed. van Ravenzwaaij and Oberauer
(2009) did not find simple one-to-one mapping between the
LBA and diffusion model parameters. Osth et al. (2017)
have presented a concrete research question in which the
LBA and diffusion models lead to different conclusions.
Donkin, Brown, Heathcote, and Wagenmakers (2011) have
cross fitted data from the two models and found that:
“when data were generated from the diffusion model,
changes in response caution affected drift rate and non-

for one parameter may be significantly correlated with the value of another” (p. 452). To investigate how serious this problem, these authors computed
correlations between each pair of the 6 diffusion-model parameters based on 100 fits to simulated data. They did find many cases of positive correla-
tions between variables (see their Figure 6). They concluded that: “This means that if the sizes of differences among parameters values are important,

correlations must be considered” (p.455).
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Figure 5 m Best fitting values of the ex-Gaussian parameters: u, o, 7 for the data sets of the Wagenmakers, Ratcliff, Gomez,
and McKoon (2008) in Experiment 1 (Panel A) and Experiment 2 (Panel B). HF, high-frequency words; LF, low-frequency

words, VLF, very-low-frequency words.
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decision time in the LBA, while response caution changes
in data generated from the LBA model caused changes
only in non-decision time for the diffusion model.” (p.65).
Donkin, Brown, and Heathcote (2011) also argued for dif-
ferences in the shape of the RT distributions generated by
the two models. However, a recent study by Dutilh et al.
(2019) used a collaborative, blinded, validation study in
which seventeen research groups analyzed fourteen data
sets using different evidence accumulation models. The
results showed that different groups reached a strong con-
sensus regarding the experimental manipulation that gen-
erated the data. However, those who were using the dif-
fusion model (except for the EZ) suggested an effect of
changes in non-decision time much more than those who
were using the LBA, and there were also discrepancies in

Word Frequency

Word Frequency

the detection of response bias. Dutilh et al concluded that
although modelers reach similar conclusion their ‘degrees
of freedom’ did affect their conclusions. It might be the
case that the parameters of the LBA and diffusion model
do not map in a one-to-one correspondence, but the cur-
rent study shows that when they are tested against a third
model (i.e. ex-Gaussian), they exhibit a high degree of func-
tional similarity, such that parameters evinced comparable
sensitivity to changes in the ex-Gaussian parameters and
related experimental manipulations. But these relations
are not necessarily unique.
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Figure 6 = Means of best fitting LBA parameters of the Wagenmakers, Ratcliff, Gomez, and McKoon (2008) Experiment 1
(top panel) and Experiment 2 (bottom panel). Error bars are standard error of the mean.
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Table 5m Parameter recovery for the code to fit the parameters

I o T chi square
Real 200 50 100
Recovered 201 56 98 37.25
Real 600 120 200
Recovered 604 124 197 19.0
Real 200 80 500
Recovered 190 80 496 18.3
Real 800 90 120
Recovered 800 91 123 9.7
Real 550 30 50
Recovered 551 31 49 21.6
Real 50 10 200
Recovered 49.5 10.05 198.62 31.6

Appendix: Supplementary materials

To fit the ex-Gaussian parameters to the RT distributions I wrote a MATLAB code. This code make use of the fminsearchbnd

function in MATLAB, which is an optimization routine based on the SIMPLEX algorithm (Nelder & Mead, 1965). To val-
idate the algorithm, I run a parameter recovery simulation (attached to the supplementary files), in which I simulated
RT distributions with known ex-Gaussian parameters, and then recovered those parameters from the data. Each row of
Table 5 represents the first (and single) attempt at recovering the parameter values. As can be seen, the algorithm worked
very well in recovering the real parameters from the data.
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