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Jumping to Conclusion?

A Lévy Flight Model of Decision Making
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Abstract The diffusion model is one of the most prominent response time models in cognitive

psychology. The model describes evidence accumulation as a stochastic process that runs between

two boundaries until a threshold is hit, and a decision is made. The model assumes that informa-

tion accumulation follows a Wiener diffusion process with normally distributed noise. However,

the model’s assumption of Gaussian noise might not be the optimal description of decision making.

We argue that Lévy flights, incorporating more heavy-tailed, non-Gaussian noise, might provide

a more accurate description of actual decision processes. In contrast to diffusion processes, Lévy

flights are characterized by larger jumps in the decision process. To further examine this proposal,

we compare the fit of the basic diffusion model and the full diffusion model (including inter-trial

variability of starting-point, drift rate and non-decisional processes) to the fit of a simple and a com-

plex version of a Lévy flight model. In the latter model, the heavy-tailedness of noise distributions

was estimated by an additional free stability parameter alpha. Participants completed 500 trials of

a color discrimination task and 400 trials of a lexical decision task. Results indicate that a complex

Lévy flight model – including inter-trial variability parameters and alpha – shows the best fit in

both tasks. Importantly, alpha-values correlated across tasks, indicating a trait-like nature of this

parameter.
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Introduction

Speed response time tasks are one of the most frequently

used tasks in cognitive psychology. The diffusion model

provides a valuable method to analyze response time data

and its advantages have become increasingly clear dur-

ing the last decades (Wagenmakers, 2009). The model de-

scribes evidence accumulation as a Wiener diffusion pro-

cess that runs in a corridor between two thresholds, rep-

resenting two response alternatives. In addition to a sys-

tematic drift in the decision process, normally distributed

noise is assumed (Ratcliff, 1978). Although the diffusion

model shows a reasonably good fit to data from a wide va-

riety of cognitive tasks and its validity has been demon-

strated across different paradigms (Ratcliff, 2002; Ratcliff

& Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001, 2003),

recent studies suggest that models with more heavy-tailed

noise distributions might be superior to classical diffusion

models (Voss, Lerche, Mertens, & Voss, 2019). Stochas-

tic processes assuming heavy-tailed noise are called Lévy

flights. In these Lévy flights, the probability of extreme

events is strongly increased, which results in jumps in evi-

dence accumulation. Lévy flight models have been applied

to a variety of contexts in different fields of science, includ-

ing animal foraging (e.g., Reynolds, 2012), economic pro-

cesses (e.g., Mantegna, 1991), as well as human perception

and cognition (Liberati et al., 2017; Montez, Thompson, &

Kello, 2015; Rhodes & Turvey, 2007).

The present study aims at providing further evidence

for the applicability of Lévy flights to human decisionmak-

ing. Similar to the approach of Voss et al. (2019), we com-

pare different evidence accumulation models with differ-

ent noise distributions for the decision process. However,

in contrast to the study of Voss et al. (2019), the present

study is based on data with notably larger trial numbers

per participant, and, importantly, we now employ exper-
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imental paradigms that have been often used in the field

of diffusion modeling. Furthermore, we now apply a fully

Bayesian parameter estimation method. The Bayesian in-

formation criterion (BIC) that penalizes model complexity

is computed to allow for a rigorous model comparison.

Additionally, we address the question of whether there

is a psychologically meaningful inter-individual variance

in the stability parameter alpha, which maps the heavy-

tailedness of the noise distribution.

The Diffusion Model

Speeded response time tasks are a common type of

paradigm in cognitive psychology. Typically, in two-

alternative forced choice (2AFC) tasks, either mean re-

sponse time or accuracy of responses is used as a mea-

sure of performance. However, such separate analyses en-

tail the problem that a common metric for performance

is missing, which is especially problematic when it comes

to speed-accuracy trade-offs between experimental condi-

tions. In addition, these traditional analyses utilize only a

small amount of the available information, since informa-

tion frommany trials of an experimental condition is sum-

marized by one single number, such as the mean response

time.

The diffusion model (Laming, 1968; Ratcliff, 1978) ad-

dresses these problems. Due to its advantages over tra-

ditional analytic strategies for RT data, the model has re-

markably grown in popularity over the last decades (Voss,

Nagler, & Lerche, 2013). The model provides a theoretical

account for the composition of response time distributions

in binary decision making, considering location and shape

of response time distributions for correct responses and er-

rors and accuracy of responses. According to the model,

during a binary decision, information is accumulated con-

tinuously, and this evidence accumulation is described by

a Wiener diffusion process. This process comprises a sys-

tematic component, the so-called drift rate, and Gaussian

noise. Whereas the drift rate determines average speed

and direction of information accumulation, the random

noise is responsible for variance of response times and re-

sponse outcomes when the same stimulus is processed re-

peatedly by the same person. As soon as the diffusion pro-

cess hits an upper or lower threshold, a decision for one or

the other response is made.

Parameters of the Diffusion Model

In a diffusion model analysis, several parameters are es-

timated from the empirical response time distributions,

and these parameters are associated with different cogni-

tive processes. Distinct psychological interpretations have

been assigned to all model parameters. The basic diffu-

sion model, as described by Ratcliff (1978), comprises four

parameters: drift rate v, threshold separation a, starting
point z and duration of non-decisional processes t0.
The drift rate v reflects the average slope of the dif-

fusion process. It depends both on the speed of a partic-

ipant´s information processing and the task difficulty. Ac-

cordingly, drift rates closer to zero indicate a slower pro-

cessing of information or more difficult tasks (Schmiedek,

Oberauer, Wilhelm, Süß, & Wittmann, 2007; Voss, Rother-

mund, & Voss, 2004). Threshold separation a describes the
amount of information that is needed to draw a conclu-

sion. High values of this parameter indicate a conservative

decisional style with slow responses and high accuracy,

whereas low values represent a liberal style with fast re-

sponses and higher error rates (Ratcliff, Thapar, Gomez, &

McKoon, 2004). The starting point z of the information ac-
cumulation is located between the two thresholds. In case

of an a priori bias, it can be located closer to the thresh-

old corresponding to the preferred response (Voss, Rother-

mund, & Brandtstadter, 2008; Voss et al., 2004). Finally, the

duration of extra-decisional processes t0, such as encoding
and motoric response processes, is added to the decision

times determined by the diffusion process (Ratcliff, Spieler,

& McKoon, 2000). Note that some researchers question the

validity of the psychological interpretation of parameters

in evidence accumulation modeling (Jones & Dzhafarov,

2014), while others argue in favor of it (e.g., Heathcote, Wa-

genmakers, & Brown, 2014).

In the full version of the diffusion model (Ratcliff &

Rouder, 1998; Ratcliff & Tuerlinckx, 2002) that is often used

in psychological applications, additional inter-trial vari-

abilities are estimated for drift, starting point, and non-

decision time. Note, however, that parameter estimation is

often more accurate when more parsimonious models are

used, suggesting that these inter-trial variability parame-

ters might lead to overfitting (Lerche & Voss, 2016).

The Lévy Flight Model

Recent studies suggest that the noise in evidence accumu-

lation might be better described by heavy-tailed distribu-

tions (Voss et al., 2019). Heavy-tailed distributions like the

Cauchy distribution or the Lévy distribution are character-

ized by an high likelihood for extreme events, compared

to a normal distribution (Voss et al., 2019). Lévy flights

have been applied to a variety of contexts. For example,

they have proven useful to model animal foraging behav-

ior. The Lévy flight foraging hypothesis states that in cer-

tain environments (truncated) Lévy flights optimize ran-

dom searches. According to this hypothesis, biological or-

ganisms have evolved to exploit Lévy flights for their wan-

dering movements during foraging (Viswanathan, Raposo,

& da Luz, 2008). For example, Reynolds (2012) reports

evidence for Lévy flights in the fishy-scented olfactory-
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Figure 1 Basic version of the Lévy flight model. An information accumulation process starts at a starting point z and
runs over time with the mean slope v until it hits an upper (a) or lower (0) threshold. Because of random noise, the pro-
cess durations and outcomes vary from trial to trial. Outside the threshold decision-time distributions are shown. Due to

a heavy-tailed noise distribution, sudden large jumps can be observed in the information accumulation process.

mediated prey detection of wandering albatross regarding

the length of flights between landings. The author con-

cludes that natural selection lead to Lévy flight searching

as this is the optimal pattern when prey is sparsely and

randomly distributed, whereas Brownian motion (i.e., a

process with Gaussian noise) is only effective when prey is

abundant. Similar search patterns have been observed in

other kinds of species, including several open-ocean preda-

tory fish (Humphries et al., 2010).
1
Lévy flights are also

used in other scientific domains, as for example, to de-

scribe economic processes. Here, it has been shown that

price indices in a stock exchange have statistical properties

that are compatible with a Lévy random walk (Mantegna,

1991).

In the field of cognitive research, there are only few

studies that provide evidence of Lévy flight processes in

human perception and cognition. Montez et al. (2015) ap-

plied Lévy flights to searching and clustering in seman-

tic memory. In a first experiment, Rhodes and Turvey

(2007) had participants recall as many animal names as

possible within 20 minutes. Inter-response intervals were

recorded. In a second experiment by Montez et al. (2015),

other participants had to arrange magnets with animal

names, taken from the previous experiment, on a white-

board with spatial distances representing the similarity of

the species. Inter-response intervals from the first exper-

iment correlated with spatial distances from the second

experiment and distributions of both variables approxi-

mately followed predications from Lévy flights (Montez et

al., 2015). Lévy flights have also been observed in the field

of human perception. Liberati et al. (2017) conducted an

eye-tracking study in which they showed typically devel-

oped children and children with autism spectrum disor-

der images of an adult gazing toward one of two objects.

Scan-paths of gaze position of both groups were character-

ized by a probability distribution geometrically equivalent

to Lévy flights.

Voss et al. (2019) applied a Lévy flight information

accumulation model to analyze data from decision mak-

ing based on a number-letter classification task. In a

simple single-stimulus task, participants had to classify

presented stimuli as numbers vs. letters, whereas in

a more difficult multiple-stimulus task, participants esti-

mated whether there were more letters or more numbers

in a set of simultaneously presented stimuli. Both tasks

were administered under speed and accuracy instructions.

A model with an additional parameter that indicated the

heaviness in the tails of the noise distribution (correspond-

ing to Model 2 in the present study), fit the data better than

a model with Gaussian noise. Moreover, larger jumps in

the decision process were observed in the single-stimulus

condition compared to the more complex multi-stimulus

condition and under speed instructions compared to accu-

racy instructions.

Thus, Voss et al. (2019) provided first evidence that a

Lévy flight model might be applicable to human decision

1
Note, however, that the Lévy flight foraging hypothesis has been put into question (Palyulin, Chechkin, & Metzler, 2014).
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making. In contrast to the diffusion model, the Lévy flight

model allows for jumps in the decision process (see Fig-

ure 1). More heavy-tailed random noise in an evidence ac-

cumulation model might mirror cognitive processes in bi-

nary decision tasks even better than normally distributed

noise.

Distributions such as the normal distribution, the

Cauchy distribution or the Lévy distribution are special

cases of a class of distributions called Lévy alpha-stable dis-

tributions. The heaviness in the tails of the distribution is

described by the stability parameterα ∈ [0, 2]. The normal
distribution is indicated by a value of α = 2 and the more
heavy-tailed Cauchy distribution by α = 1. In the present
paper, we compare four different models:

2
Model 1 (stan-

dard diffusion model; α = 2) assumes the noise to be nor-
mally distributed, whereas in Model 2 alpha is not fixed

but estimated as an additional free parameter. Besides the

fixed or free stability parameter α, the two models com-
prise the free parameters v0 and v1 (drift rates for two
stimulus types), a (threshold separation), z (starting point)
and t0 (non-decision time), as described above. Inter-trial
variabilities were fixed to zero. Models 3 and 4 are full ver-

sions of the describedmodels that additionally comprise sv
(inter-trial variability of drift), sz (inter-trial variability of
starting point) and st (inter-trial variability of non-decision
time).

Research Questions and Hypotheses

Following the results of Voss et al. (2019), we expect a

model with stability parameter alpha as an additional free

parameter to fit the data better than a model with Gaus-

sian noise, both for the color discrimination task and for

the lexical decision task. Thus, we assume alpha to take

average values between 1.0 (Cauchy noise) and 2.0 (Gaus-

sian noise). Additionally, we expect a positive correlation

between individual alpha-values across the two tasks, indi-

cating meaningful inter-individual variance in this param-

eter.

Method

Participants

The sample consisted of 40 participants (33 female, 6 male

and 1 non-binary; mean age=21; range: 18-38) who were

recruited with flyers at the Institute of Psychology at Hei-

delberg University. Consequently, the majority of partici-

pants were undergraduate students majoring in Psychol-

ogy. All participants were German native speakers and

none of them had impaired color vision. They gave an in-

formed consent prior to the experiment and were granted

partial course credit or 6 Euros as compensation.

Design

The design comprised the within-participant factors “task”

(color discrimination vs. lexical decision) and “stimulus

type”. For both tasks, there were two different stimulus

types (orange vs. blue or word vs. non-word for color dis-

crimination and lexical decision, respectively). The order

of tasks was counterbalanced across participants.

Apparatus and Stimuli

Stimuli were presented on a 17-inch computer screen. For

color discrimination (Voss et al., 2004), we used colored

squares (approximately 40 × 50 mm) consisting of 150 ×
200 pixels. Each pixel was either orange or light blue. The

proportion of colors within each stimulus was 47:53. Pixels

were randomly intermixed. For half of the stimuli, orange

was the dominant color; for the other half, blue was domi-

nant.

For the lexical decision task, we re-used stimuli from

Lerche and Voss (2017). Two-hundred German nouns with

one or two syllables and four to six letters served as word

stimuli. All words had low frequency in German language.

For each word stimulus, a non-word was created by ran-

dom replacement of all vowels. Stimuli were presented

centered on the screen in Arial 20 pt font.

After the experimental tasks, a German adaptation of

the UPPS Impulsive Behavior Scale was used to assess par-

ticipants’ impulsivity (Schmidt, Gay, d’Acremont, & Van der

Linden, 2008).
3

Procedure

The experiment was conducted in five computer-based

group sessions with 6 to 10 participants. Participants were

instructed to respond as quickly as possible, even if this

would lead to somemistakes. Thereby, we intended to gen-

erate higher error rates that were sufficiently large for a

robust parameter estimation. After every 100 trials, the

opportunity for a short break was given.

For each of the two tasks, participants started with a

training block of 12 trials. Only in this training block, ac-

curacy feedback was given after each response. There-

after, participants completed five experimental blocks of

the color discrimination task and four blocks of the lexi-

cal decision task (order of tasks was counterbalanced) with

100 trials per block. Each trial had the following sequence:

First, a white screenwas presented for 500ms. Afterwards,

a fixation cross appeared for 250 ms at the center of the

2
In addition to the described models, we analyzed the fit of a simple and a complex version of a model with Cauchy-distributed noise (α = 1.0). As

this model yielded an inferior fit in comparison to the other models, we did not describe the model in detail here to improve readability.

3
By assessing participants’ self-rated impulsivity, we intended to exploratively analyze the correlations between parameter alpha and UPPS scores.

As the analysis did not yield any statistically significant correlations, results are not reported in detail here.
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screen before it was replaced by a colored square in the

color discrimination task or by a letter sequence in the lex-

ical decision task. The stimulus remained on the screen

until a decision was made. Responses were given by press-

ing the A-key for “blue” or “non-word” and the L-key for

“orange” or “word” on a standard keyboard. Labels for the

assignment of keys were presented at the bottom-corners

of the screen throughout the experiment. The total dura-

tion of the experiment was approximately 45 minutes.

Fitting the Models to the Data

The models’ parameters were estimated for each task and

each participant separately. This requires a multidimen-

sional search for a set of parameter estimates that provide

an optimal fit between predicted and empirical response

time distributions. Whereas for the diffusion model, prob-

ability density functions (PDF) for response times are

known (e.g., Navarro & Fuss, 2009; Voss & Voss, 2008), this

is not the case for the model with alpha as an additional

free parameter. Therefore, a direct calculation of the like-

lihood is not possible. Voss et al. (2019) applied a some-

what cumbersome simulation based approach to approx-

imate the likelihood. Recent work from our lab showed

that a deep learning approach for likelihood-free param-

eter estimation is much more efficient (Radev, Mertens,

Voss, Ardizzone, & Köthe, 2019). In the following section,

we describe the rationale of this new approach briefly.

Our estimation method draws on recent advances

in deep probabilistic modeling (Ardizzone, Lüth, Kruse,

Rother, & Köthe, 2019; Grover, Dhar, & Ermon, 2017;

Kingma & Dhariwal, 2018; Radev et al., 2019). It involves

two neural networks (a summary network that learns to

extract the most informative summary statistics from raw

data and an invertible network that learns the relation

of these summary statistics to the true parameter values)

which jointly learn a probabilistic mapping from data to

parameters without assumptions on the parametric form

of the posterior distributions of all parameters. The net-

works are trained from simulated data by implicitly min-

imizing the Kullback-Leibler (KL) divergence between the

approximate posterior deduced by the networks and the

true posterior of the model parameters. Moreover, the

method recovers the true posterior exactly under optimal

performance of the networks, as proved by Radev et al.

(2019). Once trained with a sufficient amount of simulated

data, the converged networks can be used to perform rapid

likelihood-free Bayesian inference, thus essentially amor-

tizing costs of training. Specifically, the method involves

the following steps:

1. A broad enough prior on the models parameters is

specified, such that the prior captures a realistic range

of all parameter values.

2. Data are simulated on the fly by repeatedly drawing

from the prior and generating artificial response time

data.

3. The simulated data are fed into the networks which it-

eratively minimize the KL divergence between the ap-

proximate posterior (deduced by the networks) and the

true posterior over parameters.

4. The trained networks are applied to the observed data

in order to approximate parameter posteriors.

By splitting the process of parameter estimation into a

training and an inference phase, the computational load

is “outsourced” into the training phase. Subsequent in-

ference involves only passing observed data sets through

the trained networks, which is computationally cheap and

very efficient. Moreover, the trained networks can be

stored and re-used for estimating the parameters of the

model they have been trained on.

The method described above provides posterior distri-

butions for all parameters. To allow for model compar-

isons, we then employed the simulation approach by Voss

et al. (2019) to approximate the likelihood at the mean pa-

rameter values for each model and each person. This al-

lowed us to calculate the BIC. This information criterion is

defined as follows with smaller values indicating a better

fit (Voss, Voss, & Lerche, 2015):

BIC = −2LL− P · ln(M),

where LL is the log-likelihood, P is the number of free pa-
rameters andM is the number of observations (i.e., trials).

Results

Data Pre-Treatment

Data from trials with logarithmized response times that fell

more than 1.5 interquartile ranges below a participant’s

first quartile or more than 1.5 interquartile ranges above a

participant’s third quartile were removed prior to all anal-

yses. This criterion led to an exclusion of 3.59% of trials in

the color discrimination task and of 2.64% of trials in the

lexical decision task.

Response Times and Accuracy

Mean correct and error response times (RT) and accuracy-

values for the different types of stimuli in the two tasks

are presented in Table 1. Additionally, response times and

accuracy-values are visualized in Figures 2 and 3, respec-

tively.

As can be seen, for the color discrimination task, re-

sponse times for errors were slightly slower that for cor-

rect responses. In the lexical decision task, we observed

fast errors in response to non-word stimuli, but slower er-

rors in response to word stimuli. Accuracy-values suggest
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Figure 2 Reaction times in milliseconds for correct responses and error responses to non-word and word stimuli in the

lexical decision task and to predominantly blue and predominantly orange stimuli in the color discrimination task for

the 40 participants.

Table 1 Mean response times (RT in ms) and accuracy in percent (standard deviations in parentheses) as a function of

stimulus type, response accuracy, and task.

Task Color Discrimination Lexical Decision

Stimulus type Blue Orange Word Non-Word

RT (correct) 621 (179) 621 (179) 617 (88) 628 (98)

RT (error) 702 (283) 675 (275) 650 (128) 582 (123)

Accuracy (%) 85.2 (12.3) 86.7 (9.9) 87.2 (7.8) 95.3 (3.7)

Note. N = 40, except for non-word stimuli, where one participant had to be excluded as she did not make any mis-
takes.

that the lexical decision task was overall somewhat eas-

ier than the color discrimination task. This difference is

largely based on high accuracy rates for non-words.

While response times do not differ largely between the

different conditions in the two tasks, the variance in per-

formance between participants regarding response time

and accuracy is larger in the color discrimination task in

comparison to the lexical decision task. Lastly, a larger

variance in response times can also be observed for error

responses compared to correct responses.

Model Fit

To assess model fit, BIC was calculated separately for all

participants for the two models and the two tasks. We

decided for the report of BIC values instead of AIC val-

ues (Akaike Information Criterion) as BIC is consistent,

whereas AIC might tend to select complex models that

overfit the data (Vandekerckhove, Matzke, & Wagenmak-

ers, 2015). Summarized BIC values are presented in Table

2 with smaller values indicating a better fit. Additionally,

the number of participants for whom the respective simple

and full models had the best fit are shown.
4

These analyses reveal that overall Model 4 (i.e., com-

plex Lévy flight with freely estimated stability of noise and

inter-trial variability) shows the best fit. When comparing

simple models (without inter-trial-variability parameters)

to each other, Model 2 (i.e., a model with alpha as an addi-

tional free parameter) performs better than the first model

for both tasks.

When comparing the complex models, which allow for

inter-trial variability in starting point, drift rate and non-

decisional processes, Model 4 with alpha as an additional

free parameter has a better fit than the full diffusionmodel

(Model 3) across tasks. Note that the differences in BIC

are huge, which is indicated by a performed transforma-

tion of BIC values to Schwarz weights (Vandekerckhove et

4
We also calculated AIC values for model comparison. The analysis yielded identical results as the analysis performed with BIC values.
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Figure 3 Accuracy values for word stimuli and non-word stimuli in the lexical decision task and for predominantly blue

and predominantly orange stimuli in the color discrimination task for the 40 participants.

Table 2 Model fit assessed with BIC (number of participants for whom each model had the best fit in parentheses) for

all tasks and models.

Model Color Discrimi-

nation

Lexical Decision

1. Standard Diffusion 152,880 (8) 110,364 (1)

2. Simple Lévy Flight 151,177 (32) 108,376 (39)
3. Complex Diffusion 145,791 (22) 107,022 (28)
4. Complex Lévy Flight 145,618 (18) 106,961 (12)
Note. N = 40. BIC: Bayesian information criterion. Smaller values indicate a better fit. The best fit in each column
–separately for simple and complex models– is printed in bold font.

al., 2015). As a result of this analysis, weights of nearly 1

for the superior model were observed. Results also suggest

notable inter-individual differences in the type of informa-

tion sampling, as different models are superior for differ-

ent participants.

As Model 1 (the standard diffusion model with a fixed

parameter α = 2) is nested in Model 2 (the Lévy model
with alpha as an additional free parameter), we addition-

ally performed a likelihood ratio test to compare the fit

of these models. Highly significant advantages were ob-

served for the Lévy flight model for data from the lexical

decision task, χ2(40) = 4, 058, p < .001, and from the
color discrimination task, χ2(40) = 1, 950, p < .001.

Parameter Estimates

Averages from the mean posterior distributions of all pa-

rameters for the four tested models are presented in Ta-

ble 3. Additionally, distributions of mean alpha-values are

presented in Figure 4 for the simple Lévy flight model. For

the 40 participants, alpha is approximately uniformly dis-

tributed in a range fromα = 1.0 (i.e., amodel with Cauchy-
distributed noise) to α = 2.0 (i.e., the Ratcliff diffusion
model with normally distributed noise).

Correlations of Alpha-Values with Accuracy and Re-
sponse Times

To improve the understanding, which characteristics of

behavioral data are indicative of alpha, mean posterior

values for alpha from Model 2 were correlated with re-

sponse times for correct responses as well as accuracy

rates. To increase normality, response time values were log

transformed and accuracy-values were arcsin transformed

prior to the analysis. Correlations are presented in Table 4

and visualized in Figure 5.

Moderate to high positive correlations were observed

between response times and alpha-values across all tasks

and stimuli, indicating that larger jumps in the decision

process are associated with faster responses. Alpha-values
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Table 3 Mean parameter values (standard deviations in parentheses) for simple and complex versions of the diffusion

model and the model with stable noise in the color discrimination and the lexical decision task.

Task a zr v0 v1 t0 α sz sv st
Model 1: Standard Diffusion

Color Discrimination 1.24

(0.31)

0.49

(0.06)

-1.92

(1.09)

2.00

(0.77)

0.34

(0.05)

2 (0) 0 (0) 0 (0) 0 (0)

Lexical Decision 1.19

(0.28)

0.52

(0.05)

-2.89

(0.64)

2.29

(0.58)

0.41

(0.03)

2 (0) 0 (0) 0 (0) 0 (0)

Model 2: Simple Lévy Flight

Color Discrimination 1.06

(0.42)

0.49

(0.08)

-1.68

(0.98)

1.77

(0.77)

0.35

(0.05)

1.60

(0.28)

0 (0) 0 (0) 0 (0)

Lexical Decision 1.05

(0.36)

0.52

(0.06)

-2.51

(0.64)

2.10

(0.59)

0.41

(0.03)

1.61

(0.21)

0 (0) 0 (0) 0 (0)

Model 3: Complex Diffusion

Color Discrimination 1.17

(0.46)

0.49

(0.08)

-2.46

(1.22)

2.61

(0.99)

0.40

(0.06)

2 (0) 0.30

(0.15)

0.76

(0.50)

0.19

(0.06)

Lexical Decision 1.00

(0.26)

0.52

(0.07)

-3.46

(0.80)

2.66

(0.68)

0.46

(0.03)

2 (0) 0.33

(0.12)

0.37

(0.27)

0.16

(0.04)

Model 4: Complex Lévy Flight

Color Discrimination 1.12

(0.50)

0.49

(0.08)

-2.27

(1.18)

2.38

(0.96)

0.39

(0.06)

1.80

(0.20)

0.26

(0.10)

0.69

(0.50)

0.17

(0.06)

Lexical Decision 0.99

(0.31)

0.52

(0.07)

-3.29

(0.77)

2.51

(0.64)

0.46

(0.04)

1.87

(0.13)

0.35

(0.09)

0.35

(0.23)

0.15

(0.04)

Note. N = 40. a = threshold separation; zr = relative starting point; v0 = drift rate for blue stimuli or non-word stimuli;
v1 = drift rate for orange stimuli or word stimuli; t0 = non-decisional time; α = stability parameter of noise distribu-
tion; sz = across-trial variability in starting point; sv = across-trial variability in drift rate; st = across-trial variability
in non-decisional processes.

were also positively related to accuracy, showing signif-

icant correlations between alpha-values and accuracy in

color discrimination, r(38) = .34, 95% CI [.03; .59], as well
as between accuracy in lexical decision and alpha-values

in color discrimination, r(38) = .35, 95% CI[.04; .59].5

Importantly, also a significant correlation was ob-

served between alpha-values from color discrimination

and lexical decision, r(38) = .41, 95% CI [.12; .64]. This
inter-task correlation of alpha suggests a stable, trait-like

component of the quality of information accumulation.

Correlations of parameters in the simple Lévy flight model

(Model 2) across both tasks are shown in Table 5.

Discussion

Summary and Interpretation of Results. In the present
study, we compared the fit of four evidence accumulation

models applied to a color discrimination and a lexical de-

cision task: In the color discrimination task, participants

had to indicate whether there were more orange or more

blue pixels in the presented stimuli. In the lexical deci-

sion task, participants had to decide whether a presented

letter-string was an existing German word or a meaning-

less letter-string. The examined models included (1) a par-

simonious version of the diffusion model with Gaussian

noise (Ratcliff, 1978), and (2) amodel with a stable distribu-

tion for the noise of the information accumulation, where

the heavy-tailedness was modelled with an additional free

parameter. Besides the distribution of noise in evidence

accumulation (sometimes also denoted as intra-trial vari-

ability of drift), the models were identical. Additionally,

(3) a full version of the diffusion model with inter-trial

variability for drift, starting point and non-decision time

(Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002), and

(4) a model with alpha as a free parameter and inter-trial

variabilities were considered. Evidence accumulation in

the models with non-normal noise follows a so-called Lévy

flight, that is characterized by larger jumps in the stochas-

tic process (Voss et al., 2019). The Gaussian distribution is a

special case of the family of Lévy alpha-stable distribution

with a stability value of α = 2. Lower values of stabil-

5
Please note that the correlations of alpha with reaction times and accuracy rates are of exploratory nature and have to be interpreted in a cautious

manner. In this exploratory phase, we did not correct for multiple comparisons as we did not want to discard upcoming evidence to early and easily.
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Figure 4 Distribution of estimated alpha values (means of posterior distributions) for the 40 participants in the lexical

decision task and the color discrimination task. The values are nearly uniformly distributed between α = 1.0 (Cauchy-
distributed noise) and α = 2.0 (normally distributed noise).

ity parameter alpha indicate a higher probability of jumps

and also larger jumps in the decision process.

Accuracy rates were slightly higher in the lexical deci-

sion task than in the color discrimination task, suggesting

that the latter was more difficult. Responses to non-word

stimuli exhibited larger accuracy rates than the responses

to word stimuli in the lexical decision task. This suggests

that participants might not have been familiar with some

of the used words due to their low frequency in German

language.

Comparison of Models. Model 1 is a standard diffusion
model. Five parameters (a, zr , v0, v1 and t0) were esti-
mated for each participant and task. The stability parame-

ter was fixed to a value of α = 2, that is, Model 1 includes
Gaussian noise in evidence accumulation. In Model 2 a

more general stable distribution (with free parameter α)
is assumed for the random noise. Due to their heavy tails,

the distribution allows the occurrence of extreme events,

that is, jumps in the evidence accumulation process. Mod-

els 3 to 4 are equivalent to Models 1 and 2, respectively, ex-

cept for the additional inclusion of inter-trial variabilities

in drift, starting point and non-decision times.

Model parameters were fitted by using a novel

Bayesian approach based on machine learning with neu-

ral networks (BayesFlow; Radev et al., 2019). This method

provides accurate posterior distributions for parameters of

mathematical models without requiring an explicit calcu-

lation of the likelihood. Rather, the neural networks learn

the relation of data to plausible parameters from simulated

data.

To compare fit of the four models, the BIC information

criterion (Kuha, 2004) was computed. In accordance with

previous results (Voss et al., 2019), the model with stable

distributed noise (Model 2) had the best fit within the sim-

ple models (without inter-trial-variability) for both tasks.

Within the complex models, that allow for inter-trial vari-

ability of starting point, drift rate and non-decision time,

the complex Lévy model performed better than the com-

plex diffusion model.

Unlike results from Voss et al. (2019) suggesting a su-

perior fit of the simple Lévy flight model compared to

the full diffusion model, in the present study the complex

model had a superior fit compared to the simple Lévy flight

model. All full models had a better fit than the simple mod-

els. We assume that these differences between the find-

ings from Voss et al. (2019) and the present study might

be based on the larger trial number: Possibly, the longer

experimental duration causes more fluctuations in perfor-

mance which in turn makes it necessary to include inter-

trial variability parameters in the cognitive models.

Inter-individual differences in alpha. Results indicate
that average values for alpha in the simple Lévy model are

around 1.6 for both tasks, thus falling between a standard

diffusion model and a model with Cauchy noise. This find-

ing suggests that models with stable noise are applicable

across different paradigms that have been applied in diffu-

sion modeling.

In addition to the question, what model fit the data

best, we were also interested to test whether alpha mea-

sures stable inter-individual differences in decision mak-

ing. Substantial correlations of alpha-values were ob-

served across the two completely different tasks. This find-
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Table 4 Correlations of alpha, accuracy and mean response time (BF10 - i.e., Bayes factors in favor of an existing corre-

lation - in parentheses and 95% confidence intervals in square brackets).

1 2 3 4 5

1. α in Color Discrimination –

2. α in Lexical Decision .41 (5.83)

[.12; .64]

–

3. Accuracy in Color Discrimination .34 (1.63)

[.03; .59]

.24 (0.58)

[-.08; .51]

–

4. Accuracy in Lexical Decision .35 (1.64)

[.04; .59]

.32 (1.32)

[.00; .57]

-.04 (0.20)

[-.35; .27]

–

5. RT in Color Discrimination .33 (1.94)

[.02; .58]

.48 (20.39)

[.19; .69]

-.03 (0.20)

[-.33; .29]

.46 (14.27)

[.17; .67]

–

6. RT in Lexical Decision .33 (1.69)

[.02; .58]

.74 (357,830.)

[.56; .86]

.13 (0.27)

[-.19; .42]

.23 (0.52)

[-.09; .50]

.49 (28.63)

[.21; .70]

Note. N = 40.

Table 5 Correlations with 95% confidence intervals between parameters in the color discrimination and the lexical

decision task for the simple Lévy flight model.

Parameter α a zr v0 v1 t0
Correlation Coefficient .41 .67 .13 -.07 .01 .15

95% Confidence Interval [.12; .64] [.45; .81] [-.19; .43] [-.37; .25] [-.30; .32] [-.17; .44]

Note. N = 40. α = stability parameter of noise distribution; a = threshold separation; zr = relative starting point; v0
= drift rate for blue stimuli or non-word stimuli; v1 = drift rate for orange stimuli or word stimuli; t0 = non-decisional
time.

ing provides first evidence for a trait-like quality of the sta-

bility parameter. However, it remains unclear what the

differences in alpha indicate in psychological terms. On

a theoretic account, two opposing hypotheses are possi-

ble: On the one hand, increased jumps in evidence accu-

mulation could reflect an irrational “jumping to conclu-

sion” (McKay, Langdon, & Coltheart, 2006), that is, a pre-

mature and inefficient decision strategy (inefficient jump-

ing hypothesis). On the other hand, it is also possible that

a Lévy flight style of decision making reflects an efficient

way to process information: Especially for easy, perceptual

decisions that are conducted under time pressure, the pro-

cessing of single pieces of information should change the

subjective beliefs about the stimulus immediately. Follow-

ing this thought, a gradual, diffusion-like, decision mak-

ing style might reflect an inefficient use of information,

while efficient decision making might be characterized by

more jumps in the evidence accumulation process (effi-

cient jumping hypothesis).

Following the inefficient jumping hypothesis, larger

jumps – indicated by lower alpha-values – would be ex-

pected in populations with dysfunctional decision mak-

ing or high values of impulsivity, such as people suffer-

ing from schizophrenia, borderline personality disorder or

substance abuse (Oshri et al., 2018; Richard-Lepouriel et

al., 2019; Sterzer, Voss, Schlagenhauf, & Heinz, 2019). Ac-

cording to the efficient jumping hypothesis, larger jumps

would be expected in individuals with efficient decision

making and presumably high intelligence. The present

data do not allow us to differentiate between both hypothe-

ses. Therefore, future Lévy flight studies should include

other measures of cognitive performance like, intelligence,

working memory functioning, or cognitive flexibility.

Evaluation of the Present Study and Implications for
Further Research

The present study is one of the first attempts to apply Lévy

flights in the context of decision making. For this reason,

its results shed first light on a nearly unstudied field. In

comparison to a previous study by Voss et al. (2019), we

used notably larger trial numbers here. Thus, the present

study allows for a more reliable assessment and compar-

ison of the model fit. Correlations of alpha-values across

tasks provide evidence for a meaningful inter-individual

variance in this parameter. The inclusion of the param-

eter alpha in decision modeling provides further insight

into human binary decision making as it helps to identify

the exact processes that underlie fast reaction times and in-
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Figure 5 Correlations of alpha, arcsin transformed accuracy and log transformed mean response time (RT) for the 40

participants in the lexical decision task (Lexical) and the color discrimination task (Color).

creased rates of fast errors. Consequently, the Lévy flight

model allows the differentiation between different expla-

nations for fast responses, which could alternatively oc-

cur due to stronger drift, lower decision thresholds, faster

non-decision processes or a combination of these parame-

ter values.

Some limitations of the presented study need to be

addressed. Firstly, the present sample is limited in size

and consists mainly of female psychology students in their

early twenties. The study of this highly selective group

could lead to a restricted variance of one or several of the

assessed variables and therefore to an underestimation of

correlations (e.g., between alpha and impulsivity).

Secondly, alternative criteria to BIC should be consid-

ered for model comparison. An adequate punishment of

complexity and potential problems of overfitting of the

complex models have to be analyzed more carefully.

Thirdly, models with alternative combinations of free

parameters might show a superior model fit and should

be considered in future research. For example, a model

with alpha as a free parameter and inter-trial variability

for non-decisional processes only might be a more par-

simonious alternative to the complex Lévy model with

inter-trial variability for starting point, drift rate and non-

decisional processes. At the same time, such a model could

possibly provide a better way to accommodate and explain

fast errors compared to the full diffusion model.

Fourthly, in the present research we assume that jumps

toward the correct and the error response boundary have

the same probability. However, there are theoretical rea-

sons to expect that jumps toward the correct boundary are

more probable than jumps in the opposite direction. For

example, one could assume Lévy flights to represent a kind

of sudden insight into the solution of a problem and would

therefore expect a higher probability of jumps toward the

correct response boundary. Future studies should test

models that allow for asymmetric proportions of jumps to-

ward the correct and the error boundary in the noise dis-

tribution.

Lastly, the psychological meaning of stability parame-

ter alpha requires further examination. As self-reported

measures of impulsivity did not show any significant cor-

relations with parameter alpha, experimental measures of

impulsivity should be considered. Careful theories are to

be developed to address the question of cognition or per-

sonality related correlates of alpha. Subsequently, the re-
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sulting hypotheses have to be backed up by further empir-

ical work.
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