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Introduction
Cognitive psychology tries to explain the brain’s funda-

mental capabilities by studying its various mental pro-

cesses, acknowledging the dynamic interplay of these pro-

cesses, and attempting to model them stochastically as best

as possible. For example, such models can be used for

a better understanding of theoretical mechanisms related

to memory, decision-making, and learning. These models,

based on a pre-established theory, are tested on samples of

data. If the model fits consistently over multiple studies,

the theory may come to be accepted as a reliable expla-

nation. Regarding decision-making paradigms, models are

often based on accumulation of evidence or diffusionmod-

els, or as they are more generally called, sampling mod-
els (Smith & Ratcliff, 2015). These models represent deci-
sions as the accumulation of evidence until a threshold is

reached, leading to the corresponding action (Luce, 1986;

Townsend & Ashby, 1983).

Response time (RT) and accuracy (ACC) are the two

measured variables in simple decision-making experi-

ments. These data are typically analyzed with statistical

tools such as ANOVA. However, Wagenmakers, Van Der

Maas, and Grasman (2007) argue that sampling models al-

low interpretation usually impossible with ANOVA or simi-

lar methods. Neither RTs nor ACCs alone can represent the

internal dynamics underlying a subject’s performance; the

interrelation between these two variables must be consid-

ered. For example, a subject with fast RTs and low ACCs

does not necessarily have a better overall performance

than a subject with slowRTs and high ACCs. Samplingmod-

els are useful to assess these discrepancies as they allow,

by analyzing performance holistically, the determination

of latent variables, which can improve themodeling of per-

formance.

Donkin, Brown, Heathcote, and Wagenmakers (2011)

support that “A growing number of researchers use cog-

nitive models of choice response time (RT) to draw con-

clusions about the psychological processes that drive de-

cision making.” (p. 61). According to them, an expla-
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nation must provide information about three key aspects

of behavior: response bias, stimulus saliency and non-

decision time. These concepts are represented by unob-

servable variables: response caution (distance between

starting point z and response boundaries a), mean rate of
evidence accumulation (or, drift rate; v), and time related
to non-decision processes (Ter).
There are multiple models used in cognitive science.

However, this manuscript will focus solely on the EZ dif-

fusion model and present its general properties, its use-

fulness, and possible liability. To do so, we first present

a comparison with the more general model, the Ratcliff’s

diffusion model (RDM; sometimes called the drift-diffusion

model; Ratcliff, 1978). Second, we review the EZ diffu-

sion model, describe its derivation, and indicate the mea-

surement units of the parameters. Furthermore, in the

EZ framework, it is not obligatory that the starting point

be halfway between the two boundaries; thus, we briefly

generalize EZ to other starting positions. Third, we dis-

cuss packages and computer code that perform EZ analy-

ses. Two have been previously published (EZ2, a package
for R, and an Excel spreadsheet –both available on Raoul
Grasman’s web site dedicated to EZ: http://raoul.socsci.uva.

nl/EZ2/) and two additional alternatives are provided with

this article (EZ4Math, a package for Mathematica, and a
syntax for SPSS). Fourth, we describe an algorithm that

simulates a diffusion process akin to the one fitted by EZ.

This approach is slower but can be useful for other EZ-

related endeavours, such as making figures. Fifth, we pro-

vide a measure of fit for EZ so that it can be compared to

other models. Finally, we test the EZ diffusion model in

a “Same”-“Different” experiment, a task in which partici-

pants are required to answer as rapidly and as accurately

as possible whether two successive stimuli are the "Same"

or "Different"; some preliminary results are presented.

Ratcliff’s Diffusion Model
We present the RDM first as EZ is a restricted version of

this general model; all components originate from the for-

mer. The RDM was first introduced by Ratcliff in 1978 and

has shown useful for describing performance that RTs and

ACCs cannot divulgate by themselves (Ratcliff, 1978; Wa-

genmakers et al., 2007). The model has been tested and

generally fits well to a variety of data stemming frommany

different experiments such as lexical decision tasks, recog-

nition tasks, etc. It is sometimes referred to as a type of

Random Walk model, although the latter is based on dis-
crete steps whereas the diffusion model is based on a con-

tinuous accumulation of evidence. The model has two

boundaries, each triggering a certain response (e.g., the

“Yes” and the "No" responses). In a “Same”- “Different”

experiment, one boundary would trigger the “Same” re-

sponse and the other the “Different” response. The ev-

idence accumulation is a process that fluctuates from a

starting point towards one of two boundaries. When the

evidence count reaches a boundary, the corresponding de-

cision is made for that specific trial. A central assumption

of the diffusionmodel is that within each trial, the accumu-

lation rate varies according to a distribution with a mean

drift rate and a certain variability about this mean drift

given by the stimulus’ characteristics. If within-trial vari-

ability is null, the evidence accumulation would rise lin-

early with time. In Figure 1, we illustrate a few trials with

within-trial variability according to a diffusion model.

To fit the diffusion model to a set of data, this model

requires the decision made on all trials. If accuracy is

available, it must be transformed so that "top" responses

are coded with “1” and "bottom" responses are coded with

“0”. It also requires the raw RT for all trials (either in sec-

onds or milliseconds –see later for a note on measurement

units) and analysesmust be performed on a per-subject ba-

sis. However, this may cause issues for certain paradigms

as per-subject analyses require a large amount of trials to

get reliable estimates (in the order of hundreds of trials;

see Lerche & Voss, 2018, for recommendations on sample

size). This is also problematic if incorrect answers are rare

(or more precisely, if one boundary is much less frequently

reached than the other). Wagenmakers et al. (2007) noted:

On the basis of prior experience with the

model, a rule of thumb is that about 10 er-

ror RTs are needed in order to estimate the er-

ror RT distribution with an acceptable degree

of reliability. This means that with an error

rate of, say, 5%, each experimental condition

should contain about 200 observations. (p. 6)

With this constraint, a typical experiment can hardly have

more than 4 conditions within a session of 60 minutes.

Testing would be unrealistically long if more conditions

were added.

The diffusion model parameters can be estimated with,

for example, fast-dm, a standalone program (Voss &

Voss, 2007) orDMAT, a toolbox forMatlab (Vandekerckhove
& Tuerlinckx, 2008). These software packages were evalu-

ated in van Ravenzwaaij and Oberauer (2009). However, it

can takemany hours to get estimates from the data of a sin-

gle participant as the whole estimation process is compu-

tationally demanding (but see Navarro & Fuss, 2009; Tuer-

linckx, 2004). More recently, the hierarchical diffusion

model (HDM) and the hierarchical drift diffusion model
(HDDM) were developed to fit a diffusion model within a
hierarchical framework (Vandekerckhove, Tuerlinckx, &

Lee, 2011; Wiecki, Sofer, & Frank, 2013, respectively).

The RDM requires 8 parameters, as listed in Table 1.

The first parameter is the mean drift rate (v). This param-
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Figure 1 Center: five trials in which the evidence accumulation process is visible as a function of time. Four of the

trials ended with a "Top" response. The simulated trajectories are based on George’s parameters, a fictitious character

introduced in Wagenmakers, Van Der Maas, and Grasman (2007), whose parameters are ν = 0.2513e/s, a = 0.1197e,
Ter = 0.3012s, assuming that s = 0.1e/

√
s. Top: distribution of decision times over 1 000 trials, 95.9% of which ended

by crossing the top barrier; Bottom: distribution of decision times for the remaining 4.1% of the trials which finished by

crossing the bottom barrier.

eter represents the mean rate at which evidence (informa-

tion leading to either of the boundaries) is accumulated.

As can be observed by Figure 1, in the diffusion model, ob-

taining evidence towards one decision always implies go-

ing away from the other decision. The value of this param-

eter depends on the stimulus presented: A stimulus with

high saliency should presumably result in a higher mean

drift rate. Positive drift rates will most likely reach the

upper boundary whereas negative drift rates will tend to

reach the lower boundary. The mean drift rate can be seen

as an arrow having a certain slope pointing towards one

of the two boundaries (Ratcliff & Smith, 2015). However,

the actual path taken is altered by random fluctuations as

shown in Figure 1, representing the actual accumulation of

evidence towards a decision for five simulated trials.

The second parameter is across-trial variability in drift
rate (η). This parameter accounts for the fact that differ-
ent trials might have different time courses and explains

why the error RT distribution considerably overlaps the

correct RT distribution. The third parameter is the within-
trial variability in drift rate (s). Without this parameter, the
accumulation of evidence would go at a constant rate, with

no random fluctuations. When this is the case, the model is

called a Linear Ballistic model (such as the LBA; introduced
in Brown & Heathcote, 2008). Whereas η changes the
rate of evidence accumulation across trials, s changes the
amount of evidence accumulated at every moment within

a trial. This last parameter cannot be estimated at the same

times as the other parameters because the model’s tempo-

ral unit is arbitrary. Thus, one parameter linking evidence

and time must be set in terms of unit of time so that the

other parameters are estimated in the same unit of time. It

is conventional to set the s parameter to 0.1e/
√
s, where e

is the unit describing the amount of evidence (an arbitrary

unit) and s stands for second.

The fourth parameter is the boundary separation (a).
This value also represents the location of the upper bound-

ary because by convention the lower boundary is located

at 0. For example, in a brightness discrimination task,

the top boundary could trigger the “Light” decision and

the bottom one could trigger the “Dark” decision (Ratcliff

& Smith, 2015). In Ratcliff’s diffusion model, the start-

ing point is not fixed, it can vary from trial to trial de-

pending on the fifth and sixth parameters which are the
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Table 1 Parameters from the diffusion model and how they are included into EZ

Parameter Parameter meaning Presence in EZ

ν Mean Drift Rate Free

η Across-Trial Variability in Drift Rate Fixed to 0

s Within-Trial variability in drift rate Conventionally set to 0.1 e/
√
s

a Boundary Separation Free

z Mean Starting Point Fixed to a/2
sz Across-Trial Variability in Starting Point Fixed to 0

Ter Mean time of the Non Decision Components Free

st Across-Trials Variability in the Non-Decision

Components

Fixed to 0

mean starting point (z), or the average position on the ver-
tical axis at which the accumulation of evidence begins,

and the across-trial range of variability in starting point
(sz) respectively. On a given trial, the starting point is
selected randomly from a uniform distribution over the

range [z−sz/2, z+sz/2]. These last two parameters allow
modeling concepts such as biased decision making when,

for example, the subject is instructed to favor one deci-

sion rather than the other, which is achieved with asym-

metric boundary locations relative to the starting point.

It can also model fast errors when variability in starting

point brought the starting position very close to the wrong

threshold.

The seventh parameter is the mean processing time of

the non-decision components (Ter stands for encoding andmotor response times). It is composed of two parts. (i)
The times taken for the information to be transported to

the decision process (visual information emitted from the

screen and entering the eye to be transformed and treated

by visual areas, etc.) are collectively called encoding time
(Te). (ii) The time once the decision process is completed up
to the measuring instrument (motor functions, mechanical

signal, etc.) is called motor response time (Tr). The non-
decision components time is the sum of both these factors:

Ter = Te + Tr. These non-decision times are added to
each decision time. This parameter accounts for the por-

tion of an observed RT which is due to non-decisional pro-

cesses. The eighth and last parameter captures the across-
trials variability in the non-decision component of process-
ing (sTer , or in short, st). It is assumed that across trials,
the non-decision times are uniformly distributed with av-

erage Ter and range [Ter − st/2, Ter + st/2].

EZ Diffusion Model
EZ, a simplified version of the RDM, was developed by Wa-

genmakers et al. (2007; also see Wagenmakers, van der

Maas, Dolan, and Grasman, 2008) to (i) promote the use of

diffusion models in psychology, and (ii) avoid the need for

a strong background in quantitative modeling or the use of

specialized software. It has fewer parameters, and conse-

quently requires less information to fit empirical data than

its more complex counterpart. Likewise, the authors re-

port that many researchers do not use the diffusion model

even where it is effective because it is too difficult to fit

(Wagenmakers et al., 2007; also see Röhner & Thoss, 2018).

Consequently, the EZ model was created to have a simpli-

fied diffusion model which still captures the crucial vari-

ables while being significantly simpler and faster to apply

than the full model.

As said above, another problem regarding Ratcliff’s

model is the need for a large number of raw data per con-

dition and a paradigm where accuracy is not too high. In-

deed, smaller datasets lead to more variable parameter

estimates and thus to less accurate estimates (Cousineau,

2009; Lerche & Voss, 2018). EZ, on the other hand, has

stable estimates even with smaller sample sizes, owing

to the fact that it is based on fewer parameters. EZ, like

any sampling model, should be fit on a per-participant ba-

sis as group characteristics are not necessarily the aver-

age of the individuals’ characteristics (Cousineau, Harding,

Thivierge, & Lacouture, 2015).

As previously mentioned, EZ focuses on the three pa-

rameters that are the most pertinent to the decision pro-

cess, namely: the drift rate (v), the boundary separation
(a) and the non-decision time (Ter), taken from Ratcliff’s
full diffusion model. To do so, EZ fixes the starting point

parameter’s value z to a/2, that is, halfway between the
two boundaries. Likewise, the three between-trial variabil-

ity parameters (η, sz and st) are also removed (i.e., set to
0), because, according to Wagenmakers et al. (2007), these

factors have a rather small influence on the results and are

often of secondary importance. Consequently, EZ is based

on three free parameters, ν, a and Ter , to which we add the
scaling parameter s fixed to 0.1.
Because of these simplifications, EZ does not require

raw data at all, only three descriptive statistics: the mean

of all the response times (MRT) in a given condition (which
includes successes as well as errors), the variance of those
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response times (VRT) and the proportion of correct an-
swers (Pc). This peculiarity makes the EZ model adequate
for rough and quick estimations of those three parameters.

Although one of the statistics provided to EZ is com-

monly called percent correct (Pc),
1
it is important to real-

ize that Pc must truly be the probability of crossing the top
boundary; generally, it is assumed that the top boundary is

the boundary that must be crossed for a response to be cor-

rect. EZ does not know if responses are correct or wrong.

It only knows if a boundary was reached. Hence, Pc should
more adequately be approached as the "percent top bound-

ary crossing" (Ptop). Whenever Ptop is larger than 50%,
it implies that the top boundary was reached more often

than the lower boundary and consequently, v is a positive
value, i.e., it has a slope pointing up. This is a reminder

that boundaries must be labelled consistently. In a “Yes”-

“No” experiment for example, the top boundary could be

the “Yes” boundary. Whenever the correct answer is “Yes”,

the drift rate should be positive. When "No" is the correct

answer, the drift rate should be negative. In this case, the

Ptop should be 1 the observed accuracy so that v points
downward to the “No” boundary. For example, if a par-

ticipant responded "No" correctly in 95% of the trials, then

95% of the "No" responses should be coded as "0" to indi-

cate that the response has accurately crossed the bottom

boundary.

The model’s weakness –few parameters can be esti-

mated from EZ– is also its strength. Indeed, the fact that

fewer parameters are evaluated avoids over-fitting the pe-

culiarities of a given dataset, and consequently, the esti-

mates are more stable across samples. In Ratcliff (2008),

simulated responses were generated using the four EZ pa-

rameters (see later for the algorithm). Afterwards, either

EZ or the full diffusion model were used to estimate the

true parameter values. The results showed that the param-

eter estimates were more precise when EZ was used than

when the full diffusion model was used, with estimates

having smaller bias and smaller variance. As Wagenmak-

ers et al. (2007) mention, this makes it a more practical and

simpler tool for routine analyses of common psychology

experiments. According to the authors’ tests, the model is

quite reliable and gives estimates highly correlated to the

diffusion model estimates when tested on a perceptual dis-

crimination task data.

Deriving EZ

EZ, like the diffusion model, is formalized using a differen-

tial equation describing the probability of reaching a cer-

tain state x at time t. The fundamental equation is (Gar-

diner, 2004)

∂tp(x, t|z, 0) = v ∂zp(x, t|z, 0) +
1

2
s2 ∂2zp(x, t|z, 0),

where p(x, t|z, 0), the probability that the process reaches
a count of x at time t given that it started with a count of z
at time zero (Wagenmakers, Grasman, & Molenaar, 2005),

is a function of v, themean drift rate (if greater than zero, it
is a drift toward the upper boundary) and s2 , the within-
trial variance in drift rate. From this partial differential

equation, it is shown that the statistical moments of order

n,Mn, of the time t to reach either boundary given a start-
ing point z (0 < z < a) follows a recurrent equation given
by

v ∂zMn(z) +
1

2
s2 ∂2zMn(z) = −nMn−1(z),

with M0(z) = 1. The boundary conditions, Mn(0) =
Mn(a) = 0 for any n ≥ 0, are derived from the fact

that if the accumulation starts at zero or starts at a, then
it is stopped immediately as one boundary (the top or the

bottom respectively) has been reached. As an example,

the mean —the first statistical moment— can be expressed

from the n = 1 moment, yielding the partial differential
equation:

v ∂zM1(z) +
1

2
s2 ∂2zM1(z) = −1. (1)

Because this equation is not conditionalized on which

boundary was crossed, it implies —as said in the above

subsection— that MRT is the mean of all the response times
(irrespective of whether they are correct or erroneous).

This system, based on Eq. (1) and the boundary condi-

tions, can be solved to findM1(z) by most symbolic alge-
bra software (e.g., Mathematica, see “DerivationOfEZ.nb”,
a notebook available on the journal’s web site, or Maple,
see Wagenmakers’ web site, http://www.ejwagenmakers.

com/papers.html). Once the mean decision time is found,

add Ter to get the predicted mean response time (MRT):

MRT = M1(z) + Ter. (2)

Likewise, the second statistical momentM2(z) is found by
solving

v ∂zM2(z) +
1

2
s2 ∂2zM2(z) = −2M1(z), (3)

from which variance can be found using the well-known

relation

Var(z) = M2(z)−M2
1 (z). (4)

In the solutions to Eqs. (1) and (3), by replacing z with
a/2, we obtain two equations that are based on a, v and s.

1
But note that in the R package EZ2 described later, it is the percent error, Pe, that must be provided

The Quantitative Methods for Psychology 1582

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.2.p154
http://www.ejwagenmakers.com/papers.html
http://www.ejwagenmakers.com/papers.html


¦ 2020 Vol. 16 no. 2

For example, using the shortcut: y = aν/s2, and setting z
to a/2, we find for the first and second moments and the
variance

M1(a/2) =
a

2ν
× ey − 1

ey + 1
(1b)

M2 (a/2) =
a

2ν3
×

s2 (ey − e−y) + a
((
ν
2 (e−y + ey)− 3

))(
e−y/2 + ey/2

)2 (3b)

Var(a/2) =
a

2ν3
×
(
s2
(
e2y − 1

)
− 2aνey

)
(ey + 1)

2 . (4b)

Finally, the boundary position a can be estimated from ac-
curacy with (Ratcliff & Tuerlinckx, 2002; Busemeyer, 1982)

PT = 1−
exp

(−2av
s2

)
− exp

(−2zv
s2

)
exp

(−2av
s2

)
− 1

, (5a)

where PT is the percent correct, so that in the specific case
where z = a/2, Eq. 5a simplifies to

a =
s2

v
log

(
PT

1− PT

)
. (5b)

Taken together, Eqs. (2), (4) and (5b) are three equa-

tions with four unknowns, s, a, v and Ter. It is custom-
ary to set s to 0.1 evidence per square root of second. The
other three unknowns can be solved, v first (from the re-
sponse time variance and percent correct, Eqs. 4 and 5a),

a in second (from v and percent correct, Eq. 5a), and
lastly Ter (from mean response time, Eq. 2, and the two
other parameters). Thus, we have these three steps, letting

lT = log(PT /(1− PT )) as a shortcut,

Step 1:

v = s2
√
lT (P 2

T lT − PT lT + PT − 1/2

V RT

Step 2:

a =
s2

v
lT

Step 3:

Ter = MRT − a

2 v

1− exp(−v a/s2)

1 + exp(−v a/s2)

and make v negative when PT is smaller than 0.5.
Note that these equations can be solved for any z, not

just when z = a/2 (more on this in a later subsection).
Also, note the strictly additive role of s2 in the differen-
tial equations. This has implications for simulations as de-

scribed in a subsequent section on simulating EZ. Finally,

note that instead of fixing s to a conventional level, we
could derive the third statistical moment which is related

to skewness (Rose & Smith, 2001). However, as skewness is

difficult to estimate from response time data (and requires

larger samples), it is better to consider only the first two

statistical moments. As an exercise, we derive here the pre-

dicted value of skewness, often noted γ1, based on the first
three moments, from the relation

γ1 =
M3(a/2)− 3M1(a/2)V ar(a/2)−M3

1

V ar(a/2)3/2
.

Solving the problem withMathematica, we get

γ1 = −

√
2a
(

2a2ν2ey (ey − 1) + 6aνs2ey (ey + 1)− 3s4 (ey − 1) (ey + 1)
2
)

ν5
(
−a(2 a ν e

y−s2(e2y−1))
ν3

)3/2 .

As seen in the Application section, skewness will reveal

a weakness of EZ.

Units of measurement

In Wagenmakers et al. (2007), the examples are expressed

with seconds. However, many prefer toworkwithmillisec-

onds. In this case, it is necessary that the parameter s be
converted to milliseconds; how to do so requires some un-

derstanding of the measurement units. The parameter a
is a count of evidence and can be expressed by a unit that

we could label e. The drift rate is an average number of

evidence per unit of time. Its unit is consequently e / s.

The base response time is expressed in seconds. Finally, re-

garding variability in drift rate s, this variance represents
variance in e per unit of time, thus e2/s. Yet, s is generally
provided as a standard deviation; its unit is consequently

evidence per square root of time or e/
√
s. The issue of scal-

ing has been previously addressed by Smith, Ratcliff, and

McKoon (2014, footnote 5). If it is preferred to express the

parameters in milliseconds (ms) instead of seconds (s), and
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based on the conversion factor 1 s = 1000 ms, v (in e / s) be-
comes v/1000 (in e / ms), a stays the same, Ter (in seconds)
becomes 1000 Ter (in ms) and s (e/

√
s) becomes s/

√
1000

(in e/
√
ms). We can check this in R (see below for explana-

tions on these instructions) with statistics first expressed in

seconds:

Data2EZ(MRT = .517, VRT = .024, Pc =
.953, s = 0.1)

# $v = 0.2513 $a = 0.1197 $Ter = 0.3012 ,
then in milliseconds:

Data2EZ(MRT = 517, VRT = 24000, Pc =
.953, s = 0.1/sqrt(1000) )$\;$ )

# $v = 0.0002513 $a = 0.1197 $Ter = 301 .2.
As seen, the estimates are the same.

gEZ: When the starting point is different from a/2

As seen in an earlier subsection, the constraint that z is the
midpoint between the top and bottom boundary (the latter

fixed at zero) is added in theMathematical derivation after
the main equations are solved. Hence, nothing prevents

varying the starting point parameter. For any z given as
a fraction of a, the equations can be solved. Therefore, a
generalized version of EZ in which z is fixed a priori to a
given fraction of a is always possible and results in an an-
alytical solution. For example, letting z be replaced by a/3
in Eq. (5a) results in

a =
3 s2

2 v
×

log

(
PT − P 2

T −
√

(4− 3PT )P 3
T +

√
(4− 3PT )PT

2(PT − 1)2

)
(5c)

The equations tend to be much longer, so it is better to rely

on a symbolic manipulation software such as Mathemat-
ica.
A situation where this would be useful is with regard

to a system that needs to scan information in a near ex-

haustive way. If the amount of information to be processed

for a "top" response is doubled whereas the evidence re-

quired making a "bottom" response is approximately con-

stant, it makes sense for the top boundary to be located

twice as high. In that scenario, z is no longer the midpoint
but rather located at one-third the value of a. Likewise, if
the information for "top" responses triples, then z is now a
quarter of the value of a, etc. We will use this fact to ana-
lyze the "Same"-"Different" data in the last section.

Running EZ analyses
EZ can be programmed in many environments. Here we

rapidly review two existing ones, EZ2 for R, and an Excel

spreadsheet. We also describe two new implementations,

one for SPSS and another one forMathematica. Each envi-
ronment has its advantages and disadvantages; the choice

only depends on the user’s preference and familiarity with

the selected environment –there exist no inherent disad-

vantages of using one environment over another.

Using the EZ Diffusion Model in R
There is a package for EZ to be used in R, the open source
statistical computing software (R Core Team, 2016). The

package EZ2 (not to be confused with the EZ package for

ANOVAs) is maintained by Grasman (2007).

To use the software:

1. You first need to upload the library (this step is to be

done only once on a given installation of R):
install.packages("EZ2", repos = http:/

/R-Forge.R-project.org)

2. Before using it, load the library EZ2 into memory with:

library(EZ2)

Note that R is case-sensitive; also, line feeds can be in-
serted in a command between tokens; we use that fea-

ture in the subsequent steps to make the command’s

content easier to read.

3. To get parameters from descriptive statistics (mean RT,

noted MRT, variance in RT, noted VRT, and percent top
responses, note ambiguously Pc), use:

Data2EZ (
Pc = .953,
MRT = .517,
VRT = .024)

4. The reverse operation, to get descriptive statistics from

parameters, is done with the following:

EZ2.mrt (
nu = 0.25133,
a = 0.11974,
Ter = 0.30118,
z = 0.11974 / 2 )

where the parameter nu stands for v. In both functions,
the value of s can be omitted; its default value is 0.1.
With this command, we choose the statistic to be re-

ported. Here is shown mrt (lower case in the EZ2 library),
but it could also be vrt or pe by replacing mrt by these
words in the above instruction (for these two parameters,

do not provide Ter as it is unneeded).
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Using the EZ Diffusion Model in Excel
The EZ2 package available in R is also available in an Excel
spreadsheet. This spreadsheet is available for Excel ver-
sion 97 and above from http://raoul.socsci.uva.nl/EZ2/.

Instructions on how to use the software:

1. Download the Excel spreadsheet EZ2.xls
2. Open the Excel workbook; activate the macros and ac-
cept the warning messages. There should be three

sheets. The first one is for basic estimations of MRT,
VRT, and Pe (truly percent bottom) values from the

EZ parameters. Alternatively, you also have access to

CVRT and CMRT which are the variance and the mean
RT for trials with correct responses only.

Note that this Excel spreadsheet has functions to esti-
mate MRT, VRT, and Pe values from the EZ parameters

only. However, it does not accomplish the opposite pro-

cess of estimating EZ parameters from these data. This

can be realized through a parameter search involving the

Solver, which must be installed from the Excel installation
program. Details on how to do so are provided on the first

sheet of the spreadsheet.

Using the EZ Diffusion Model inMathematica
The EZ diffusion model is available in a package forMath-
ematica (version 7 or above). This package allows the user
to estimate all of the parameters’ values from descriptive

statistics, or vice versa. It can also be used to simulate tri-

als in full details. It comes in one package, “EZ4Math.m”.

The file "UsingEZ4Math.nb" which illustrates the use of the

package is also attached to this manuscript.

Instructions on how to use the software:

1. Upload the library from this journal’s web site and

place the file "EZ4Math.m" in any folder.

2. Load the library into memory using:

Needs ["EZ4Math‘", "location"]

where location is the path to the folder where you

placed the file "EZ4Math.m" on your computer, be-

tween double quote signs. If the backslash character

is required on your operating system, double it, e.g.

“C:\\user\\Me\\EZ4Math.m”. Note thatMathematica, like
R, is case sensitive and extra lines can be added any-
where between tokens.

3. To get parameters from descriptive statistics MRT, VRT
and Pc, use for example:

EZ4Math[ Stats2Param, {MRT, VRT, Pc},
0.1]

in which Pc is truly percent top, and 0.1 is the default
value of the scaling factor s. If the default is correct;
it can be omitted in all the instructions of this section.

For example:

EZ4Math[ Stats2Param, {0.517, 0.024,
.953}, 0.1]

You can also add units, for example, if you are working

in seconds s and counting evidence e:

EZ4Math[ Stats2Param, {0.517 s, 0.024
s^2, .953}, 0.1 e/Sqrt[s]]

or in milliseconds:

EZ4Math[ Stats2Param, {517 ms, 24000
ms^2, .953}, 0.1 e/Sqrt[1000 ms]]

In both cases, the estimated threshold is the same 0.119

e, and the parameters Ter and v are scaled by a conver-
sion factor of 1000, as expected.

4. The reverse operation, to get predicted statistics from

parameters, is achieved with:

EZ4Math[ Param2Stats, {v, a, ter}, s]

For example with George’s parameters found in Wa-

genmakers et al. (2007):

EZ4Math[ Param2Stats, {0.2513, 0.1197,
0.3012}, 0.1]

Using the EZ Diffusion Model in SPSS
To use EZ in SPSS requires one to enter the required statis-
tics (in columns that have to be called MRT, VRT and Pc)
for each participant in the data editor, one information per

column and one participant per line. Once data is entered,

the syntax of Listing 1 at the end of the article can then be

executed; the three parameters will appear in 3 additional

columns next to each participant’ statistics.

Afterwards, the parameters can be plotted or analyzed

in the same way as regular descriptive statistics. This

method is used in the Application presented in the last sec-

tion. It can be incorporated to any SPSS syntax (script)
after the descriptive statistics are calculated from raw

data. Outputting the parameters in different forms such as

graphs or tables can then be directly executed in the same

SPSS syntax.
In the next section, we simulate an EZ process to obtain

simulated responses from a fictitious character created in

Wagenmakers et al. (2007) called "George". Listing 2 opens

this file containing raw data and aggregate them to get the

needed descriptive statistics. You then simply need to run

Listing 1.

Simulating an EZ diffusion model
As EZ is fully analytical, there is no reason to simulate the

whole process. However, if one wishes to see examples of
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the dynamics of evidence accumulation (as illustrated in

Figure 1), it is necessary to simulate a diffusion process. Be-

cause EZ assumes continuous time steps, very small-time

steps must be used in simulations, or equivalently, many

time steps per unit of time must be used. Using the second

formulation let∆t be the number of time steps per unit of

time (second is assumed in Wagenmakers et al., 2007). The

Algorithm 1 assumes that the parameters v, a, Ter and s are
given. As seen from Algorithm 1, the only source of vari-

ability in EZ is the moment-by-moment variation in drift.

This algorithm was implemented in the Mathematica
package “EZ4Math.m” to provide the ability to visualize the

evidence count as a function of time for one trial. It is used

with:

EZ4Math[ Simulation, {v, a, ter}, s, ∆t,
nsim]

in which ∆t is the number of steps per unit of time (∆t

should at least be 1000, the default) and nsim is the num-
ber of trials to simulate (default to 1000 simulated trials).

It returns replacement rules containing “ALLRT”, “ALLSuc-

cess” and “OnePath”. As an example, we used

EZ4Math[ Simulation, {0.2513, 0.1197,
0.3012}, 0.1, 1000, 125]

to generate raw data that could have been George’s results.

We ran it a few times until the simulated responses’ statis-

tics were very close to the ones given in Wagenmakers et

al. (2007). See Table 2.

The replacement rule “OnePath” contains the evidence

counts for the last simulated trial only. For example:

P = "OnePath" /. EZ4Math [
Simulation,
{0.2513, 0.1197, 0.3012},
0.1, 1000, 1

];
ListPlot [P, Joined -> True ]

illustrates one trial’s evidence count.

If one gathers all the states and plot them as a function

of step number, one trajectory will emerge. Figure 1 was

generated with five calls to the above function. To estimate

mean, variance and percent correct, run this simulation

many times (at the very least 10,000 times).

As can be seen in Eqs. 1 and 3, the impact of variance

can only overestimate the differential equation. Indeed,

in the fundamental equation, the term s2/2 is multiplied
by a positive infinitesimal. If that quantity is too large,

the summation will overshoot, never undershoot. In the

present simulation function, when there is not a sufficient

number of time steps per unit of time, the mean RT is bi-

ased, as it can only be larger than predicted by solving the

equations. Table 3 shows the estimated statistics as a func-

tion of ∆t using George’s parameters from Wagenmakers

et al. (2007): drift rate ν = 0.2513 e/ s, boundary separa-
tion a = 0.1197e, and non-decision time Ter = 0.3012s
(assuming that s = 0.1e/

√
s). As seen, when very few time

steps are simulated per unit of time, the predicted mean

is much larger than predicted from the analytical solution.

The same is true for percent correct. Finally, variance first

overshoots then tends to the correct number. However,

with 3,125 time steps simulated per second, the predictions

are accurate to two significant digits. Hence, using 1,000

time steps per unit of time can be considered a minimal

requirement when simulating EZ or any (continuous) dif-

fusion model.

How good is a fit of EZ to data?
One frequently heard question is how to assess the good-

ness of fit of EZ. Comparing model fits is a common en-

deavor and to that end, getting some measure of goodness

of fit is a prerequisite.

Technically speaking, the fit of EZ to descriptive statis-
tics is always perfect. It takes 3 descriptive statistics and
returns three estimates. There is no parameter search and

no index of fit at that level. It explains why it is possible

to reverse the estimation process retroactively to find the

statistics back from a given parameter set.

Although EZ provides a perfect fit at the level of de-

scriptive statistics, there is no guarantee that the fit is per-

fect at the raw data’s level. When raw data are available

(RTs and response selected), then it is possible that an EZ

fit may not be perfect or even good. For example, the dis-

tribution inferred from the proposed estimates might not

match the RT skewness.

One method proposed by Karayanidis et al. (2009) is

to qualitatively judge EZ’s fit by comparing it to an Ex-

Gaussian fit. This is however only a visual aid and assumes

that the Ex-Gaussian is an adequate reference, a fact that is

not universally accepted.

Alternatively, when the raw data are available, it is pos-

sible to compute an EZ fit. The approach consists in com-

puting the log-likelihood index of fit. This measure can

be used to compare nested models (for example, if one

parameter is constrained, or if additional parameters are

added) or unrelated models. Typical tests of fit based on

likelihood includes the likelihood ratio test (an exact test

for nested models; Wilks, 1938) or AIC, BIC and the like

(for non-nested or unrelated models). See Hélie (2006) and

Cousineau and Allen (2015) for more on this topic.

Computing a likelihood is easy when the probability

density function (PDF) predicted by a model is available.

Fortunately, this function is known for the diffusion model

(with no parameter variability as is the case with EZ). In-
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Algorithm 1: Simulating a response time and a decision (top or bottom, respectively 1 or 0) assuming a diffusion
model with no variability parameters, given the parameters v, a and Ter as well as a scaling parameter s and the
number of time step per unit of time∆t. In the algorithm, italics denotes a comment and the notation∼ N(µ, σ)
indicates one realization of a normal distribution with mean parameter µ and scale parameter σ.

Before start, no step has been simulated and starting point is midway between 0 and a:;
step← 0;
currentstate← a/2;
Repeat as long as we are within the boundaries:;
while 0 < currentstate < a do

step← step+ 1;
drift∼ N(v/∆t, s/sqrt(∆t));
currentstate← currentstate+ drift;

end
Determine if the response was actually "top" or "bottom":;
if currentstate > a then

response← 1;
else

response← 0;
end
RT is the number of steps divided by the number of steps per unit of time, to which Ter is added;
RT← step/∆t + Ter;
return RT. response

deed, the fundamental equation can be solved to find the

cumulative distribution function (see Abbasi, 2017; Gar-

diner, 2004). The formula can also be found in Tuerlinckx

(2004, Eq. 1); an alternative expression is found in Van

Zandt, Colonius, and Proctor (2000). Both the PDF and the

CDF are given here.

f(t | ν, a, z, ter, s) =
πs2

a2
e−

νz
s2

∞∑
k=1

k sin

(
πkz

a

)
e
− 1

2 (t−ter)
(
π2k2s2

a2
+ ν2

s2

)
,

F (t | v, a, z, ter, s) =
e−

2aν
s2 − e−

2νz
s2

e−
2aν
s2 − 1

− πs2

a2
e−

νz
s2

∞∑
k=1

2k sin
(
πkz
a

)
e
− 1

2 (t−ter)
(
π2k2s2

a2
+ ν2

s2

)
π2k2s2

a2 + ν2

s2

The exact computation of these formulas is not possi-

ble as it contains an infinite sum. However, summing a

few hundreds of terms is generally enough to get a precise

estimate. In breakthrough work, Navarro and Fuss (2009)

demonstrated how to determine the number of terms to

sum to get a desired precision and which of the two alter-

native PDF equations (the one above or the one provided

in Van Zandt et al. (2000) needs the smallest amount of it-

eration. They also provided an R function that performs
the computations. Thus, it is possible to quantify the PDF

and consequently, the likelihood, in a very efficient way

(see also Van Zandt, 2000; Cousineau, Brown, & Heathcote,

2004, for more on likelihood functions).

Finally, note that—again—measurement units have an

impact on the measure of fit. When RTs are expressed in

milliseconds, the time unit is stretched by a factor of 1000.

Because the area under the density of the RT distribution

must nonetheless be 1, it implies that the height of the PDF

is likewise divided by 1000. Thus, the log-likelihood, the

sum of the log densities, is reduced by log(1000) for every

datum when these data are expressed in milliseconds rela-

tive to when they are expressed in seconds.

We added to the Mathematica library an additional
function that returns the log likelihood index of fit for a
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Table 2 George’s data. These are 125 fictitious data generated so as to match very closely the descriptive statistics of the

character George described in (Wagenmakers, Van Der Maas, & Grasman, 2007). The first entry contains a response time

(in second), the second entry contains the response made (0 is bottom boundary; 1 is top boundary). The data have been

sorted by RT.

0.336 0

0.336 1

0.343 1

0.343 1

0.344 1

0.354 1

0.355 1

0.356 1

0.358 1

0.359 1

0.360 1

0.361 1

0.361 1

0.364 1

0.365 1

0.370 1

0.371 1

0.375 1

0.377 1

0.383 1

0.384 0

0.384 1

0.388 1

0.388 1

0.390 1

0.394 0

0.394 1

0.394 1

0.394 1

0.398 1

0.404 1

0.405 1

0.409 1

0.409 1

0.415 1

0.422 1

0.426 1

0.427 1

0.429 1

0.429 1

0.430 1

0.430 1

0.432 1

0.435 1

0.440 1

0.440 1

0.446 1

0.449 1

0.450 1

0.452 1

0.454 1

0.454 1

0.456 0

0.457 1

0.459 1

0.459 1

0.462 1

0.466 1

0.467 1

0.475 1

0.475 1

0.475 1

0.477 0

0.477 1

0.479 1

0.481 1

0.483 1

0.484 1

0.484 1

0.502 1

0.502 1

0.505 1

0.514 1

0.515 1

0.516 1

0.519 1

0.520 1

0.521 1

0.526 1

0.527 1

0.529 0

0.529 1

0.532 1

0.536 1

0.537 1

0.539 1

0.545 1

0.547 1

0.548 1

0.563 1

0.565 1

0.570 1

0.575 1

0.580 1

0.584 1

0.594 1

0.597 1

0.599 1

0.600 1

0.607 1

0.607 1

0.616 1

0.646 1

0.649 1

0.656 1

0.660 1

0.663 1

0.664 1

0.668 1

0.682 1

0.686 1

0.692 1

0.696 1

0.729 1

0.730 1

0.741 1

0.779 1

0.786 1

0.795 1

0.858 1

0.957 1

0.959 1

0.998 1

1.008 1

1.178 1

Table 3 Predicted mean and variance in RT as well as proportion correct as a function of the number of simulated time

steps per second. In the table, each individual statistic represents the average over 10,000 simulations. As seen, with few

time steps per unit of time, the predicted performance is distant from the true performance seen on the last line.

∆t Mean RT Variance in RT Proportion correct

1 1.330 0.0285 0.999

5 0.692 0.0505 0.988

25 0.583 0.0349 0.969

125 0.543 0.0290 0.964

625 0.528 0.0256 0.955

3125 0.522 0.0249 0.954

∞ 0.516944 0.0239876 0.952937

given set of parameters and a given data set. It is neces-

sary that raw data be available. To test this function, we

use again what might have been George’s data, if they had

been available, given in Table 2.

Computing the log likelihood index of fit (the sum of

the log density for each of the data points; see Van Zandt,

2000; Cousineau et al., 2004) is achieved in the Mathemat-
ica “EZ4Math.m” package with:
LogLikelihood[

EZDistribution[{v, A, ter} ],
Data

]

where v, A, ter are the parameters estimated and data
is a list of pairs RT, response. If the scaling parameter is

different from the default 0.1, add its value past the curly

braces with

LogLikelihood[
EZDistribution[{v, A, ter}, s ],
Data

]

Here is an example with George’s data evaluated at the po-

sition of the estimated George’s parameter

LogLikelihood[
EZDistribution[{ 0.2513, 0.1197,
0.3012} ],

GeorgeData
]

It computes the fit of George’s parameters to George’ data

generated earlier (and provided in the Mathematica pack-
age under the variable "GeorgeData" for easy access).

When performed, the fit of George’s data is 64.3461
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(generally, log likelihood fits are negative numbers, but it

does not have to be the case when PDF are narrow, extend-

ing above 1). This is an Excellent fit, but not a surprising fit
as the data were generated using Algorithm 1. To see the

match between predicted and observed distributions, Fig-

ure 2 shows the results for both the cumulative distribu-

tion function (CDF, left panels) and the probability density

function (PDF, right panels) for the top boundary (top pan-

els) and the bottom boundary (bottom panels) responses;

the data are shown using histograms and the model us-

ing lines. Both superimpose almost perfectly. Note that

if the data and parameters are expressed in ms, the fit is

-799.1239; we can verify that 64.34614 - 125 × log(1000) is

indeed -799.1239.

Such an index of fit can be used to compare models.

For example, the full diffusion model can be compared to

EZ. When the additional parameters η, st and sz (which
are zero in EZ) are given a very small value (e.g., 0.00001),

the fit of the full diffusion model is 64.3927, a very small

improvement in fit (of 0.0466, not significant, p > 0.999
according to a likelihood ratio test, χ2(3) = 0.0932). How-
ever, if the parameter sz is set beyond zero to 0.06 or
larger, then the fit of the full diffusion model decreases to

62.3341 or below, a significant decrement (χ2(3) = 4.0244,
p = 0.045).
If we run a full diffusion model parameter estimate

analysis (minimizing the log-likelihood index of fit), we get

those seven parameter estimates: ν = 0.2669, η = 0.0037,
z = 0.0550, sz = 0.00001, Ter = 0.2900, st = 0.0022 and
a = 0.1215. The index of fit is 65.2768, a fit slightly better
than the fit assessed by EZ. However, when penalized for

model complexity using AIC, the fit is 2.1159 points in favor

of the simpler EZ model. As seen, the common parameters

v, a and Ter are quite comparable between the EZ fit and
the DM fit. The starting point z is also found to be roughly
halfway through 0 and a.

An application with "Same"-"Different" Data
To illustrate the use of EZ, we chose a dataset from our lab-

oratory. It bears on the "Same"-"Different" task in which

participants must indicate as fast as possible and with as

few errors as possible whether two stimuli presented in

close succession are fully identical or not. The stimuli were

strings of consonants of various lengths; 50% of the trials

show pairs of identical strings. These strings can differ on

as few as a single letter or as many as be composed of en-

tirely different letters. The experiment is similar to Bam-

ber’s seminal research (1969); however, we added casema-

nipulations: On half of the trials, the letter-case of the first

and second stimuli could be mismatching; the participant

had to make their decision solely on the identity of the let-

ter, irrespective of the stimuli’s case.

The data features a fast-“Same" effect whereby "Same"
responses tend to be much faster than "Different" re-

sponses for a given string length. This effect is still not en-

tirely explained (see Farell, 1985; Krueger & Shapiro, 1981;

Proctor, 1981; Sternberg, 1998). There has been a previ-

ous attempt to fit the data with a diffusion model (Rat-

cliff, 1985) which was not successful and criticized (Proc-

tor, 1986). This section describes the experiment and the

results of the fit. Not surprisingly, because EZ is a nested

model within the diffusion model, it will not fit better the

results, but its failure will shed some light on future mod-

eling directions.

Method

Participants
Twenty individuals participated in the experiment. They

were Canadian residents, all students at the University of

Ottawa. They were aged 18 or over; no additional demo-

graphic information was collected. Their vision was nor-

mal or corrected to normal. They spoke French or English.

Procedure
The participant’s role was to determine whether a first

stimulus (noted S1) is "Same" or "Different" from a second

stimulus (S2). The stimuli are strings of letters containing

from one to four letters. Conditions are balanced so that

there are as many "Same" trials as "Different" trials and

that each length of strings are presented equally (S1 and

S2 are of the same length). For each trial in the experi-

ment, there is a blank screen for 500 ms, a fixation point

for 500 ms, then S1 is presented for 400 ms, a second blank

of 400 ms, followed by S2, which stays until the participant

answers or for 5000ms. The letters used in the stringswere

the same as the ones used by Bamber (1969): B, C, D, F, J, K,

L, N, S, T, V, or Z; they never appeared more than once in a

stimulus.

The complexity (the total number of letters) of the stim-

uli varied from 1 to 4 letters through the experiment, and

when the strings were different, the number of differences

varied from a single letter different to all letters different.

The new manipulation of this experiment is a change in

casing: half the strings were entirely lowercase and the

other half entirely uppercase so that on half of the trials,

S1 and S2 are presented with a different case. Hereafter,

we call "mismatching trials" those where the case was dif-

ferent in S2 relative to S1. The goal of the experiment was

to determine the impact of the letter’s casing on the par-

ticipant’s performance in a “Same”-“Different” task. The

participants completed 768 trials in a 55-minutes session;

all the conditions were presented in a random order.

The Quantitative Methods for Psychology 1652

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.2.p154


¦ 2020 Vol. 16 no. 2

Figure 2 Fit of the EZ parameters to George’s simulated data of Table 2. The left panels show the density of the data (bars)

and the predicted distribution (line) for the correct (top) and error (bottom) responses. The distributions are defective

ones, so that they do not totalize 1 but to the proportion of responses of a given type (95.3% correct on top, 4.7% of error

on bottom). The fit found by EZ is very close to perfect for these data that were generated using EZ.

Results

We collected 15360 total measures. We checked the data

for outliers. Analyses of the full diffusion model require

that extreme data be removed because their associated

probability are very low and results in underflow in many

programming environments. We consequently used the

same stringent approach here. We have found 46 RTs

above 3000ms, but 40 of them are from a single participant

(participant 14). Regarding low outliers, we found 58 RTs

below 220 ms, but 46 are from a single participant (partici-

pant 12). We chose to exclude RTs below 220 ms and above

3000 ms and also removed the participants 12 and 14. We

are left with 13,806 data, or 99.6% of the data from the 18

remaining participants.

In order to simplify the presentation of the results, we

examined whether there was any differences in mean RTs

between the order of case (was S1 in lower case and S2 in

upper case different from S1 in upper case and S2 in lower

case?) and found no significant differences (F (1, 502) =
0.243, p = 0.622). We also examined whether there was
a difference between cases in which the stimuli were both

uppercase or both lowercase and found no significant dif-

ferences either (F (1, 502) = 0.107, p = 0.743). Further,
as was observed in Harding (2018), for the “Different” re-

sponses, there was no difference between matching cases

and mismatching cases (F (1, 358) = 2.332, p = 0.128).
For the “Same” trials however, there was an important ef-

fect ofmatching vs. mismatching cases (F (1, 142) = 7.508,
p = 0.007). These results were entirely predictable from
the facilitation framework of Proctor (1981) and replicated

many times with various manipulations (Harding, 2018).

Hereafter, to facilitate presentation of the results, we col-

lapsed the "Different" trials from matching and mismatch-

ing case conditions but kept "Same" trials separated.

The results of the experiment are shown in Figure 3

where we see mean RTs. We also show the standard devia-

tions of RTs, averaged across participants, as the variance

of RTs is used by EZ. The “Same”-“Different” task typically

returns rather constant standard deviation across experi-

mental conditions (Harding, 2018). In the third panel, we

show percent correct averaged across participants for each

condition. Finally, we show themean skewness of RTs. The

results show that the “Same” trials were faster on average
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in the matching case condition than in the mismatching

case condition (the blue lines in each panel). Proportion of

correct answers gets lower for trials with higher complex-

ity and lower number of differences (and RTs get slower,

so this is not a speed-accuracy trade-off). The results con-

cur with results from previous experiments (e. g., Bamber,

1969).

We estimated the EZ parameters using the SPSS syntax
(see Listing 1). We assumed that the "Same" response was

emitted through the top boundary and the "Different" re-

sponses with the bottom boundary. The parameters were

then averaged across participants; see Figure 4 for the re-

sults.

As we can see, the drift rate ν seems fairly constant
when the two stimuli are "Same" despite the fact that the

length of strings is increasing. This would imply that ad-

ditional matching letters do not increase processing noise

and consequently, do not decrease processing rate. On the

other hand, the drift rate becomes slower (closer to zero)

when at least one letter of the stimuli is different, espe-

cially when there is only one difference. This result reflects

the fact that RTs are longer in those trials and suggests that

these trials have less salient information ormore noise hin-

dering processing rate, potentially affected by the number

of letters, as more complexity induces more noise in the

decision-making process.

Mean boundary separation seems to be decreasing, al-

though this trend is fairly weak given the wide variations

in the estimates (as evidenced by the wide error bars).

This result for "Same" trials goes against expectations: The

"Same" trials should involve some form of exhaustiveness

(all letters must be checked for matches before a "Same"

response can be made); higher level of exhaustiveness can

only be achieved by increasing the distance between start-

ing point and boundary position. Thus, the "Same" re-

sponse line (blue) should behave quite differently from the

"Different" response lines, something completely missing

from the present results which may be attributable to the

fact that the starting position in EZ is fixed to the mid-point

between 0 and a in every condition.
Ter estimates account for the majority of the variance

of RT results (correlation is 0.845), which is counterintu-

itive: If most of the changes in response times are not

caused by decisional processes, then it is difficult to explain

why participants are slower for more complex stimuli. As

seen in Figure 4, there are significant effects between con-

ditions for Ter: The one-difference trials take longer base
times compared with trials having more differences, as is

the case of mean RTs. This is problematic because it im-

plies that most of the response time is spent on encoding

and motor response times. The magnitude of Ter is often
larger thanmany of the fast response times, something that

should be impossible from the diffusionmodel. On average

1.2% of the trials produced responses that are faster than

the estimated Ter parameter. In the condition with 4 let-
ters, only 1 of which is mismatching, this proportion rises

to 5.5%. Thus, EZ seems to wrongfully estimate the pro-

cesses surrounding the accumulation of evidence in this

specific experiment.

To determine if it is because EZ has too many con-

straints that it cannot capture the results in a meaningful

way, we ran two exploratory analyses using variations of

EZ. First, we note that in EZ, internal noise is fixed. Yet,

with additional letters, it might be possible that within-

trial randomness is increased, a possibility that Ratcliff and

Hacker (1981) alluded to in their Experiment 1. To accom-

modate internal noise, we chose to set the within-trial vari-

ability s to 0.1 times the total number of letters. The ratio-
nale for doing this is that with more letters, there should

be a larger amount of noise in the decision process. This is

done in EZ by increasing s. This variation is easily imple-
mented in the SPSS syntax by changing the line
Compute s = 0.1.

to

Compute s = 0.1 * ntotal.

where ntotal is the SPSS variable containing the number of
letters in the string. The results were however not convinc-

ing for three reasons. First, EZ suggests that the mean sep-

aration between boundaries is increasing for both "Same"

and "Different" responses. Yet, for "Different" trials, a sin-

gle difference is enough to trigger a response and con-

sequently, "Different" threshold should not be increasing.

Second, drift rates sped up with an increasing number of

letters, a result quite contrary to expectation. Finally, we

again have the problematic result that most of RT varia-

tions are attributable to base response times Ter. About
1.1% of the RTs are below the lower bound predicted by

Ter. This percentage rises to 4.6%when the complexity is 4
and the number of differences is 1. Because non-decisional

time effects bear no explanation regarding the changes in

RTs in the "Same"-"Different" task, we are still left in an in-

conclusive state.

In a second variation, we decided to change the start-

ing point of the model (the parameter z) so that it is lo-
cated at a/(ntotal + 1). The rationale for doing this is that
"Same" responses (the top boundary) should be exhaustive

to detect all-identical letters, so that the boundary must

move further away from the starting point when the num-

ber of letters increases. The "Different" responses, on the

other hand, are self-terminating: any single mismatch is

enough, irrespective of the total number of letters in the

string. Hence, the distance between the lower boundary
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Figure 3 Mean response times, mean standard deviations, proportion correct, and mean skewness as a function of the

number of differences (ndiff) and the total number of letters (ntotal) (for the "Same" responses, estimated separately for

the matching case and mismatching case conditions) from the data of the “Same” - “Different” experiment. Error bars

shown are correlation-adjusted 95% confidence intervals of the mean.

and the starting point should be a constantwhereas the dis-

tance between the starting point and the upper boundary

must increase as the total number of letters increases. This

variation can only be performed in Mathematica by solv-
ing Eqs. 1b, 3b and 5b with a/2 replaced by a/(ntotal + 1).
Note that with EZ, we cannot force the zs to have the same
value across conditions, only that its separation to the top

boundary is proportional to the number of letters. The re-

sults of this new set of analyses exacerbated the problem

regarding Ter: According to this version of EZ, about 400
ms is dedicated to base response time in the 1-difference

"Different" trials. Yet, more than 20% of the trials are com-

pleted prior to 400 ms, this figure is just not reasonable,

and we have to conclude that this version of EZ is provid-

ing an inadequate fit to the data.

Discussion

To understand the inability of EZ to fit the data, and follow-

ing Wagenmakers et al. (2008), we ran three checks. First,

we checked the shape of the RT distribution. For a data to

be a good fit, the RTs must be skewed, which is the case

here. Also, the spread should become more pronounced as

task difficulty increased. However, this is not what is ob-

served in the current experiment. If we examine Figure

3, we see mean RTs increasing with the number of letters,

but this increase is not mirrored by an increase in stan-

dard deviations. A possibility is that the participants want

to reduce response times in the slower “Different” condi-

tion by truncating the slow responses. That predicts more

errors in the “Different” condition, as is observed in the

results. Second, we checked the relative speed of error re-

sponses. For a good fit with EZ, correct and error response

RTs should have the same distribution because both re-

sponses have the same (null) variability parameters st and
sz . This was not found in the results: error response times
seem to have the same means irrespective of the response

whereas the correct RTs are faster for the “Same” than for

the “Different” responses (the fast-same effect). There are

very few errors in most conditions, so it is difficult to as-

certain the replicability of this result (see e.g., Krueger &

Shapiro, 1981). Third, we checked for a bias in the starting

point by plotting the mean RTs to visually judge whether
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Figure 4 Mean drift rate (v), mean separation between boundaries (a), mean encoding and motor response time (Ter),
and predicted skewness from these parameters as a function of ndiff, and ntotal (for the "Same" responses, estimated

separately for the matching case and mismatching case conditions) with parameter s set to 0.1e/
√
s. Error bars show

95% confidence intervals of the mean.

the means cross over in such a way that errors are fast for

one response and slow for another response. This was not

the case: as seen above, the errors were flat whereas there

was a “fast-same” effect for the correct responses. Yet, Rat-

cliff and Hacker (1981) argued strongly for a decision bias

in the “Same”-“Different” task.

In our opinion, the most notable discrepancy between

the model and the data is to be found in the skewness of

the RTs. In the empirical data, as seen in Figure 3, skew-

ness is below 2; there is even a trend for skewness to be

decreasing for more difficult "Different" conditions. On

the other hand, when we look at the predicted skewness

from EZ, they are either stable just above 2 or increasing

in the condition with the slowest responses and more er-

rors. Looking back at Figure 1, we see that if the drift rate

is smaller, the arrow pointing towards the upper boundary

is less steep. Consequently, the RTs are spread out towards

very long response times, increasing the spread and/or the

skewness. Yet, none of these trends are seen in the data.

Quite the contrary: Conditions with longer response times

are not more spread out and are not more skewed. This

may explain why Ter is overly large: this parameter com-
pensates for the inability of the model to fit data that are

slower but not more skewed and more spread out.

General discussion
EZ diffusion model is an attempt to create an easier and

more accessible version of the diffusion model. The result

is a simpler, computationally cheaper and easily manipu-

lated estimation procedure. However, by doing so, it loses

the full generalizability of the Ratcliff’s diffusion model,

which contains more parameters but can fit the entire RT

distribution, not just three descriptive statistics summa-

rizing the raw data. EZ can be used with many software

(with two new additions described herein) including R, Ex-
cel, SPSS andMathematica.
One limitation of EZ is that all the conditions are fitted

separately. For example, consider a “Yes”-“No” experiment

in which the upper boundary triggers a “Yes” response and

the lower boundary, a “No” response. The same a param-
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eter should be used in both conditions. However, it is not

possible with EZ to constraint parameters to be equal be-

tween conditions. This is the role of a design matrix as the

one implemented in DMAT (Vandekerckhove & Tuerlinckx,

2008).

In the same vein, the core assumption behind EZ, the

nullification of across trial variability, has been criticized

by Ratcliff and Smith (2015): “[. . . ] it is unreasonable to as-

sume that subjects can set their processing components to

identical values on every equivalent trial of an experiment

[. . . ]” (p. 7).

We tested EZ from a dataset obtained using a “Same”-

“Different” task. Its utility in this task seems however ques-

tionable, as the results suggested that EZ attributed most

of the response time to non-decisional processes (as esti-

mated by Ter). This result is counterintuitive as the mo-
tor responses are identical between conditions and the

perception processes should be fairly equivalent in see-

ing "Same" strings and seeing "Different" strings. Also, on

many trials, the observed RTs were smaller than the esti-

mated parameter Ter which is a lower bound in the diffu-
sion model. Thus, the estimates proposed by EZ and the

variations we tested are just not realistic. We were able

to locate the inability of EZ to fit the present results to a

problem of skewness. EZ has difficulties predicting more

symmetrical distributions when difficulty increases. Yet,

this is what was observed in the data. Wagenmakers et al.

(2007) noted that this is something that needs to be checked

in the data before proceeding to an EZ analysis. Nonethe-

less, the present results do not endanger the model; rather,

it shows that with regards to the "Same"-"Different" task,

an adequate model is still to be found.

One core assumption underlying diffusion models is

the single evidence count. Alternative models such as ac-

cumulator models (LBA in particular; Brown & Heathcote,

2008) are similar but rejected this central assumption by

postulating that on every trial, multiple counts are active

in parallel. Each of these counts can trigger a different re-

sponse. How well it would fit the “Same”-“Different” data

remains to be seen.
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Listing 1 SPSS syntax to get v, a and Ter from the columns MRT, VRT and Pc assuming that s = 0.1. Lines beginning
with asterisks are comments. This can be copy-pasted in a syntax file.

* s is the scaling factor parameter, fixed.
COMPUTE s = 0.1.

* if you are using ms, divide 0.1 by sqrt(1000):.

* COMPUTE s = 0.1 / sqrt(1000).

* temporary variable.
COMPUTE logitpc = ln(Pc/(1-Pc)).

* the rate parameter.
DO IF Pc < 1/2.
COMPUTE v= -s*sqrt(sqrt((logitpc*(pc**2 * logitpc - Pc*logitpc + Pc - 1/2)) /VRT)).
ELSE.
COMPUTE v= +s*sqrt(sqrt((logitpc*(pc**2 * logitpc - Pc*logitpc + Pc - 1/2)) /VRT)).
END IF.

* the boundary separation.
COMPUTE a = s**2 * logitpc / v.

* a shortcut variable.
COMPUTE y = - v * a / s**2.

* the estimated mean decision time.
COMPUTE mu1 = (a / (2 * v )) * ((1-Exp(y)) / (1 + Exp(y) )).

* the encoding + motor response time.
COMPUTE Ter = MRT - mu1.

* some cleaning.
VARIABLE LABELS v "drift rate".
VARIABLE LABELS a "Separation between the boundaries".
VARIABLE LABELS Ter "encoding + motor response time".
FORMAT v (F8.3) a (F8.3) Ter (F8.3).
DELETE VARIABLES y logitpc mu1.
EXECUTE.
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Listing 2 SPSS commands to open a raw data file, and generate the needed descriptive statistics so that Listing 1 is ready
to be run.

SET DECIMAL DOT.

* set the working directory and open the file.
CD "C:\\Users\\Me\\Documents".

DATA LIST list file = "GeorgeData.dat"
/RT rep.

* reduce data to mean, standard deviation and percent correct.
AGGREGATE outfile = "GeorgeStatistics.SAV"

/MRT = Mean(RT)
/SDRT = SD(RT)
/Pc= Mean(rep).

* get the obtained aggregates and transform sd in variance.
GET file = "GeorgeStatistics.SAV".
COMPUTE VRT = SDRT**2.
EXECUTE.
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