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Abstract The diffusion model belongs to the class of sequential sampling models. Based on in-

formation about RT distributions from binary tasks, the model allows the separation of distinct

processes underlying decision-making. With the present simulation study, we demonstrate that dif-

fusion modeling has essential advantages over the mere analysis of behavioral variables such as

accuracy rate or mean RT. Specifically, our results show that qualitatively different sets of diffusion

model parameters can lead to the same pattern of these aggregated variables, which renders the in-

terpretation of these measures ambiguous. Even apparently clear patterns of results can be based

on completely different parameter sets, which reflect completely different cognitive processes. For

example, if one group’s performance (or performance in one experimental condition) is superior

in both mean RT and accuracy rate (i.e., fast responses and few errors), this does not necessarily

mean that in this group (or condition) information processing is faster (drift rate of the diffusion

model). Accordingly, we conclude that the mere analysis of behavioral variables can result in false

conclusions.
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Introduction
Binary response time (RT) tasks are employed in many dif-

ferent fields of psychology, such as in cognitive, motiva-

tional, or clinical psychology. Most often, researchers ex-

amine the data of these tasks in terms of mean RTs (of cor-

rect responses) and/or accuracy rates. If participants in

condition A are faster than participants in condition B, it

is usually assumed that participants’ performance is better
in condition A than B, that is, that information processing is

more efficient. Such differences in RTs, however, become

difficult to interpret if participants in condition A are not

only faster, but also make more errors than participants

in condition B. In this situation, it is unclear whether in-

formation processing in condition A is more efficient or

whether participants are merely less cautious. Such speed-

accuracy trade-offs pose a severe problem to the interpre-

tation of data from RT tasks. If interpretations are exclu-

sively based on mean RTs or accuracy rates, invalid con-

clusions might be drawn.

Sequential sampling models like the diffusion model

(Ratcliff, 1978) go beyond the analysis of aggregated data

(as mean RTs or accuracy rates); the diffusion model, for

example, takes into account information from the entire

RT distributions. Validation studies have shown that the

parameters of the diffusion model capture specific psycho-

logical processes (Arnold, Bröder, & Bayen, 2015; Lerche

& Voss, 2019; Voss, Rothermund, & Voss, 2004). For exam-

ple, the diffusion model allows to compute a direct mea-

sure of speed of information accumulation with other pro-

cesses such as speed-accuracy trade-offs or motoric re-

sponse speed “partialled out”. Thus, the parameters have

specific meanings allowing for more valid interpretations

of the effects of studies.

When introducing the diffusion model to other re-

searchers, we frequently noticed that the advantage of dif-
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fusionmodeling over the analysis of aggregated behavioral

variables is not intuitive. Often, researchers argue that

from the pattern of behavioral variables alone, it would

already be possible to deduce which processes differ be-

tween groups or conditions. Consequently, they do not see

the need to bother themselves with the application of com-

plex mathematical models that require more efforts than

just computing mean RTs or accuracy rates. For example,

one common assumption is that if participants in condition

A are faster than and at least as accurate as participants in

condition B, participants in condition Amust have a higher

processing speed (i.e., an increased drift rate of the dif-

fusion model). Importantly, this conclusion is not always

true. In the present paper, we show results from a simu-

lation study in which we demonstrate that from a pattern

of mean RTs and accuracy rates alone it is not possible to

infer which cognitive processes vary between conditions.

In fact, we illustrate that many different parameter con-

stellations result in very similar patterns of mean RTs and

accuracy rates.

In the following, we first give a basic introduction to

the diffusionmodel. Then, we demonstrate how changes of

values of single parameters affect predicted mean RT and

accuracy rate. Finally, we present our simulation study in

which we vary the three main diffusion model parameters

(drift rate, threshold separation, and non-decision time) si-

multaneously and illustrate that substantially different pa-

rameter sets can lead to the same accuracy rates and mean

RTs.

Introduction to Diffusion Modeling
The diffusion model (Ratcliff, 1978) assumes that in each

trial of a binary task participants continuously collect in-

formation about two response options until the accumu-

lated information suffices to make a decision (for review

articles about the diffusion model, see e.g., Ratcliff, Smith,

Brown, & McKoon, 2016; Voss, Nagler, & Lerche, 2013; Wa-

genmakers, 2009). The model has been applied success-

fully to many different experimental tasks such as lexical

decision tasks (word vs. non-word; e.g., Gomez, Perea, &

Ratcliff, 2013; Ratcliff, Gomez, & McKoon, 2004; Wagen-

makers, Ratcliff, Gomez, &McKoon, 2008), perceptual tasks

(e.g., Ratcliff, 2014; Ratcliff, Thapar, & McKoon, 2003; Voss,

Rothermund, & Brandtstädter, 2008), or recognition mem-

ory tasks (e.g., Ratcliff & McKoon, 2015; Spaniol, Madden,

& Voss, 2006; White, Ratcliff, Vasey, & McKoon, 2010). As

recent research demonstrated, the model can be applied

not only to tasks with short RTs of a maximum of 1.5 sec-

onds—which was often recommended for diffusionmodel-

ing in the past (e.g., Ratcliff & Frank, 2012; Ratcliff, Thapar,

Gomez, & McKoon, 2004) –but also to more complex tasks

taking up to several seconds per trial (Lerche, Christmann,

& Voss, 2018; Lerche et al., in press; Lerche & Voss, 2019).

An illustration of a diffusion process is given in Figure

1. In the figure, thresholds are associated with correct (up-

per threshold) and erroneous responses (lower threshold).

The diffusion process is characterized by a systematic drift

with a certain direction (toward upper or lower threshold)

and speed (i.e., steepness). Furthermore, randomGaussian

noise (where the standard deviation is the so-termed diffu-

sion coefficient) adds to the process, resulting in the erratic

path. If a diffusion process reaches one of the two thresh-

olds, the decision has been made and the corresponding

response (e.g., a key press) is triggered. In the following,

we will shortly introduce the model parameters.

First, there is the threshold separation (parameter a),
that is, the distance between the two boundaries, which

defines the amount of information needed to reach a deci-

sion. If individuals are instructed to respond cautiously

(accuracy instruction), thresholds are further apart than
when individuals are told to respond as quickly as pos-

sible (e.g., Ratcliff & Rouder, 1998; Voss et al., 2004).

Second, there is drift rate (parameter ν) which informs
about the direction (positive: upper threshold, negative:

lower threshold) and speed of information accumulation

(higher values indicating higher speed). It has been shown

that easier tasks go along with higher drift rates (e.g.,

Arnold et al., 2015; Voss et al., 2004) and also that perfor-

mance of more intelligent individuals is characterized by

higher drift rates (e.g., Ratcliff, Thapar, & McKoon, 2011;

Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007;

Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015).

Third, there is the starting point (z, or the relative start-

ing point zr = z/a) which defines the position from which
the accumulation process starts. If—like in Figure 1 —the

starting point is situated in the center between thresholds,

there is no prior bias for either of the two thresholds. Such

prior biases can arise if one of the two response options has

a higher expected value (e.g., Leite & Ratcliff, 2011; Voss et

al., 2004). Then, the starting point will be located closer to

the threshold associated with the respective response.

The diffusion model analysis takes into account

that—next to the decision process—also non-decisional

processes contribute to the reaction time. The duration

of all non-decision processes is mapped by an additional

parameter (t0). These processes include the encoding of
information which precedes the accumulation of informa-

tion and themotoric responsewhich succeeds the decision.

Duration of non-decisional processes is, for example, af-

fected by the response modality with more complex mo-

toric responses going along with higher non-decision time

(Gomez, Ratcliff, & Childers, 2015; Voss et al., 2004).

In addition to the four main diffusion model param-

eters discussed above (a, ν, zr , and t0), it is often as-
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Figure 1 Illustration of the main parameters of the diffusion model. The thresholds—here associated with correct and

erroneous responses—are separated by the distance a. One exemplary diffusion process is illustrated that initiates at the
starting point z which is here centered between the two thresholds. The process of information accumulationmoves with

drift rate ν until it reaches one of the two thresholds (here, the upper one). Parameter t0—for simplification depicted left
to the decision process—includes the time needed for both pre- and post-decisional processes.

Table 1 Influence of increases of diffusion model parameters a, ν, and t0 on mean RT and accuracy rate

Increase of Interpretation Mean RT Accuracy rate

a distance between thresholds

ν speed of information accumulation

t0 non-decision time (e.g., encoding, motoric response)

sumed that processes can vary from trial to trial (so-called

intertrial variabilities). Specifically, the parameters drift

(sν ), starting point (szr) and non-decision time (st0) are
assumed to vary between trials. Despite their theoreti-

cal importance (amongst others in explaining mean differ-

ences in RTs of correct and erroneous responses; Ratcliff

& Rouder, 1998), the practical advantage of including the

three intertrial variability parameters in the model is lim-

ited. More specifically, whereas the inclusion of st0 often
helps to capture influences of fast contaminants, szr and
sν cannot be estimated reliably and fixing rather than esti-
mating these parameters can improve the estimation of the

main diffusion model parameters (Lerche & Voss, 2016; see

also Boehm et al., 2018; van Ravenzwaaij, Donkin, & Van-

dekerckhove, 2017). In the following section, we describe

the relationships between diffusion model parameters and

the behavioral variables mean RT and accuracy rate.

Relationships between Diffusion Model Parameters
and Behavioral Variables
Table 1 describes the effects of separately increasing diffu-

sion model parameters (exemplarily for the main parame-

ters a, ν and t0) on the behavioral variables mean RT and
accuracy rate. Increasing threshold separation (response

caution) influences mean RT and accuracy rate in the same

direction: Both variables increase. An increase of drift

rate (processing speed), on the other hand, has opposing

effects, with accuracy rate rising and mean RT decreasing.

Whereas threshold separation and drift rate affect both be-

havioral variables, an increase in non-decision time solely

affects mean RT.

Obviously, Table 1 is based on two simplifications.

First, it illustrates only the general direction of effects, that
is, whether there is a positive or negative effect of a pa-

rameter on the behavioral variables (i.e., mean RT and ac-

curacy). For example, according to Table 1, drift rate af-

fects both mean RT and accuracy and so does threshold

separation. But what about effect sizes? Does, for exam-

ple, drift rate affect mean RT and accuracy similarly or

does it affect one of these variables more strongly? Rat-

cliff and McKoon (2008), who examined a large number of

data sets (N = 18), found a consistent pattern: Drift rate
was strongly related to accuracy rate, whereas threshold

separation was related primarily to mean RT. For example,
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Table 2 Effects of a hypothetical manipulation (condition B) on accuracies and mean RTs

Case Effect on Accuracy Effect on Mean RT Accuracy Mean RT (in ms)

1 no effect no effect .94 550

2 worse worse .90 600

3 better worse .98 600

4 no effect worse .94 600

5 worse no effect .90 550

in a study by Ratcliff, Thapar, andMcKoon (2004), drift rate

was highly correlated with accuracy rate (younger adults:

r = .74, older adults: r = .77) whereas there was no
such consistent pattern for mean RT (younger participants:

correct RT: r = −.014, error RT: r = .37; older partic-
ipants: correct RT: r = −.40, error RT: r = −.18). On
the other hand, threshold separation was closely related to

mean RT (younger participants: correct RT: r = .81, error
RT: r = .72; older participants: correct RT: r = .87, er-
ror RT: r = .87), but it was not correlated with accuracy
rate (younger participants: r = .018, older participants:
r = −.025).
Second, in the table the selective influence of single pa-

rameters is shown, that is, the assumption is made that
other parameters remain constant. However, in real data,

typically more than one model parameter varies—at least

to some extent—as a function of experimental condition or

group. Thus, if for example participants are better in terms

of accuracy and RT, this does not necessarily mean that this

difference is based on drift rate. Also, a complex combina-

tion of all three parameters can result in such a pattern of

behavioral variables. In our simulation study, we demon-

strate that different parameter sets go along with the same

pattern of mean RTs and accuracy rates.

Simulation Study
In our simulation study, we generated a large number

of parameter sets and examined which of these sets re-

sult in the same patterns of mean RTs and accuracy rates.

Thereby, we examine whether one and the same pattern

of behavioral variables can originate frommany—possibly

qualitatively completely different—parameter sets.

Method

Our simulation study is based on a simple experimental

design that is very common in psychological studies: We

assume a design with one independent variable that has

two levels (in the following called conditions A and B). For

this design, we consider five different possible patterns of

results (“cases”).

Specifically, condition A is the standard condition with

an accuracy rate of .94 and amean RT for correct responses

(in the following, termed “mean RT”) of 550 ms. The five

different patterns of the behavioral variables accuracy rate

and mean RT in conditions A and B are displayed in Table

2. In case 1, we assumed identical values for accuracy rate

andmean RT for both conditions A and B. If such data were

collected in an empirical study, researchers who base their

analyses on the behavioral variables would come to the

conclusion that there are no differences in performance

between the two conditions. In case 2, performance in con-

dition B is worse than in condition A, both regarding mean

RT (600 ms) and accuracy (.90). In case 3, performance in

condition B is worse regarding mean RT (600 ms), but bet-

ter regarding accuracy (.98). Finally, in cases 4 and 5, one

behavioral variable is not affected, while the other vari-

able indicates a decreased performance (case 4: mean RT =

600 ms, case 5: accuracy = .90).

To test which cognitive processes can explain the pos-

tulated behavioral effects, we generated a large number of

parameter sets. More specifically, for each of the parame-

ters a, ν, and t0 we used 100 different values. Parameter a
varied between 0.500 and 1.985 (step size: 0.015), param-

eter ν between 1.000 and 4.960 (step size: 0.040), and pa-
rameter t0 between 0.100 and 0.595 (step size: 0.005). The
minimum and maximum values for each parameter are

based on typical values reported in the diffusion model lit-

erature. Thus, the parameter values of almost all diffusion

model studies will be captured by these ranges. In total, we

generated 1003 = 1,000,000 different parameter sets. Then,
for each parameter set, we simulated 10,000 trials (assum-

ing a deterministic process) using construct-sampleswhich
is part of the program fast-dm (Voss & Voss, 2007, 2008;
Voss, Voss, & Lerche, 2015). Finally, for each simulated data

set, we computed mean RT and accuracy rate, rounded to

two decimal places for accuracy and to 10 ms for mean RT.

Results

For each of the five cases, we counted the number of pa-

rameter sets that resulted in the assumed values of the be-

havioral variables. Note that due to rounding of numbers,

all simulations were counted as hits, when accuracy dif-

fered less than 0.005 from the postulated value and mean

RT differed less than 5 ms from the postulated value.

Our analyses showed that, for example, a total of N =
670 different parameter sets lead to an accuracy rate of .94

The Quantitative Methods for Psychology 1102

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.2.p107


¦ 2020 Vol. 16 no. 2

and a mean RT of 550 ms (case 1). Thus, an impressive

number of different parameter constellations leads to the

same pattern of results. The numbers of different param-

eter sets for all five cases are given in Table 3 (second col-

umn) at the end of the article.

Next, we further examined the parameter sets that

could explain the results. For this purpose, we first se-

lected an example parameter set that was representative

for the standard condition A (a = 0.965, ν = 2.840,
t0 = 0.400). This example set is approximately in the cen-
ter of the range of each parameter.

1
We assume that these

values represent the true cognitive processes in condition

A. This allows us to compare whether the parameters that

possibly explain performance in condition B, are similar to

parameters from condition A, or—if not—in which direc-

tion they changed.

A parameter can either be identical to the parameter

of the standard condition (=), or smaller (<), or larger (>).

As there are three parameters (a, ν, and t0) and three dif-
ferent relationships (=, <, >), there is a total of 33 = 27
possible patterns of relations. For each of these patterns,

we counted the number of parameter sets. For example,

the parameter set a = 0.890, ν = 3.040 and t0 = 0.425
for condition B would be classified as (<, >, >) because it is

smaller in a, and larger in both ν and t0 compared to the
parameters of the standard condition A. If a parameter dif-

fered only slightly from the parameter of the standard con-

dition, we defined this parameter as identical to the stan-

dard condition (=). Specifically, absolute deviations up to

0.074, 0.198, and 0.025 were regarded as irrelevant for pa-

rameters a, ν, and t0, respectively (i.e., as identical to the
standard condition). These limits are 5% of the range of

each parameter used for the construction of the data sets

(e.g., for drift: (4.960-1.000) × .05 = 0.198). We used these

limits so that only empirically relevant deviations are con-

sidered.

The results of the analyses are presented in Table 3 at

the end of the article. For each case, the relationship pat-

terns are sorted by frequency (see N -rows). Only combi-
nations are shown that were actually found to match the

postulated relationship patterns (frequency of at least 1).

For each pattern, we give one example parameter set. As

can be seen in the table for case 1, the behavioral variables

from the standard condition can also result from qualita-

tively completely different parameter sets, for example,

with a being smaller and ν and t0 being larger than in
the standard condition (N = 291) or with a being larger
and ν and t0 being smaller than in the standard condi-
tion (N = 282). The plots in Figure 2 illustrate the three

most frequent relationship patterns for case 1. The up-

per plot is based on the values of the standard condition

(i.e., a = 0.965, ν = 2.840, t0 = 0.400). The middle
plot illustrates the (>, <, <) relationship pattern (a = 1.670,
ν = 1.600, t0 = 0.100) and the lower plot the (<, >, >) pat-
tern (a = 0.890, ν = 3.040 and t0 = 0.425). It can be seen
that the RT distributions—despite having the same mean

RT and accuracy rate—have different positions and forms.

In case 2, condition B is characterized by a worse per-

formance compared to condition A regarding both accu-

racy rate (lower) and mean RT (higher). At this point, re-

searchers will typically infer that processing speed (i.e.,

drift rate) is lower in condition B than in condition A. How-

ever, this is not necessarily true. For example, a (<, >, >)-

relation pattern (N = 144) could also explain this pat-
tern of behavioral variables. Thus, in condition B, partic-

ipants might actually be faster in their speed of informa-

tion accumulation than in condition A. The higher error

rate in condition B is then a result of the reduced thresh-

old separation. Participants are less cautious which leads

to more errors and faster RTs. The higher non-decision

time component counteracts these fast RTs so that—in

sum—participants make more errors and are slower in

condition B than in condition A.

Also in case 3, researchers might interpret the behav-

ioral variables incorrectly. As condition B has a higher

accuracy but a worse mean RT, they might conclude that

participants in condition B are more cautious which is cap-

tured in the threshold separation parameter of the diffu-

sion model. However, the same pattern of behavioral re-

sults could also be the consequence of a reduced threshold

separation if this goes along with an increase in both drift

rate and non-decision time (N = 228). The higher accu-
racy rate is then explained by the higher drift rate and the

slower RTs are due to the higher non-decision time. Thus,

as these examples show, even seemingly clear patterns of

results might not be interpreted correctly. Again, the diffu-

sion model analysis helps to disentangle the true processes

involved here.

In additional analyses, we only considered large differ-

ences in parameter values between condition A and con-

dition B. Specifically, we set the limits to 10% (in contrast

to the 5% criterion applied in the previous analyses) of the

range of each parameter used for the construction of the

data sets (e.g., for drift: (4.960-1.000) × .10 = 0.396). Even

if only such large differences are considered, the numbers

of simulations matching the most common patterns (>, <,

<) and (<, >, >) are only slightly reduced. For example, in

case 1, the number of parameter sets of the (>, <, <) pat-

1
Specifically, across the 670 parameter sets that result in an accuracy rate of .94 and amean RT of 550ms, we first computed themedian of parameter

a and selected all parameter sets with parameter a equal to the median (N = 8). Then, we followed the same approach consecutively for parameters
ν (N = 2) and t0 which resulted in one remaining parameter set.
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Figure 2 Three exemplary, completely different parameter sets resulting in the same pattern of mean RT (550 ms) and

accuracy rate (.94).

tern drops from 282 for the 5% criterion to 242 for the 10%

criterion (see Table 4 at the end of the article for details).

In Figure 3, all parameter sets are depicted that result

in one of the five patterns of accuracy rate and mean RT.

Each dot symbolizes one parameter set. The plot illustrates

that very different parameter sets result in the same accu-

racy and mean RT. Furthermore, it can be seen that there

is a clear relationship between the three parameters. A

higher threshold separation goes along with lower non-

decision time and drift rate. This is plausible as a higher

threshold separation leads to fewer errors so that drift rate

does not need to be high. A high threshold separation

and small drift rate both lead to higher RTs so that non-

decision time can be smaller. Importantly, these relation-

ships do not mean that the different parameter sets cannot

be separated in the parameter estimation procedure. In

our simulation study, we only considered accuracy rates

and mean RTs and examined which parameter sets re-

sult in the same values of these behavioral variables. Our

study demonstrates that based on these behavioral vari-

ables alone, it is not possible to disentangle different ac-

counts. However, diffusion modeling is not just based on

accuracy rates andmean RTs, but on entire distributions of

response times. With this higher amount of information it

becomes possible to estimate parameters reliably and thus

distinguish between different possible patterns of model

parameters (for exemplary simulation studies, see Lerche

& Voss, 2018).

Figure 3 further illustrates that for higher accuracy

rates, more parameter sets result in the same pattern of
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Figure 3 Scatter plot of all parameter sets that result in the same accuracy and mean RT.

behavioral variables (for the exact values, see the second

column in Table 3). This also suggests that for experiments

with high accuracies more trials are needed to allow for

reliable parameter estimation because the model must be

able to discriminate between the numerous possible pa-

rameter sets (Lerche, Voss, & Nagler, 2017). Finally, the plot

reveals that if non-decision time is larger and threshold

separation lower, the faster mean RT (550 ms) goes along

with higher drift rates than the slower mean RT (600),

whereas for higher threshold separations and lower non-

decision times, the faster mean RT goes along with smaller

drift rates than the slower mean RT.

Discussion
The popularity of the diffusion model has greatly risen in

the last two decades (Voss et al., 2013). Whereas in the past

themodel wasmainly used bymathematical psychologists,

now researchers of many different fields of psychology ap-

ply this model (which is most probably attributable to the

availability of user-friendly software solutions, e.g., Van-

dekerckhove & Tuerlinckx, 2008; Voss & Voss, 2007; Wa-

genmakers, van der Maas, & Grasman, 2007; Wiecki, Sofer,

& Frank, 2013). Consequently, it becomes more and more

important to provide tutorials that demonstrate why the

model can be useful, how the model parameters are best

estimated and in which cases the model cannot be applied

or parameter estimates need to be interpreted with cau-

tion. Critically, up to date, the number of articles that

provide guidelines for researchers interested in diffusion

modeling is limited. There are a few articles that exam-

ine how many trials are required for diffusion modeling

(Lerche & Voss, 2017; Lerche et al., 2017), which estima-

tion method performs best (Lerche et al., 2017; Ratcliff &

Childers, 2015; Ratcliff & Tuerlinckx, 2002; Wiecki et al.,

2013) andwhichmodel parameters are difficult to estimate

(Boehm et al., 2018; Lerche & Voss, 2016; van Ravenzwaaij

et al., 2017). Furthermore, there is a newly developed tool

that allows to illustrate the influence of changingmodel pa-

rameters on RT distributions (Alexandrowicz, 2018). With

this article we want to contribute to this line of research.

In the present paper, we aim at clarifying a common

misconception regarding the relationships between diffu-

sion model parameters and behavioral variables. More

specifically, we have repeatedly talked to researchers who

assume that it is easy to deduce diffusion model param-

eters from patterns of behavioral variables. For exam-
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ple, if in one condition participants are both faster and

make fewer errors, the common assumption is that here

speed of information accumulation (drift rate parameter

of the diffusion model) must be increased. Similarly, if

individuals are slower but at the same time more accu-

rate, this might be attributed to an effect in threshold sep-

aration which defines how much information is accumu-

lated before a decision is made. Often, these inferences

will hold; however, this will not always be the case be-

cause—as we demonstrated in this article based on a sim-

ulation study—qualitatively different sets of model param-

eters can result in the same mean RTs and accuracy rates.

For example, individuals might be faster and more accu-

rate in their responses as a result of the combination of (1)

being more cautious (higher threshold separation), (2) be-

ing faster in their motor response (reduced non-decision

time), and (3) simultaneously being slower in information

processing (lower drift rate).

Furthermore, if two conditions do not differ at all in

terms of mean RT and accuracy rate, there can still be sub-

stantial differences in cognitive processes as measured by

diffusion model parameters. The diffusion model consid-

ers information about entire RT distributions (e.g., includ-

ing information of standard deviations and skew), thereby

allowing to disentangle cognitive processes that cannot be

separated based on analyses of mean RTs or accuracy rates

alone.

Interestingly, the large validation project by Dutilh

et al. (2018) showed that it might—at least in some

cases—also be possible to draw accurate inferences from

the inspection of summary statistics alone. In this project,

the participating research teams were instructed to ana-

lyze data of several pseudo-experiments and find out in

which of the four psychological processes (ease of informa-

tion processing, caution, decision bias, non-decision time)

two conditions differed. Importantly, the research teams

were blind regarding the manipulations. Whereas most

teams opted to apply either the diffusion model or the

linear ballistic accumulator model (Brown & Heathcote,

2008), two teams (Evans & Brown = EB; van Maanen =

MA) decided to make their inferences without applying

any model, but by mere inspection of summary statistics.

Strikingly, both teams performed well and one team (EB)

even outperformedmost other teams. Certainly, one needs

to consider that both teams consisted of researchers who

were very experienced in the application of sequential

sampling models. If novices had used the same strategy,

it is questionable whether their conclusions would be as

accurate. Furthermore, it is important to mention that the

EB team examined next to median RTs and accuracy rates

also RT quantiles and thus used also information about the

shape of distributions of response times. Finally, it should

be considered that in the project of Dutilh et al. (2018) ex-

perimental effects were rather large; if smaller effects are

to be detected, the analysis of summary statistics alone will

probably be less successful.

In many studies, like in the experiments by Dutilh et

al. (2018), researchers want to find out in which of the

diffusion model parameters two conditions differ. There-

fore, they will allow all main diffusion model parameters

to vary between the conditions. In other studies, the exper-

imental design might make variations of diffusion model

parameters impossible or unlikely. Imagine, for exam-

ple, a task with two types of stimuli. Researchers want

to find out whether the two types of stimuli are encoded

differently (parameter: non-decision time) and/or differ in

how well they are processed (parameter: drift rate). The

stimuli are presented intermixed. According to the con-

ception of the diffusion model, threshold separation is set

prior to the presentation of the stimulus. It is, thus, not

possible that threshold separation differs between the two

types of stimuli because prior to the presentation of the

stimulus, participants do not know yet which stimulus will

be shown. Accordingly, in such an experiment, modelers

might only allow drift rate and non-decision time to vary

between the different types of stimuli, and estimate one

value for threshold separation across conditions. Thereby,

the model becomes more restricted and there are fewer

combinations of parameters that result in the same pattern

of mean RTs and accuracy rates. Thus, the number of dif-

ferent combinations of parameters that go along with the

same mean RTs and accuracy rates depends on character-

istics of the specific study.

Note that our simulation study was limited to a varia-

tion of the three main diffusion model parameters thresh-

old separation (a), drift rate (ν) and non-decision time (t0).
Similar simulations as presented in this article could be

done including also the other diffusion model parameters

(starting point z, and inter-trial variabilities), examining
more complex models (e.g., with a bias for one of the two

response alternatives). In fact, with an increase in the

number of considered model parameters the model be-

comes even more flexible to account for certain patterns

of mean RTs and accuracy rates. The general message of

such additional simulations would be the same, that is,

that an interpretation of behavioral variables can lead to

wrong conclusions because various different parameter

sets might be responsible for a certain pattern of behav-

ioral data.

As outlined above, our simulation study shows that

very different patterns of parameters result in the same

patterns of behavioral variables. The diffusion model

is able to discriminate between these different parame-

ter patterns because information about RT distributions
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(rather than only summary statistics) are considered. Note

that the diffusionmodel is also a falsifiablemodel (for a dis-

cussion of this argument, see e.g., Heathcote, Wagenmak-

ers, & Brown, 2014; see Roberts & Pashler, 2000, for a more

general discussion of model fit in theory testing).

Critically, there are high demands on the parameter es-

timation procedure which should result in unbiased esti-

mates. Several empirical and simulation studies have com-

pared different estimation procedures in terms of relia-

bility of parameter estimation (e.g., Lerche & Voss, 2017;

Lerche et al., 2017; Ratcliff & Childers, 2015; Ratcliff & Tuer-

linckx, 2002; Wiecki et al., 2013). Among other things,

the studies showed that different estimation procedures

might be the optimal choice depending on features of the

task, like the number of trials or possible contaminations

of data. Whereas for large trial numbers there are small

differences between different estimation procedures, for

smaller trial numbers it is crucial to use a reliable proce-

dure. For example, the optimization criterion maximum

likelihood seems suitable also for small trial numbers (100

or even fewer trials), whereas the chi-square optimization

criterion does not provide reliable estimates for such trial

numbers (Lerche et al., 2017).

Importantly, even if a model fits the data of a study

well, this does not necessarily mean that the estimated pa-

rameter values reflect the true cognitive processes. There-

fore, it is important to conduct validation studies to exam-

ine the validity of the parameters of a model. For the dif-

fusion model, there are a few studies testing the validity of

the main diffusion model parameters. Among these stud-

ies are experimental validation studies (so-called selective

influence studies, Arnold et al., 2015; Lerche & Voss, 2019;

Voss et al., 2004) that selectively manipulated processes

assumed to underlie diffusion model parameters and an-

alyzed whether these manipulations affect the respective

parameter in the predicted way (convergent validity) and

take no influence on other parameters (discriminant valid-

ity). Furthermore, there are correlational studies showing,

for example, relationships of drift rate with general intel-

ligence (Ratcliff et al., 2011; Schmiedek et al., 2007; Schu-

bert et al., 2015), and lately also with domain-specific intel-

ligence (Lerche et al., in press). However, the rather small

number of validation studies is in striking contrast to the

high number of application studies that assume that the

validity of the model parameters is given. In our eyes, fu-

ture research should continue to thoroughly examine the

validity of the diffusion model parameters.
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