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Abstract Evidence accumulation models are a useful tool to allow researchers to investigate the

latent cognitive variables that underlie response time and response accuracy. However, applying

evidence accumulation models can be difficult because they lack easily computable forms. Numer-

ical methods are required to determine the parameters of evidence accumulation that best corre-

spond to the fitted data. When applied to complex cognitive models, such numerical methods can

require substantial computational power which can lead to infeasibly long compute times. In this

paper, we provide efficient, practical software and a step-by-step guide to fit evidence accumulation

models with Bayesian methods. The software, written in C++, is provided in an R package: ‘ggdmc’.

The software incorporates three important ingredients of Bayesian computation, (1) the likelihood

functions of two common response time models, (2) the Markov chain Monte Carlo (MCMC) algo-

rithm (3) a population-based MCMC sampling method. The software has gone through stringent

checks to be hosted on the Comprehensive R Archive Network (CRAN) and is free to download. We

illustrate its basic use and an example of fitting complex hierarchical Wiener diffusion models to

four shooting-decision data sets.
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Introduction
Mathematical models of cognition are essential tools

for understanding how observable human behaviors

are driven by latent cognitive variables (Farrell &

Lewandowsky, 2018). By providing a formal, completely

specified process account of how the cognitive system pro-

duces behavior, mathematical models can provide insights

beyond those offered by conventional statistics. For exam-

ple, evidence accumulation models (Forstmann & Wagen-

makers, 2016) can decompose observed response choice

and response time (RT) data into latent psychological vari-

ables such as information processing speed and decision

thresholds. Over the past decades, such models have

proved successful in accounting for a range of human be-

haviors, and increasingly also their neural underpinnings

(Forstmann, Brown, Dutilh, Neumann, & Wagenmakers,

2010; Nunez, Vandekerckhove, & Srinivasan, 2017; Ratcliff,

Philiastides, & Sajda, 2009; Ratcliff, Sederberg, Smith, &

Childers, 2016). In this paper, we introduce an R pack-

age, ggdmc that allows applied researchers efficiently and
accurately estimate the parameters of evidence accumu-

lation models. The ggdmc package provides support to
specify models in the context of complex factorial designs.

This makes it ideal for psychology research, where such

factorial designs are common. Furthermore, ggdmc pro-
vides an efficient Bayesian sampler that will allow users to

fit evidence accumulation models on their own personal

computers, without the need for extensive computing re-

sources. In addition to introducing ggdmc, we walk the
reader step by step through multiple examples of evidence

accumulation modeling.

Evidence accumulation models assume that when hu-

mans are presented a stimulus, they accumulate evidence

towards the possible decisions they could make about that

stimulus towards threshold, and the threshold reached
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Figure 1 An illustration of the linear ballistic accumulator model. Upon stimulus presentation, evidence accumulates to-

wards each possible decision in parallel, and the first accumulator to reach threshold determines the observed response.

Total RT is the time for the first accumulator to reach threshold plus non-decision time. A and b stand for the upper bound

of the start-point noise and the response threshold. v and sv stand for the accumulation rate and its standard deviation.

Figure adapted from Strickland, Loft, Remington, and Heathcote (2018).

determines the observed decision. For example, the lin-

ear ballistic accumulator (LBA) model (Brown & Heath-

cote, 2008) assumes that evidence for each possible deci-

sion (e.g. word, & non-word) accrues towards its respec-

tive threshold in a separate, independent, accumulator.

We depict the LBA model, as it would apply to a lexical

decision task in which participants decide whether items

are ‘words’ or ‘non-words’ (Figure 1). When the stimu-

lus is presented, each accumulator begins with a prelim-

inary level of evidence drawn from the uniform distribu-

tion U [0,A]. As the stimulus is processed, evidence to each
decision accrues linearly towards threshold (b) at an accu-
mulation rate (v). The observed decision is determined by
the first accumulator to reach response threshold. Thresh-

olds control strategic decision processes, such as the speed

accuracy tradeoff (by raising thresholds, individuals can

trade speed for accuracy). Accumulation rates, which are

drawn from a normal distribution (mean v, & standard de-
viation sv), measure the quality and quantity of human in-
formation processing. Total RT in the LBA is determined by

combining total decision time (time for the first accumu-

lator to reach threshold), with an estimated non-decision

time parameter, included to capture phenomena such as

stimulus encoding and motor responding.

Another commonly used evidence accumulationmodel

is the diffusion decision model (Ratcliff, 1978; Ratcliff &

McKoon, 2008), depicted in Figure 2 and Table 1. The dif-

fusion model is similar to the LBA model in that it assumes

that evidence accumulation begins at a starting point (z,
drawn from a uniform distribution) and proceeds towards

threshold (a or 0), with the threshold reached determin-
ing the decision. It differs from the LBA model in that it

assumes a single relative evidence accumulation process,

in which evidence towards one decision (e.g. evidence

moving towards the ‘word’ threshold in Figure 2) is evi-

dence against competing decisions. It also differs from the

LBA model in that evidence accumulation proceeds nois-

ily, with an average direction given by a drift rate (v). This
drift rate is drawn from a normal distribution (with stan-

dard deviation sv). One useful simplified version of the dif-
fusion model is the Wiener diffusion model, in which the

variabilities of the drift rate and the starting point are 0.

TheWiener diffusionmodel is useful because it takes enor-

mous amount of computational time to calculate the DDM

likelihoods with the variability parameters. When they are

not main research interests and evidence indicates they in-

fluence little on data, the Wiener diffusion model becomes

a simple and effective model for fitting the evidence accu-

mulation process.

Often, when fitting evidence accumulation models, the

goal is to accurately estimate the parameters that best

account for observed data. For example, a researcher

may wish to know whether their experimental manipu-

lation slowed the rate of information processing (reduced

evidence accumulation rates) or increased response cau-

tion (increased thresholds). However, accurately estimat-
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Table 1 The parameters of the diffusion decision model.

Symbol Parameter

Decision process a Boundary separation

z Starting point

v mean drift rate

Non-decision t0 Non-decision time

d The differences in the non-decision time between upper and lower boundaries

Inter-trial variability sz Inter-trial range of z
sv Inter-trial standard deviation of the drift rate

st0 Inter-trial range of t0

ing the parameters of evidence accumulation can be both

computationally demanding (Holmes & Trueblood, 2018;

Holmes, Trueblood, & Heathcote, 2016; Miletic, Turner,

Forstmann, & van Maanen, 2017; Turner, Dennis, & Van

Zandt, 2013), and technically challenging. Best practice

is to fit hierarchical evidence-accumulation models, which
estimate separate parameters for each individual partici-

pant but constrain these estimates with a population level

distribution (Boehm, Marsman, Matzke, & Wagenmakers,

2018). To facilitate parameter estimation, the ggdmc pack-
age provides a suite of functions designed to check model

adequacy, as well as optimized C++ code for fast compu-

tation. Before discussing the package in more depth, we

provide the reader a brief background to methods of pa-

rameter estimation. We begin by introducing the standard

method of model parameter estimation, maximum likeli-

hood estimation (MLE) (Myung, 2003). We then discuss

Bayesian estimation, which is the focus of ggdmc because
it provides a flexible and coherent inferential framework.

Maximum Likelihood Estimation

MLE finds the parameter values, θ, that make the datamost
likely under a given model (Fisher, 1920). It typically max-

imizes the log-likelihood function, lnL(θ|x) by calculating
the first and second derivatives of the function, to estimate

the θ giving maxima. However, this analytic method is typ-
ically not feasible for evidence accumulation models. In-

stead, MLE often relies on optimization routines, which nu-

merically find the minimum of a function of n parameters
by first applying negation to the function and then itera-

tively making sensible guesses for the parameters.

We now exemplify how MLE would proceed with nu-

merical methods fitting a Wiener diffusion model to a sim-

ple data set. θ is a vector containing four parameter val-
ues: the boundary separation, the drift rate, the starting

point and the non-decision time. The data, x, are stored
in a matrix with two columns, one for the continuous de-

pendent variable, RTs, and the other for the discrete vari-

able, response choices. Each row of the matrix is an obser-

vation. To calculate the likelihood of one observation xi,

p(xi|θ), we enter the parameter values, the RT and the ob-
served response choice into the probability density func-

tion of the Wiener diffusion model. To get the likelihood

for the entire data set, the likelihoods of all data points are

multiplied together (or the log likelihoods summed). MLE

would proceed by iteratively searching for the parameters

that maximize this value.

Searching for the MLE estimates numerically can be

problematic in evidence accumulation models. For one,

it relies on the assumption that the MLE estimates exist

and is unique, which is often difficult, if not impossible,

to verify in high-dimensional models. Further, parameter

searches are prone to getting stuck in ranges that give local,

but not global, maximum likelihoods. Amore general issue

is that MLE does not easily yield estimates of uncertainty in

parameter values, which is important for sound statistical

inference. To surmount these difficulties, ggdmc imple-
ments Bayesian estimation. Although there are frequen-

tist workarounds to the previously mentioned problems,

the Bayesian solution is unique in that it provides a coher-

ent framework for the modeler to include prior informa-

tion in their cognitive model. The ggdmc package allows
flexible Bayesian specifications over factorial experimen-

tal designs, a feature that is missing from many existing

tools (Ahn, Haines, & Zhang, 2017; Annis, Miller, & Palmeri,

2017; Wiecki, Sofer, & Frank, 2013).

Bayesian Estimation

Whereas MLE finds parameter values, θ, by maximizing
the data likelihoods, Bayesian estimation aims to obtain the

probability distribution of θ given the data. The foundation
of Bayesian estimation is the classic Bayes’ theorem (Bayes,

Price, & Canton, 1763),

p(θ|x) = p (x|θ) p (θ)
p (x)

. (1)

The notation p(θ|x) stands for the probability of θ given
the data (x), referred to as the posterior probability. Bayes’
theorem states that the posterior probability of θ equals the
product of the likelihood, p (x|θ) , and the prior probability,
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Figure 2 An illustration of the diffusion decision model. The between-trial variabilities for the starting point, sz, and the

drift rate, sv , are grouped together with the main parameters, v and z. A positive choice (a) corresponds to, for instance
a word stimulus with a word response. A negative choice (0) corresponds to a word stimulus with a non-word response.

Non-decision time = early perceptual time + late motor time. RT = Non-decision time + decision time. The within-trial

variability of the drift rate, the stochastic feature of the model, is illustrated by the wiggled line.

p (θ) divided by the marginal likelihood of the data, p (x).
The marginal likelihood is an expectation of the data prob-

ability over the entire range of possible model parameters,

p (x) = E (p (x|θ)) = ∫ p (x|θ) p (θ) dθ.

Although the posterior distribution can sometimes be

derived analytically, this is typically not the case with evi-

dence accumulation models. Fortunately, Bayes’ theorem,

when applied together with a particular stochastic process,

a Markov chain, becomes a powerful tool to sample ran-

dom quantities from the posterior distribution. Markov

Chain Monte Carlo (MCMC) is a stochastic process that can

learn the statistical characteristics of model parameters by

sampling random quantities from the target distribution

function. MCMC methods allow estimating the posterior

distribution because they visit parameter space with fre-

quencies proportional to the posterior density of interest.

One prominent MCMC method is the Metropolis-

Hastings algorithm (Hastings, 1970). At each step, the al-

gorithm proposes a new set of model parameters and cal-

culates its posterior likelihood, which is compared to the

posterior likelihood calculated based on existing parame-

ters. With the likelihood comparison, the algorithm yields

an acceptance ratio. Since the marginal likelihood is in-

dependent of the proposed model parameters, the accep-

tance ratio can be calculated without it, resulting in equa-

tion two.

r =
p (x|θt+1) p (θt+1)

p (x|θt) p (θt)
. (2)

If the ratio is greater than 1, it indicates θt+1 is more likely

than θt and the sample of θt+1 is guaranteed to be ac-

cepted. If the ratio is not greater than 1, the sample may

be accepted with some probability.

MCMC sampling is a natural choice to fit hierarchical

evidence accumulation models. However, this method can

be slow because it requires many calls to the model likeli-

hoods. Although significant advances have been made to

increase the computational speed of evidence accumula-
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tion model likelihoods (Brown & Heathcote, 2008; Navarro

& Fuss, 2009; Voss, Rothermund, & Voss, 2004; Voss & Voss,

2008; Wagenmakers, Maas, Dolan, & Grasman, 2008), they

still cost more time than standard statistical models. Such

computational challenges have made Bayesian evidence

accumulation modeling unobtainable for researchers lack

of high-performance computational resources. In addi-

tion, psychological experiments utilize factorial designs,

resulting in data withmultiple participants and conditions.

Specifying evidence accumulation models for complex fac-

torial designs requires substantial skills with specialized

Bayesian tools (Carpenter et al., 2017; Lunn, Spiegelhal-

ter, Thomas, & Best, 2009; Plummer, 2003), posing another

challenge to the adoption of Bayesian evidence accumula-

tion modeling.

To facilitate working with Bayesian evidence accumu-

lation models, we present a new, highly efficient R pack-

age, ggdmc, that incorporates a user-friendly interface for
entering various factorial designs (Heathcote et al., 2019;

Vandekerckhove & Tuerlinckx, 2007). Below we provide

a general overview of the steps for researchers to apply

ggdmc. We then provide step-by-step examples applying
both the diffusion decision model and the LBA model with

ggdmc. Finally, we illustrate the utility of ggdmc with a
real-world example, fitting hierarchical Wiener diffusion

models to the data of four shooting decision studies. The hi-

erarchical diffusionmodel assumes the subject-levelmodel

parameters themselves are random variables drawn from

distributions. This sets it apart from the conventional dif-

fusion model analysis where one fits the model to the data

of individual participant and summarizes the data across

participants. The studies examined how racial stereotyp-

ing can affect shooting decisions (Pleskac, Cesario, & John-

son, 2018). We conclude by discussing some more complex

cognitive models that have been implemented in ggdmc,
alternative solutions of hierarchical Bayesian evidence ac-

cumulation modeling, and future package development.

ggdmc package
System Requirements

The ggdmc package was developed in the R environment
(R Core Team, 2018) and is released in the forms of source

code and compiled binaries. Compiling the former re-

quires Rtools on Windows or Xcode on macOS. To set
up an R environment, one can obtain the R base binaries as

well as Rtools freely at the Comprehensive R Archive Net-

work (CRAN), https://cran.r-project.org/ under the terms of

GNU General Public License. The CRAN has a dedicated

web page, R for Mac OS X, detailing how to set up devel-
opment tools in macOS. Although the package was origi-

nally developed on Linux platforms, it has been tested on

a wide range of different platforms. ggdmc requires six
supporting R packages: Rcpp, RcppArmadillo, coda,
data.table, matrixStats and ggplot2. The first
two bridge the internal C++ code in ggdmc with the R in-
terface. The third provides many post-hoc checking tools

for Bayesian estimation. The fourth and fifth are compu-

tationally efficient R packages for operating upon square

data structures and matrices. The last is the well-known

package of grammar of graphics (Wickham, 2016), provid-

ing aesthetic plotting functions to facilitate visual checks of

posterior samples .

Installation

The software can be downloaded freely at the CRAN per-

manent address, https://cran.r-project.org/web/packages/

ggdmc/index.html. There are several methods to install an

R package. Since ggdmc adheres to the CRAN policy, all
installation methods of R packages apply to ggdmc. One
convenient way is via the CRAN infrastructure by entering,

install.packages(ggdmc). For other methods, we
provide a README file in the package (see also the pack-

age Github, https://github.com/yxlin/ggdmc).

An Overview of Bayesian Analysis

We briefly summarize the steps for data analysis that we

follow below. The first step is loading and formatting data

to the data frame in R language. The next step is to spec-

ify the model and associate the model parameters with the

experimental design (see more on this in the Model Speci-
fication section). After this one must run the MCMC sam-
pling. This requires specifying the numbers of samples to

obtain, chains to run and the degree of thinning. A wise

choice of these MCMC specifics requires experience with

Bayesian analysis. Thus far there is not an established set

of general principles that can guide these choices when fit-

ting hierarchical Bayesian evidence-accumulation models.

Upon acquiring the modeling results, one must proceed to

diagnose the posterior distributions to determine whether

sampling has been successful. This is crucial to warrant a

reliable and unbiased inference. The last analytic step is to

review whether the model does provide reasonably close

fit to the data (i.e., retrodiction), and perhaps whether its

posterior predictions can cover unseen data. The user can

then proceed to use the posterior distributions of themodel

parameters to make inference regarding to their research

questions.

Example 1: Fitting One Subject Data
Below, we give an overview of the process of fitting

Bayesian evidence accumulationmodels step by step: spec-

ifying models, setting up prior distributions, drawing pos-

terior samples, diagnosing whether posterior sampling
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Listing 1 Generating random data for Example 1.

1 p.vector <- c(a = 1, v = 1.2, z = .38, sz = .25, sv = .2, t0 = .15)
2 ntrial <- 20
3

4 require(ggdmc)
5 model <- BuildModel(
6 p.map = list(a = "1", v = "1", z = "1", d = "1",
7 sz = "1", sv = "1", t0 = "1", st0 = "1"),
8 match.map = list(M =list (s1 = "r1", s2 = "r2")),
9 factors = list(S = c ("s1", "s2")),
10 responses = c("r1", "r2"),
11 constants = c(st0 = 0, d = 0),
12 type = "rd")
13

14 ## Parameter vector names are: ( see attr (," p.vector ") )
15 ## [1] "a" "v" "z" "sz" "sv" "t0"
16 ##
17 ## Constants are (see attr (," constants ") ) :
18 ## st0 d
19 ## 0 0
20 ## Model type = rd
21

22 dat <- simulate(model, nsim = ntrial, ps = p.vector)

was successful, and summarizing posterior samples. We

follow by demonstrating the steps to estimate the parame-

ters of diffusion model for a simulated data set. The exam-

ple concludes by discussing diffusionmodel “parameter re-

covery”, which refers to how well a model can recover its

true data-generating parameters, and by emphasizing the

importance of running parameter recovery studies.

Methods

Modeling Steps
The first and perhaps most daunting step in evidence accu-

mulation modeling is to specify a likelihood function. De-

riving entirely novel model likelihoods is beyond the scope

of this tutorial. However, ggdmc provides the likelihoods
of two common, useful, accumulation models: the LBA and

the diffusion decision model. The second step is to specify

an experimental design, a process which is often labori-

ous with Bayesian model fitting software. Our package in-

cludes a convenient interface for specifying different de-

signs, which we discuss later when walking through ex-

amples. The next critical step in Bayesian estimation is to

specify initial beliefs about the values of each model pa-

rameter, often referred to as the prior. Practically speak-

ing, this requires specifying a probability distribution cor-

responding to uncertainty about each model parameter.

In our examples we provide prior distributions with min-

imal information, but that includes sensible constraints.

For example, we are certain before data are observed that

the non-decision times in RT models must be 0 or above,

and therefore the prior for non-decision time is bounded

to be above 0. After specifying the likelihood function,

the prior distributions and the factorial design, the fourth

step is to draw posterior samples. Often, posterior sam-

ples are drawn by multiple Markov chains. Two critical

choices we must make are (1) how many posterior sam-

ples to draw and (2) how many Markov chains to launch.

After this, we must diagnose whether sampling has been

successful, by evaluating whether the Markov chains are

stationary, mixed, and converged (Gelman et al., 2013). If

sampling is not successful, the sampling procedure may

need to be altered. For example in fitting the hierarchi-

cal DDM, we increased thinning to 8 to increase the num-

ber of posterior samples obtained without overburdening

memory. We judged it necessary to obtain more posterior

samples because the boundary separation parameter cor-

relates with the starting point parameter in the DDM. Of-

ten, several possible candidate models are sampled and

compared, and the model that provides the most accurate

and parsimonious fit to the observed data is retained. The

last step is typically to summarize the parameter values of

the chosen model. This is key to answering many research

questions, for instance, are accumulation rates higher in

one condition than another?
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Table 2 BuildModel arguments.

Name Symbol Interpretation

Parameter map p.map The association between model parameters with experimental factors

Match map match.map The association between responses and stimuli.

Factors factors The factor levels

Responses responses Response types.

Constants constants The option fixes model parameters at a constant value.

Simulating data
Data should be loaded into an appropriately formatted R

data.frame, with each observation on a row and each
variable on a column. The data must have four key vari-

ables, s, S, R, and RT, storing subject, stimulus, response,
and response time. The first three columns are categorical

and the last is continuous. To add additional experimental

factors, the usermay enter other factors between the S and
R column.
This example creates synthetic data using ggdmc’s

simulate funciton, and then walk through model-fitting
to that as if it was the ‘real’ data set. The code below spec-

ifies a ‘true’ parameter vector for the simulated data and

specifies the number of observations. Listing 1, lines 1 and

2, shows the instructions.

First and foremost, we must load ggdmc to access its R
functions. The simulation function takes three arguments,

the model object, which will be discussed in the next sub-

section, nsim, standing for the number of simulated trials
observed per experimental design cell, and ps for (true)
parameter(s).

Model Specification
The function BuildModel is critical to mapping model
parameters to experimental designs. An example using

BuildModel is shown in Listing 1, lines 4 to 12.
Table 2 lists the interpretations of the five arguments

to BuildModel, which uses the R data type, list to
group the parameters (see Table 1 for the parameters in

rd type). The function serves two main purposes. One
is to specify a factorial design. In the example above, pa-

rameters are specified not to vary with any factors. This is

achieved in the p.map argument by associating all param-
eters with a 1 character. To vary a parameter over a factor,
the 1 character should be replaced with the factor name.
If one wants to add varying t0 over the factor cond in
the running example here, one enters t0 = "cond". To
vary a parameter over multiple variables, a vector should

be supplied. For example, to vary t0 over both cond
and trialtype factors, by entering t0 = c("cond",
"trialtype"). The other purpose ofBuildModel is to
specify a model likelihood. In this example, BuildModel

specifies the likelihood function of diffusion model by en-

tering "rd" (Ratcliff & McKoon, 2008) to the type argu-
ment.

BuildModel will print a parameter vector,

p.vector, that shows the association between the model
parameters and the experimental design, seen in List-

ing 1, lines 14 to 20. For example, following the previ-

ous multi-factor example where t0 varies by cond and
trialtype, the p.vector consists of nine parameters:
a, v, z, sz, sv, t0.cond1.type1, t0.cond2.type1,
t0.cond1.type2, and t0.cond2.type2. Note that
the order of p.vector is important for the subsequent
step in which we associate the model object with prior

distributions.

Parameter vector names are: ( see attr(,
"p.vector") )

[1] "a" "v" "z" "sz" "sv" "t0"

Constants are (see attr(,"constants") ):
st0 d
0 0

Model type = rd

Next, the function BuildPrior sets up the associa-
tion between the model parameters and their prior distri-

butions, as is done in Listing 2. Table 3 lists the five main

arguments in BuildPrior.
To visually check prior distributions, the prior object

created by BuildPriorworks with two base R functions,
print and plot (note for this the ggdmc package must
be loaded). Figure 3 shows the result when executing the

plot(p.prior) command.

Sampling
Calling BuildDMI links the model with the data,

creating a data model instance (i.e., DMI), dmi <-
BuildDMI(dat, model). After specifying this object,
we are ready to draw posterior samples. Before sam-

pling, we must decide the number of chains, the number

of samples and the method of setting initial values for each

Markov chain. By default, ggdmc chooses the number of
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Listing 2 Setting the association between the model parameters and the prior distribution for Example 1.

p.prior <- BuildPrior(
dists = c(rep("tnorm", 2), "beta", "beta", "tnorm", "beta"),
p1 = c(a = 1, v = 0, z = 1, sz = 1, sv = 1, t0 = 1),
p2 = c(a = 1, v = 2, z = 1, sz = 1, sv = 1, t0 = 1),
lower = c(0, -5, NA, NA, 0, NA),
upper = c(5, 5, NA, NA, 5, NA))

Table 3 Prior options.

Name Symbol Interpretation

Distributions dists The form of the prior distributions

Parameter 1 p1 The location parameters

Parameter 2 p2 The scale parameters

Lower bound lower The lower boundaries

Upper bound upper The upper boundaries

chains by multiplying the number of parameters by three,

following Ter Braak’s (2006) heuristics. Often, we save pos-

terior samples at a regular interval rather than saving ev-

ery interval (i.e., thin) to reduce memory requirements.
The number of samples, together with the length of thin,

are difficult to decide a priori somust be verified after sam-

pling.

We initialize Markov chains by entering, fit <-
StartNewsamples(dmi, p.prior). The two argu-
ments are the data model instance and the prior distribu-

tions. By default, the function attempts to locate the pa-

rameter space of the target distribution by using a mix-

ture of crossover andmigration operators (Hu & Tsui, 2010;

Turner, Sederberg, Brown, & Steyvers, 2013). Next, we sim-

ply draw samples starting from the object created before

by entering, fit <- run(fit). The default run func-
tion draws 500 new samples and discards the 200 samples

drawn previously. We chose the default setting of draw-

ing 500 samples after 200 burn-in samples because our ex-

perience of fitting evidence-accumulation models shows

the DE-MCMC sampler usually starts to draw valid sam-

ples in the parameter space reliably after 200 iterations

in the type of simulation study shown here. The user can

change the default behavior by entering, for example, fit
<- run(fit, nmc = 1000) to draw 1000 samples or
entering add = TRUE to keep the samples.

Results

Diagnoses
It is crucial to check (1) whether the MCMC process was

successfully drawing samples from the target distribution

and (2) whether the number of samples is sufficient. Two

main methods for the diagnoses are to check the trace and

probability density plots visually and to calculate diagno-

sis statistics. The upper panel in Figure 4 shows the trace

plots of the first and the second sample objects. The up-

per left panel shows the MCMC chains moving from their

start point towards what looks like the target distribution,

reaching there around the 150th sample. The right panel

shows the Markov chains are well-mixed. The lower panel

in Figure 4 shows the posterior distributions of each pa-

rameter. Potential scale reduction factor (PSRF) diagnoses

whether Markov chains are converged by calculating the

ratio of the within-chain variance to the between-chain

variance. When the ratio deviates drastically from 1, PSRF

suggests a failure to converge. It is argued that Markov

chains mix well when their PSRF is less than 1.1 (Brooks &

Gelman, 1998).

gelman(fit)
Potential scale reduction factors:

Point est. Upper C.I.
a 1.04 1.06
v 1.03 1.04
z 1.02 1.03
sz 1.04 1.06
sv 1.05 1.08
t0 1.05 1.08

Multivariate psrf: 1.07

Once successful posterior sampling is completed, we

should examine whether the model is able to fit to the

observed data with the sampled parameters. This can

be done by posterior-predictive simulation, which uses

the posterior samples to simulate data and compare them

against the real data (recall that in this example, the ‘real’

data was simulated earlier). Figure 5 illustrates probabil-
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Figure 3 An example of prior distributions.

ity density plots from 100 posterior simulations against the

‘real’ fitted data. It shows that the model accounts for the

correct RT distributions in the s1 and s2 condition satisfac-

torily. It is slightly off in fitting the error RT distribution in

the s2 condition, andmore substantially off in fitting errors

in the s1 condition. This model mis-fit likely occurs due to

the small number of error responses in the s1 condition.

We now evaluate how successful the described model

fitting procedures were in recovering the ‘true’ parame-

ters generating the synthetic data. This can be done con-

veniently by executing the, summary function (Table 4).
We call the function with the argument, recovery set to
TRUE to check how closely the model recovered the true
parameters. As previously found, the diffusion parame-

ters corresponding to drift rate variability are difficult to

estimate (Voss & Voss, 2007). Besides this, parameter recov-

ery was satisfactory. Before analyzing real data, it is crit-

ical to perform parameter recovery studies like we have

described to assure that the estimation properties of the

model and data are adequate for the chosen research ques-

tion.

est <- summary(sam, recovery = TRUE,
ps = p.vector, verbose = TRUE)

a sv sz t0 v z
True 1.00 0.20 0.25 0.15 1.20 0.38
2.5% Estimate 0.93 0.02 0.02 0.14 0.89 0.35
50% Estimate 1.00 0.43 0.27 0.15 1.25 0.39
97.5% Estimate 1.09 1.30 0.52 0.16 1.64 0.43
Median-True 0.00 0.23 0.02 0.00 0.05 0.01

Example 2: Fitting hierarchical models
Having performed a parameter recovery study on a sim-

ple data set, we now proceed to discuss how ggdmc could
apply to a more realistic example. We analyze the data of

Pleskac et al.’s (2018) shooting decision studies. We exam-

ine these data for two reasons. Firstly, we aim to demon-

strate that hierarchical evidence accumulation modeling

can apply to a validated paradigm in social psychology.

Secondly, we aim to test the robustness of hierarchical

modeling on data sets with per-condition observations as
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Figure 4 Trace and probability density plots. Note the difference in the y axes. Different colors represent samples from

different chains.

small as eight. This will cast light on the utility of hierarchi-

cal modeling when the number of observations is smaller

than recommended practice for modeling individual sub-

jects (Ratcliff & Tuerlinckx, 2002; Voss, Voss, & Klauer,

2010). This example also illustrates how quantitative mod-

els may inform issues of social importance.

Methods

The Paradigm
The shooting-decision paradigm investigates shooting de-

cisions in a first-person shooter task (FPST) (Correll, Park,

Judd, & Wittenbrink, 2002). The computerized task dis-

plays pictures of a target holding a gun or another object.

Participants submit a response to choose whether to shoot

or not shoot at the target. They are asked to shoot if the tar-

get holds a gun, and otherwise not to shoot. This paradigm

can be used to test the influence of many factors on shoot-

ing decisions, including dangerous vs. safe neighborhoods,

clear vs. blurred gun images, and the role of the race of

the target. Previous analyses with signal detection the-

ory indicate that black targets resulted in lower decision

thresholds than white targets (Correll et al., 2002; Correll,

Wittenbrink, Park, Judd, & Goyle, 2011). However, signal

detection theory accounts only for response choices, and

not RTs. Recently, Pleskac et al. (2018) applied the hierar-

chical Wiener diffusion model to perform a more compre-

hensive analysis of shooting decisions. Their study yielded

three major results: (1) that boundary separation to shoot

at black targets is larger than to shoot at white targets; (2)

that drift rate is higher towards armed black than armed

white targets; and (3) that non-decision times are longer

for non-gun targets than gun targets.

Data sets
The data sets were downloaded from the OSF site, https:

//osf.io/9qku5/ (Pleskac et al., 2018). Four different FPST

studies were examined (56, 116, 38, & 108 participants). All

tasks examined included safe neighborhoods and clear ob-

ject views. The minimum numbers of observation per de-

sign cell in each data set were 19, 8, 13, and 40. Such trial

numbers, although less than desirable, are typical of many
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Figure 5 The post-predictive probability density plots. O and X stand for the correct and incorrect responses. The two

stimulus conditions are presented separately on the s1 and s2 rows (right y axis). Each grey line draws one posterior

predictions based on the parameter estimates. The black line draws the data.

applied psychology experiments.

Model
The Wiener diffusion model can be derived from the full

diffusion model by fixing the between-trial variability of

the drift rate and the starting point at zero. The model has

four free parameters, a, v, z, and t0 (Table 1). The experi-
mental design includes two factors, race of the target (black

vs. white) and stimulus type (gun vs. non-gun). There are

two response choices (shoot vs. don’t shoot). We demon-

strate how the model is specified with the BuildModel
function in the code of Listing 3, lines 1 to 8. We denote

the experimental factors as uppercase, RACE for black vs.

white target, and S for gun vs. non-gun targets. Following

Pleskac et al. (2018), we allow threshold parameters (z and
a) to vary across decisions to respond to black and white
targets. Note that conventionally, z and a (and equivalent
threshold parameters in other models) are assumed not to

vary over trial-level manipulations. However, Pleskac et

al. (2018) make arguments for breaking this convention in

this instance. Perhaps most notably, varying z and a by
trial type is necessary to compare the evidence accumula-

tionmodeling to previous signal detection theory analyses.

The drift rate (v) can vary by race and stimulus type, as can

Table 4 The arguments of summary function.

Name Symbol Interpretation

Posterior samples object An R list storing posterior samples

Boolean switch for a recovery study recovery A Boolean switch for summarizing either a recovery or an es-

timation study

True parameter ps The true parameter vector for summarizing a recovery study

Boolean switch for information print-

ing

verbose A Boolean switch for printing either short or long form of in-

formation
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non-decision time. Thus, there are twelve parameters: two

boundary separations, four drift rates, two starting points,

and four non-decision times. The parameters are reported

by BuildModel and stored in the p.vector attribute of
the model object.

After specifying the base model, we must set up one

set of base-level prior distributions and one set of hyper-

level distributions. The latter endows the model with a

hierarchical structure, assuming participants are drawn

from a population. The hierarchical structure of model

matches that of the data, allowing one to directly estimate

the population-level parameters. In the following exam-

ple, we will assume that model parameters follow a nor-

mal distribution in the population and attempt to estimate

the mean and standard deviation of those distributions.

It is important to understand that the parameters defin-

ing the population-level distributions (often referred to as

hyper-parameters) are also estimated in a Bayesian man-
ner, and thus are each associated with their own prior

and posterior distributions. Below we go through the pro-

cess of setting up priors and hyper-priors in ggdmc. The
code sets up some convenient variables which will be used

for setting values for both base-level and hyper-level prior

distributions. As an aside, note that the prior values we

opted for here do not bear special significance, but only se-

lected based on the parameter recovery study mimicking

the numbers of participants and observations in the orig-

inal study 1. In certain occasions, it may be beneficial to

choose priors based on previous research and / or theory.

To determine the extent of prior influence over subsequent

results, it can be important to check whether the posterior

distributions substantially change when prior values are

varied. The relevant instructions are shown in Listing 3,

lines 17 to 22.

To minimize possible human errors of entering

the parameter names, we use a convenient function,

GetPNames to retrieve the parameter names and the pa-
rameter number. The next lines specify values that we

will use to define the hyper-level prior distributions. The

pop.loc and pop.scale will be used to the mean and
the standard deviation of a normal distribution, respec-

tively. The last two lines associate the means and stan-

dard deviations with the parameter names. We select these

values based on parameter-recovery studies resembling to

the data sets. As in the single participant example, we use

BuildPrior to set up the base-level prior distributions.
See Listing 3, lines 24 to 29.

Next, we set up the hyper-level prior distributions by

building one set for the location priors and the other for

the scale priors (Listing 3, lines 31 to 42). In this case the

priors for the population mean values are identical to the

priors for individual’s participant values. The prior for the

population standard deviations follow a uniform distribu-

tion with a lower bound of 0 and an upper bound of 2. By

default, the beta type prior sets a lower bound at 0 when
no values are specified.

The line of code below binds the base-level and the

hyper-level priors together as one object, which will in-

forms the software to fit a hierarchical model:

priors <- list(pprior=p.prior,
location=mu.prior,
scale=sigma.prior)

In summary, the hierarchical model estimates 24

hyper-level parameters, twelve for the location parameter

and twelve for the scale parameters in each of the four data

sets. In addition, the model estimates twelve individual-

level parameters for each participant.

Sampling
The sampling step is the same as the previous example. In

the case of empirical data, we first load the preprocessed

and appropriately formatted data. Then we associate the

data with the model, building a data model instance.

load("data/study1.rda")
dmi <- BuildDMI(data.frame(d), model)

After building the data model instance, we initialize

samples as before, fit <- StartNewsamples(dmi,
priors, thin=8). We set the argument thin to
eight to store samples every 8th step. The function,

StartNewsamples recognizes when the prior object
carries both the hyper-level and base-level priors and pro-

ceeds with hierarchical modeling. By default, the function

initializes and draws 200 samples. In this case, we discard

the initial 200 samples as a burn-in period (in which the
sampler moved from the start points to the target density).

We then redraw another 500 samples, fit<- run(fit,
thin=8).

Results

Diagnoses
It can be laborious to diagnose the sampling of high-

dimensional hierarchical models. Here we use the func-

tion, hgelman, to calculate PSRFs of the hyper parameters
and the parameters of individual participants. The hyper
label indicates the averaged PSRF across the hyper param-

eters and the rest are the averaged PSRFs for the parame-

ters for each individual participant (the labels are names

for individual participants).
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Figure 6 Prior distributions. The base-level priors are shown under the strip titled, D.a.black, D.a.white, . . . ,
D.z.white. D stands for the data-level priors. The location and the scale parameters of the hyper-level priors are
represented by the HL and the HS, respectively. The x axis shows the value of the parameters and the y axis shows the
probability densities.

hats <- hgelman(hsam, verbose = TRUE)
## hyper 55 47 1 30 54 40 12 11 38 9
## 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
## 7 45 39 14 56 22 17 16 5 25 44
## 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
## 49 52 42 36 41 4 51 29 35 53 2
## 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
## 24 48 18 37 27 10 8 21 46 34 23
## 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
## 6 50 32 20 28 15 19 31 13 26 3
## 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
## 43 33
## 1.0 1.1
We looked for the values greater than 1.1, suggesting

that some chains probably did not converge. One could

also perform visual checks of the trace and probability

density plots. To illustrate how Markov chains can look

when they are not converged, we show early sampling

stages for a participant from the study with unmixed trace

and probability density plots (Figure 7), as well as the con-

verged result (Figure 8).

We applied the sampling procedure above to all of

Pleskac et al.’s (2018) data sets. Belowwe report the results

of the behavioral and the model-based analyses.

Behavioral and Model-based Analyses
Firstly, we examine the behavioral patterns of the av-

eraged RT and error rate data, summarized in Figure

9. Unsurprisingly, the data summaries are consistent

with Pleskac et al. (2018). Then we report summaries of

the hyper-parameter distributions in Table 6 and 7, and

present a visual comparison in Figure 10. Our results are

squarely in line with Pleskac et al. (2018). We found drift

rate differences depending on the race of the target in

study 1 and 4. Drift rates towards shooting black targets

with gunswere higher than towards gun-holdingwhite tar-

gets, suggesting an effect of racial stereotyping on infor-

mation processing. There was also a credible difference
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Figure 7 An example showing chains not converged.

in boundary separation by race of the target in study 1

and 2, with the criterion to shoot at black targets being

larger than to shoot at white targets. Pleskac et al. (2018)

argued this suggested that people are aware of the racial

bias in information processing towards black targets; and

therefore, adjusting their decision boundary, attempting

to compensate for such bias. Non-gun objects resulted in

longer non-decision times than gun objects in study 1 and

2. Pleskac et al. (2018) speculated that this might occur due

to differences in stimulus encoding, as the non-gun objects

are more variable in terms of their anticipated shape and

size than the gun objects. Also replicating Pleskac and col-

leagues’ composite analysis, we found that starting points

were not affected by the race of the target.

Discussion
In this paper, we provided a hands-on tutorial for using

the ggdmc R package to fit hierarchical Bayesian evidence
accumulation models. Until recently, Bayesian accumula-

tion modeling was a specialized skill used only by experts,

either assisted by high performance computers or by spe-

cific Bayesian programming languages. The potential ap-

plications of evidence accumulationmodeling are vast. We

demonstrated this by using ggdmc to estimate the latent
cognitive processes underlying human decision making in

a simulation of a safety-critical scenario.

The ggdmc package is ready to assist applied re-
searchers to exploit the advantages of hierarchical evi-

dence accumulation modeling. Our software is built upon

an earlier suite of R functions, Dynamic Models of Choice

(Heathcote et al., 2019). We have provided a convenient in-

terface to incorporate experimental designs. This is espe-

cially crucial for psychological researchers, because psy-

chology has a long tradition of using novel experimental

paradigms, such as first-person shooter and self-tagging

tasks (Correll et al., 2002; Sui, He, & Humphreys, 2012), and

factorial designs to tackle complex questions. Extending

previous work, we have greatly eased computational diffi-

culties with Bayesianmodeling by coding an efficient, intel-

ligent sampling algorithm, population-based MCMC (pM-
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Figure 8 Posterior trace and probability density plots.

CMC) in C++, which incorporates DE-MC (Ter Braak, 2006;

Turner, Sederberg, et al., 2013) and a genetic algorithm

(Hu & Tsui, 2005; Tanese, 1989). By implementing a design

interface with efficient Bayesian MCMC in the R program-

ming language, ggdmc enables psychology researchers to
efficiently model data sets of interest to them.

The reader should note that although we have focused

on using ggdmc to apply the LBA and diffusion models, it
potentially has a much wider application for implement-

ing novel cognitive models. For example, we have re-

cently fitted the piecewise LBA model (Holmes et al., 2016)

with ggdmc to explore the method of using massive par-

allel computation in likelihood simulations. This example

shows ggdmc can accommodate cognitive models without
analytic likelihood functions (Holmes, 2015; Lin, Heath-

cote, & Holmes, 2019; Turner & Sederberg, 2012). When

this combined with approximate Bayesian computation

(Beaumont, Zhang, & Balding, 2002), it can empower re-

searchers to estimate model parameters with only process

descriptions in hand.

Alternative Solutions

Other software for hierarchical Bayesian modeling in-

cludes Bayesian programming languages, most notably,

Table 5 The key arguments of the plot function.

Name Symbol Interpretation

Posterior samples x The posterior samples from model fits

Hyper parameters hyper A Boolean switch to draw hyper parameters (TRUE) or the pa-

rameters of individual participants (FALSE)

Density den A Boolean switch to draw the probability density plots (TRUE)

or the trace plots (FALSE)

Posterior log-likelihood pll A Boolean switch to draw the trace plot of the posterior

log-likelihoods (TRUE) or that of the marginal log-likelihoods

(FALSE)
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Figure 9 Error rates and correct response times for the four studies reported in Pleskac, Cesario, and Johnson (2018).

E1, E2, E3, and E4 represent experiment 1, 2, 3 and 4.

BUGS (Lunn et al., 2009), JAGS (Plummer, 2003), and Stan

(Carpenter et al., 2017). However, they are designed for

standard statistical models, limiting their applications on

certain cognitive models (Lee & Wagenmakers, 2015). Re-

cent efforts to overcome such limitations have created use-

ful tools built on top of these specialized Bayesian lan-

guages (Ahn et al., 2017; Annis et al., 2017; Cox & Criss,

2017; Pleskac et al., 2018). However, such efforts do

not provide convenient frameworks for flexibly specify-

ing complex factorial designs. This renders it necessary

to hand-code the specialized Bayesian languages to ac-

commodate different factorial designs. Assigning various

model parameters to experimental design cells can be com-

plex and laborious for many realistic examples. A Python-

based tool (Wiecki et al., 2013) has been offered as an al-

ternative to specialized Bayesian languages. However, this

package comes ready for the user with only the Wiener

diffusion model, and substantial Python expertise is re-

quired to adapt it to fit the full diffusion model or LBA.

In summary, ggdmc’s advantage to experimental and ap-
plied researchers over alternatives arises from its combi-

nation of in-built likelihood functions for popular accumu-

lation models, framework for flexibility of accommodating

model variants and factorial designs, and efficient sampler

written in C++.

Limitations

Like other Bayesian software that can handle high-

dimensional models (Carpenter et al., 2017), to attain effi-

cient and accurate computation, ggdmcmust code the like-

lihood functions in the C++ language. Thus, at present, im-

plementing the likelihood functions of new cognitive mod-

els outside of those we have provided requires C++ pro-

gramming knowledge. However, we do strive to continue

to add new available likelihood functions to ggdmc. Al-
though ggdmc is designed to be a generic tool, it is unlikely
to resolve all modeling problems. Managing Bayesian pos-

terior sampling requires expertise and judgement, partic-

ularly when fitting new models. For fitting new models,

we recommend investigating the correlation structure be-

tweenmodel parameter estimates, experimenting with dif-

fering burn-in lengths and posterior draws to identify tar-

get distributions, and running parameter recovery studies

to determine whether trial numbers are sufficient to iden-

tify parameters values.
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Table 6 The estimations of the location parameter estimation in Study 1 (E1) and Study 2 (E2).

E1 E2

2.5% 50% 97.5% 2.5% 50% 97.5%

Black a 1.37 1.45 1.54 0.96 1.00 1.05

White a 1.24 1.29 1.35 0.88 0.92 0.96

Gun, black v 3.03 3.30 3.58 2.13 2.44 2.75

Gun, white v 2.44 2.66 2.88 1.88 2.21 2.55

Non-gun black v 3.32 3.60 3.88 2.44 2.88 3.32

Non-gun white v 3.24 3.48 3.72 2.39 2.76 3.13

Black z 0.43 0.45 0.47 0.39 0.42 0.45

White z 0.39 0.41 0.44 0.42 0.45 0.47

Gun, black t0 0.36 0.38 0.39 0.31 0.33 0.34

Non-gun, black t0 0.43 0.44 0.45 0.33 0.34 0.35

Gun, white t0 0.39 0.40 0.41 0.35 0.36 0.38

Non-gun, black t0 0.41 0.43 0.44 0.35 0.37 0.38

Table 7 The estimations of the location parameter estimation in Study 3 (E3) and Study 4 (E4).

E1 E2

2.5% 50% 97.5% 2.5% 50% 97.5%

Black a 1.07 1.13 1.19 0.90 0.93 0.96

White a 1.05 1.10 1.16 0.96 0.99 1.02

Gun, black v 1.95 2.33 2.72 1.32 1.47 1.62

Gun, white v 2.21 2.56 2.90 1.05 1.20 1.34

Non-gun black v 1.92 2.30 2.68 1.13 1.32 1.52

Non-gun white v 2.14 2.54 2.94 1.41 1.61 1.81

Black z 0.41 0.43 0.46 0.43 0.44 0.46

White z 0.43 0.46 0.50 0.42 0.43 0.45

Gun, black t0 0.37 0.39 0.40 0.34 0.35 0.37

Non-gun, black t0 0.37 0.38 0.40 0.34 0.36 0.37

Gun, white t0 0.37 0.39 0.42 0.33 0.34 0.36

Non-gun, black t0 0.38 0.41 0.44 0.34 0.36 0.37
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Listing 3 Setting the association between the model parameters and the prior distribution for Example 2.

1 model <- BuildModel(
2 p.map = list(a = "RACE", v = c("S", “”RACE), z = "RACE", d = "1",
3 sz = "1", sv = "1", t0 = c("S", “”RACE), st0 = "1"),
4 match.map = list(M = list(G = "shoot", N = "not")),
5 factors = list(S = c("gun", "non"), RACE = c("white", "black")),
6 constants = c(st0 = 0, d = 0, sv = 0, sz = 0),
7 responses = c("shoot", "not"),
8 type = "rd")
9 ## Parameter vector names are: ( see attr (," p.vector ") )
10 ## [1] " a.black " "a.white " " v.gun.black " " v.non.black " " v.gun.white " " v.non.white "
11 ## [7] " z.black " " z.white " " t0.gun.black " " t0.non.black " " t0.gun.white " " t0.non.white "
12 ## Constants are (see attr (," constants ") ) :
13 ## st0 d sz sv
14 ## 0 0 0 0
15 ## Model type = rd
16

17 npar <- length(GetPNames(model))
18 pnames <- GetPNames(model)
19 pop.loc <- c(1, 1, 2.5, 2.5, 2.5, 2.5, .50, .50, .4, .4, .4, .4)
20 pop.scale <- c(.15, .15, 1, 1, 1, 1, .05, .05, .05, .05, .05, .05)
21 names(pop.loc) <- pnames
22 names(pop.scale) <- pnames
23

24 p.prior <- BuildPrior(
25 dists = rep("tnorm", npar),
26 p1 = c(1, 1, 2.5, 2.5, 2.5, 2.5, .50, .50, .4, .4, .4, .4),
27 p2 = c(1.5, 1.5, 10, 10, 10, 10, .5, .5, .5, .5, .5, .5),
28 lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)),
29 upper = c(rep(10, 2), rep(NA, 4), rep(5, 6)))
30

31 mu.prior <- BuildPrior(
32 dists = rep("tnorm", npar),
33 p1 = pop.mean,
34 p2 = pop.scale*10,
35 lower = c(rep(0, 2), rep(-5, 4), rep(0, 6)),
36 upper = c(rep(10, 2), rep(NA, 4), rep(5, 6)))
37

38 sigma.prior <- BuildPrior(
39 dists = rep("beta", npar),
40 p1 = rep(1, npar),
41 p2 = rep(1, npar),
42 upper = rep(2, npar))
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