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Abstract One vein of our research on psychological systems has focused on parallel processing

models in disjunctive (OR) and conjunctive (AND) stopping-rule designs. One branch of that re-

search has emphasized that a common strategy of inference in the OR situations is logically flawed.

That strategy equates a violation of the popular Miller race bound with a coactive parallel system.

Pointedly, Townsend & Nozawa (1997) revealed that even processing systems associated with ex-

treme limited capacity are capable of violating that bound. With regard to the present investiga-

tion, previous theoretical work has proven that interactive parallel models with separate decision

criteria on each channel can readily evoke capacity sufficiently super to violate that bound (e. g.,

Colonius & Townsend, 1997; Townsend &Nozawa, 1995; Townsend &Wenger, 2004). In addition, we

have supplemented the usual OR task with an AND task to seek greater testability of architectural,

decisional, and capacity mechanisms (e. g., Eidels et al., 2011; Eidels et al., 2015). The present study

presents a broad meta-theoretical structure within which the past and new theoretical results are

embedded. We further exploit the broad class of stochastic linear systems and discover that inter-

esting classical results from Colonius (1990) can be given an elegant process interpretation within

that class. In addition, we learn that conjoining OR with AND data affords an experimental test of

the crucial assumption of context invariance, long thought to be untestable.
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Introduction
Imagine a driver approaching a busy intersection. She sees

both a red light and a pedestrian entering the crosswalk.

Either one of these should cause the driver to stop. In fact,

she should stop based on the first one of these that she sees.

This is a task with two consistent signals and a disjunctive
orOR decision rule. Her response times (RTs) should reflect
the minimum time to process the two signals. Other logi-

cal rules, the most obvious being a logical conjunction (an
AND decision rule), are possible. For example, the driver

should wait until both the light changes to green and the

pedestrian is out of the intersection before she proceeds. If

the driver is forced to process one signal at a time, serial
processing ,then unless there is a terrific speed-up when
more than one signal appears, performance will be much

slower with the greater number of signals, that is, with

an increased workload. Thus, the typical serial model will

be what is known as limited capacity but even when both

signals can be processed simultaneously (parallel process-
ing), the system can be quite limited in its performance
(Townsend, 1972).
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Figure 1 (a) A basic serial model where the processing of internal channels occurs in serial order. (b) A basic parallel

model where the processing of internal channels occurs simultaneously (c) A basic coactive model where the information

from each internal channel sums together before the decision stage.

(a)

(b)

(c)

The perception-action example just presented repre-

sents a focus of intense interest in both pure and applied

psychology over many years. Yet, parallel processing is

purported to be ubiquitous in the brain and almost any

psychological task involving more than one sub-process

raises questions of parallel vs. other architectures, includ-

ing serially arranged systems. For an up to date account

of our general approach to the developement of theory-

driven methodologies, see Algom, Eidels, Hawkins, Jeffer-

son, and Townsend (2015) and manifold applications in

Algom, Fitousi, and Eidels (2017). Thus, the fundamental

properties of elementary psychological systems, including

parallel architectures, continue to be of high importance.

In addition to the question of pure knowledge concerning

basic psychological processing systems, there are several

fields in perception, cognition and reaction of great his-

torical and contemporary interest in psychology. One that

reaches back into the nineteenth century but remains of

high importance in modern psychology pertains to Gestalt

Psychology and its modern referents such as initiated by

Wendell R. Garner and others (e.g., see the recent in-depth

surveys and reviews in Algom & Fitousi, 2016; Fitousi & Al-

gom, 2018; Colonius & Diederich, 2018).

Figure 1 shows a serial (panel a), parallel (panel b),
and a coactive model (panel c) where activation of paralled

channels are summed before a decision. Here, D the de-

cision could refer to any logical decision gate (e.g., OR or

AND) but in the case of the coactive system, D would gener-

ally simply signify that the activation achieves a decisional

criterion. Subsequently, our language will precisely indi-

cate the type of decision envisioned.

Now, ordinary parallel models, which possess decision

bounds (i.e., criteria) for each channel will be contrasted

below, as in the literature, with coactive models, but only

the parallel models are under quantitative scrutiny here.

In fact, the capacity of parallel systems—their response to
changes in workload—could be affected not only by work-

load but also bywhether the channels interact or not and, if
they do, whether the interactions are positive (facilitatory)
or negative (inhibitory). We focus our analyses on parallel
systems with channels that interact.

There are now viable parallel models, defined mathe-

matically, that have been successfully applied to many em-

pirical phenomena. These include but are not limited to

the theory of visual attention (TVA, e.g., Bundesen, 1990),
the linear ballistic accumulator (LBA, e.g., Brown & Heath-
cote, 2008), and the predictive interactive multiple memory
systems framework (Henson & Gagnepain, 2010).
Our present concern though, is with fundamental prop-

erties of broad classes of parallel systems rather than spe-
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cific models, in the spirit of theoretical work by Dzha-

farov (1993), Smith and Van Zandt (2000), and Townsend,

Wenger, and Houpt (2018). In fact, to elaborate a bit fur-

ther, our focus will be on the analysis of interactive par-
allel channels and comparison with stochastically indepen-
dent parallel channels which do not vary in efficiency as
workload is increased. In that sense, our quantitative in-

vestigation continues the tradition of Colonius (1990), Colo-

nius and Vorberg (1994), Colonius and Townsend (1997),

Townsend and Wenger (2004, 2014), and Eidels, Houpt, Al-

tieri, Pei, and Townsend (2011).

The overall goals of the present investigation then, are

as follows: We start by providing background on the psy-

chological interest in these kinds of systems. A major por-

tion of that history revolves around the study of redun-
dant signals in OR tasks (see background in Townsend &
Nozawa, 1995). We put forth a strong objection to the most

popular and long-standing mode of connecting theory and

data in such studies.

We next formulate a general theory of models of inde-

pendent vs. interactive parallel systems for OR and AND

decision situations. Within that theory, we recall seminal

results of Colonius and colleagues (Colonius, 1990; Colonius

& Vorberg, 1994). This type of model is more descriptive

because it merely assumes a joint processing time distribu-

tion on the parallel channels and then imposes a stopping

rule.

Next, we consider models that assume activation-state
spaces in which channel activations accrue up to decision
thresholds. This tactic brings us square into the topic of

the present special issue of TQMP: accumulator or sequen-
tial sampling models. Of course, in our case, each paral-
lel channel becomes a sequential sampling system. In the

near past we have referred to this entire class as accrual
halting models (Townsend, Houpt, & Silbert, 2012).
We thereby introduce a specific type of these accrual

halting models which are, in fact, stochastic linear systems.
We call upon members of this class in order to character-

ize and demonstrate various principles of parallel systems.

We then report not only systems that, as in Townsend and

Wenger (2004), violate the predictions of Colonius and col-

leagues, but important and up to now, novel stochastic

linear systems, including some that perfectly capture the

properties described by Colonius (1990). We further sug-

gest that this set of models serves valuable purposes of tax-

onomy in which to explore theoretical issues and interpret

data.

A critical assumption in the field of race models, re-

viewed and analyzed in detail below, that has played a

dominant role in multi-sensory perception, is that of con-
text invariance. For approximately 40 years this assump-
tion has been thought to be empirically untestable (see

e.g., Lombardi, D’Alessandro, & Colonius, 2019; Luce, 1986;

Ashby & Townsend, 1986). A contribution of the present in-

vestigation is that we demonstrate that if the experimenter

utilizes both an OR (i.e., disjunctive stopping rule) as well

as an AND (i.e., conjunctive stopping rule), then certain

types of outcomes concerning workload capacity predic-

tions, can falsify context invariance.

Our concluding discussion points out some recent con-

tributions to the literature that appear compatible with our

own message (e. g., Brown & Heathcote, 2008; Henson &

Gagnepain, 2010). We then reiterate our primary findings

and conclusions and envision promising future research

possibilities. Finally, for reference, Table 1 summarizes

some of the most critical equations and definitions in the

material that follows.

A Brief History and Background
The performance of parallel models is intriguing from

a psychological standpoint, and has foundational impor-

tance for understanding human information processing.

This is because, for example, more signals might be per-

ceived faster than few in an OR situation simply because,

statistically, the probability of the fastest time out of n, be-
ing quicker than say time t, will be greater than that for
k < n (Colonius & Townsend, 1997; Gumbel, 1958; Lo-
gan, 1988; Raab, 1962; Townsend & Colonius, 2005). This

will certainly be true for parallel channels, each of whose

speed does not change as the number of channels changes.

It will remain true, but decreasingly so, for parallel mod-

els whose channels slow down as the number of engaged

channels increments (due to increased workload) up to

some limit of slowing down of these channels. At such a

point, the overall minimum processing time will degrade

to be worse than that of an original single channel.

On the other hand, performance might speed up or

slow down when multiple channels are operating on, sim-

ply depending on whether the signals are congruent or in-

congruent (e. g., Fan, McCandliss, Sommer, Raz, & Posner,

2002; Wenger & Townsend, 2006; Eidels, Townsend, & Al-

gom, 2010; Shalev & Algom, 2000). The general topic of how

performance varies with number of pertinent signals has

been a popular one for at least half a century now (e. g.,

Sperling, 1960; Raab, 1961; Estes & Taylor, 1964; Egeth,

1966; Sternberg, 1966; Bernstein, Rose, & Ashe, 1970; Nick-

erson, 1973), including work in areas as disparate as ap-

plied decision-making (e. g., Patterson et al., 2013) andmul-

timodal perception (e. g., Calvert, Spence, Stein, et al., 2004;

Otto &Mamassian, 2012). Modern literature often refers to

this topic as that of workload capacity.
Considerable experimental and methodological effort

(i. e., Colonius, 2016; Lombardi et al., 2019) has followed

papers by J. Miller and colleagues (1978, 1982, 2016) in
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Table 1 Summary of critical equations and definitions.

Name Equation

Grice bound PAB(TA ≤ t orTB ≤ t) ≥ MAX [PA (TA ≤ t) , PB (TB ≤ t)]

Miller’s bound PAB(TA ≤ t orTB ≤ t) ≤ MIN [PA (TA ≤ t) + PB (TB ≤ t) , 1]

C-V lower bound PAB(TA ≤ t andTB ≤ t) ≥ MAX [(PA (TA ≤ t) + PB (TB ≤ t)− 1) , 0]

C-V upper bound PAB(TA ≤ t andTB ≤ t) ≤ MIN [PA (TA ≤ t) , PB (TB ≤ t)]

Capacity for OR COR(t) = HAB(t)
HA(t)+HB(t) = ln(SAB(t))

ln(SA(t))+ln(SB(t)) , whereH(t) =
∫ t

0
f(t′)
S(t′)dt

′
, S(t) = 1− F (t)

Capacity for AND CAND(t) = KA(t)+KB(t)
KAB(t) = ln(FA(t))+ln(FB(t))

ln(FAB(t)) , whereK(t) =
∫ t

0
f(t′)
F (t′)dt

′

which he advanced an inequality on RTs along with some

operational definitions connecting it to possible underly-

ing psychological themes. That inequality has come to be

called the Miller race bound. A lower bound on perfor-
mance was suggested and utilized by Grice and colleagues

(e. g., Grice, Canham, & Boroughs, 1984) and this inequal-

ity (the Grice bound) will enter into our treatment as well.
Soon, the equally valuable conjunctive (AND case) stopping

rule was introduced along with upper and lower bounds

on RT performance, although it has received far less exper-

imental attention (e.g., Colonius & Vorberg, 1994). More

formal theoretical treatments appeared in the 1990s, for

example, Colonius (1990), Schwarz and Ischebeck (1994),

Diederich and Colonius (1991), Miller (1991), Colonius

and Townsend (1997), Townsend and Nozawa (1995) and

Townsend and Wenger (2004).

Almost all the emphasis in empirical work has been

whether or not the race inequality was violated. If a viola-

tion occurred, the inference, according to the operational

definition (Miller, 1982), was that the system was coactive

(i.e., Schröger & Widmann, 1998; Besle, Fort, Delpuech, &

Giard, 2004; Leone & McCourt, 2015), a particular vari-

ant of parallel processing as we noted. Even before ini-

tiating our present more technical analyses, we pause to

note that this had to be falacious or at least exceedingly

suspect due to our earlier demonstrations that quite pedes-

trian systems, even serial processing systems, could cause

violations of that bound (Townsend & Nozawa, 1997). In

any event, coactivation began to receive a more theoret-

ical interpretation by the early nineties (e. g., Diederich

& Colonius, 1991; Schwarz & Ischebeck, 1994; Townsend

& Nozawa, 1995; Colonius & Townsend, 1997). The con-

sensus in all the theoretical accounts was that activation

from independent parallel channels would feed into a fi-

nal conduit in which the summed activationwas compared

against a single decision criterion. This type of model is

exhibited in Figure 1c. The quantitative analyses verified

not only that coactive models could support performance

superior to the standard parallel model with independent

channels and context invariance, but had to violate the

race inequality (see Townsend & Nozawa, 1995).

Thus, almost all experimental papers have simply con-

cluded ordinary race processing if the inequality was sat-

isfied or coactivation if it was not. Lately, some studies

have shifted from a conclusion of coactivation on discov-

ery of violation of the race inequality and have employed

more neutral but sometimes rather vague language. For

instance, some investigators have used terms such as bind-
ing, integration, multi-modal advantage, etc. (e. g., Raij,
Uutela, & Hari, 2000; Harrar, Harris, & Spence, 2017; Noel,

Modi, Wallace, & Van der Stoep, 2018).

Our inquiry will not focus on coactivation but rather

with ordinary parallel processing where each channel has

its own decisional criterion. Figure 1b shows a basic paral-

lel model. Our new theoretical developments expand our

earlier Townsend andWenger (2004) work in the following

ways: (a) the class of race models is far larger than those

that assume context invariance and that are typically re-

ferred to in the literature; and (b) a considerable sub-class

of race models can produce not only super capacity but

also violations of the race inequality. Moreover, our gen-

eral scheme encourages the perspective of a continuum of

capacity effects and due attention to the fact that a substan-

tial number of experiments find performance lying in the

range of unlimited capacity (defined rigorously below) to

mild limitations in capacity, far from the upper race bound

as well as the lower Grice bound (also defined below). In

fact, we have demonstrated that even the famous Stroop
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stimuli can elicit performance in this very moderate range

(Eidels et al., 2010). Proceeding in that direction, it is nec-

essary to summarize our informal but crucial definition. A

parallel race model assumes (a) parallel processing chan-

nels possessing joint distributions on the individual pro-

cessing times per channel; (b) in OR situations, the first

channel to finish determines the RT (i.e., a minimum time
stopping rule), while in AND situations, the overall process-
ing time demands that both channels have completed pro-

cessing (i.e., a maximum time stopping rule); and (c) there
may or may not be positive or negative interactions across

channels, along with noise.

So-called standard parallel models assume not only

stochastically independent channels but also invariance of

the marginal processing time distributions of each chan-

nel (Algom et al., 2015; Zhang, Liu, & Townsend, 2018,

2019). Colonius (e. g., Colonius, 1990; Ashby & Townsend,

1986; Luce, 1986) referred to this as the assumption of

context independence. We have since suggested the term
context invariance to distinguish this concept from that of
true stochastic independence. Context invariance might

fail even in models with stochastically independent chan-

nels as the workload changes, for instance, through limited

resources. However, the main alternative is alterations

due to channel interactions and those are the focus of the

present inquiry.

In the early theoretical work by Colonius (1990) it was

recognized that a different reason for violations of the race

inequality could be the failure of context invariance (see

page 269 in Colonius, 1990; Colonius & Townsend, 1997).

Thus, when the workload (i.e., the number of signals) is

increased, the average speed of individual channels may

or may not be affected. The more technical term for av-

erage speed is marginal processing time distribution and
we will use that terminology. Nonetheless, outside of the

discussion in Townsend and Wenger (2004), there has not

been much attention to this rather important aspect. We

demonstrated there that many reasonable parallel models

which allowed cross-channel interactions fail to preserve

the channels’ marginal distributions. This possibility can

deliver experimental conclusions that are quite distinct

from those permitted under the assumption of context in-

variance. However, many strategic issues have remained

untouched and, in one important case, incorrectly under-

stood. In particular, and importantly, we show that com-

bining experimental results from both OR and AND condi-

tions, presumably from the same participants, can some-

times falsify the critical assumption of context invariance.

In our earlier theoretical explorations (Townsend &

Wenger, 2004), it was claimed that realistic stochastic sys-

tems such as those employed here were incapable of re-

alizing the Colonius (1990) regularities. We were wrong

in this assertion. Our present set of more extensive and

penetrating analyses not only finds a type of stochastic sys-

tem that can perfectly realize the Colonius (1990) predic-

tions but also demonstrates that other arrangements can

approximate these.

Establishing the Standard Parallel Model and the Fun-
damental Inequalities for OR and AND Processing
Times
Performance expressed in terms of RTs can be written in

terms of various statistics, including the cumulative distri-

bution functions as in Miller (1982) and many papers that

have ensued. An alternative that has been found to be

useful for many purposes has been what has been called

the workload capacity function, Ci(t), where the "i" is used
to designate the kind of decisional stopping rule in force

(Townsend & Nozawa, 1995; Townsend & Wenger, 2004;

Townsend & Colonius, 2005), that is, i = OR or AND. How-

ever, because much of our discussion revolves around the

marginal processing time distributions vs. the joint distri-

bution on processing times, the first technical sections will

avoid the Ci(t) machinery.

In the present section,we summarize the critical regu-

larities to establish a reference point for the developments

that follow. The simplest case for OR processing concerns

two inputs. These inputs can be presented either alone

or together, and when presented together are processed

using a disjunctive decisional strategy, represented by the

Boolean OR operator. Here we assume two channels, A
and B, with (unobservable) processing times TA and TB .

1

From elementary probability theory, we know that when

both signals are present

PAB(TA ≤ t or TB ≤ t) =

PAB(TA ≤ t)
+PAB(TB ≤ t)
−PAB(TA ≤ t and TB ≤ t).

(1)

It has long been known that if the channel times are

stochastically independent, then

PAB(TA ≤ t or TB ≤ t) =

PAB(TA ≤ t)
+PAB(TB ≤ t)
−PAB(TA ≤ t)PAB(TB ≤ t).

(2)

Now, if themarginal processing times are unchangedwhen

going from single to double signal trials (i.e., if context in-

variance holds), and if the channels are independent, then

1
These are to be distinguished from observable RTs.
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we get

PAB(TA ≤ t or TB ≤ t) =

PA(TA ≤ t)
+PB(TB ≤ t)
−PA(TA ≤ t)PB(TB ≤ t).

(3)

We refer to this combination of independence together

with invariant marginals as being parallel with stochasti-

cally independent channels, with unlimited capacity, and

we refer by shorthand, to this conception as the standard
parallel model.
Next, note that if the left-hand side of Equation 1 is

larger than or equal to either PAB(TB ≤ t) or PAB(TA ≤
t) alone, and therefore the biggest of the two then:

MAX[PAB(TA ≤ t), PAB(TB ≤ t)] ≤
PAB(TA ≤ t or TB ≤ t)

(4)

Satisfaction of the condition that PAB(TA ≤ t or TB ≤ t)
is greater than either of the single signal processing times

becomes the well-known Grice inequality (e. g., Grice et al.,
1984):

PAB(TA ≤t or TB ≤ t) ≥
MAX[PA(TA ≤ t), PB(TB ≤ t)]

(5)

If overall processing time is less than predicted by Equa-

tion 3 then the system is designated as exhibiting limited

capacity. And, if the Grice inequality, Equation 4, is vio-

lated, performance is considered to be extremely limited

capacity (Townsend &Wenger, 2004; Townsend & Nozawa,

1995; Townsend & Eidels, 2011).

In contrast to limited capacity, what level of perfor-

mance would be superior to that of the standard paral-

lel model (Equation 3)? As observed earlier, Miller (e.g.,

1978, 1982) brought to bear Boole’s inequality to address

this question:

PAB(TA ≤ t or TB ≤ t) ≤
PA(TA ≤ t) + PB(TB ≤ t)

(6)

If the inequality in Equation 3 is violated, then perfor-

mance must be superior to what would be expected from

the standard parallel model. Our approach views perfor-

mance that is faster than that associated with Equation 3

as super capacity, and if the Miller race inequality, Equa-
tion 6, is violated, as extreme super capacity (Townsend &

Nozawa, 1995; Townsend & Wenger, 2004; Townsend & Ei-

dels, 2011). So far then, the logic is that if performance for

parallel race models is neither extreme super capacity nor

extremely limited capacity, the data should lie between the

Miller and Grice’s bounds:

MAX[PA(TA ≤ t), PB(TB ≤ t)] ≤
PAB(TA ≤ t or TB ≤ t) ≤

MIN[PA(TA ≤ t) + PB(TB ≤ t), 1]

(7)

Next, consider a pair of independent parallel channels

that, when processing two inputs, determines the output

on the basis of a conjunctive decisional strategy, repre-

sented by the Boolean AND operator. It is then required

that we develop a set of results corresponding to those in

Equations 7 for the AND case. To cut to the chase, and

referring the interested reader to full discussions in ear-

lier papers (e. g., Townsend & Wenger, 2004; Algom et al.,

2015), the bounds corresponding to Equation 7 for the AND

decision rule are:

MAX[(PA(TA ≤ t) + PB(TB ≤ t)− 1), 0] ≤
PAB(TA ≤ t and TB ≤ t) ≤

MIN[PA(TA ≤ t), PB(TB ≤ t)]
(8)

So if performance lies between the standard parallel model

(Equation 3) and the upper bound (Equation 8), it is defined

as moderately super capacity, and if greater than that, ex-

treme super capacity. Likewise, if processing times are

stochastically slower than that prescribed by Equation 3

but greater than the lower bound of Equation 8 the model

is said to be moderately limited capacity and, if below that,

extremely limited capacity.

How Channel Dependencies Affect Overall Speed Rela-
tive to the Fundamental Inequalities
The first general examination of the effects of stochastic

dependencies on parallel processing was provided by Colo-

nius (Colonius, 1990; Colonius & Vorberg, 1994). The pellu-

cid logic of this approach was that the extent to which per-

formance is faster or slower than what an unlimited ca-

pacity, independent, parallel model predicts is a function

of the sign and magnitude of the stochastic dependence

between the channel processing times. We begin with a

summary ofwhat is knownwith respect to self-terminating

(OR) processing.

Positive dependence is naturally defined by the prop-

erty that

PAB(TA ≤ t and TB ≤ t) > PAB(TA ≤ t)PAB(TB ≤ t)

and negative dependence is defined as the joint distribu-

tion of TA and TB being less than PAB(TA ≤ t)PAB(TB ≤
t). The influence of the dependency’s magnitude as well
as its sign, is quite intuitive since this joint probability,

PAB(TA ≤ t and TB ≤ t) is subtracted from the sum of
the marginals (Equation 3). But it can be observed that the
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stochastic independence by itself offers no indication con-

cerning the effect of moving from one signal to two. The

product of terms in Equation 3 could be larger than the

marginals when only one signal is present (producing lim-

ited capacity), or smaller (producing super capacity).

When compared with Equation 3, and when moving

from single to the double signal trials, a positive correla-

tion produces slower performance than an unlimited ca-

pacity race model, whereas a negative correlation elicits

faster processing times. This can be seen by recalling the

basic OR formulation:

PAB(TA ≤ t or TB ≤ t) =

PAB(TA ≤ t)
+PAB(TB ≤ t)
−PAB(TA ≤ t and TB ≤ t)

(9)

When the marginals are constant (i.e., with marginal in-

variance) when moving from single-signal trials to double-

signal trials,

PAB(TA ≤ t or TB ≤ t) =

PA(TA ≤ t)
+PB(TB ≤ t)
−PAB(TA ≤ t and TB ≤ t)

(10)

we see that a positive dependence is defined by reduced

speed in a probabilistic sense, and increased speed when

there is a negative dependence, both relative to the stan-

dard parallel case.

Colonius’s (1990) insight was to now bring to bear re-

sults established by Höffding (1940), Fréchet (1951) and

others. Colonius determined that, assuming invariance of

the marginal probabilities, the greatest speed-up in unlim-

ited capacity race models that can occur with a negative

dependence actually attains the Miller race bound, that is,

PAB(TA ≤ t or TB ≤ t) =

PA(TA ≤ t)
+PB(TB ≤ t)

(11)

in the regionwhere the sum is not greater than 1. Similarly,

the most extreme slowing down that can occur with a pos-

itive dependence is equivalent to the Grice bound. That is,

importantly, this lower bound is reached when the depen-

dence reaches its positive extreme:

PAB(TA ≤ t or TB ≤ t) =

MAX[PA(TA ≤ t), PB(TB ≤ t)]
(12)

Now, consider the AND stopping rule, which was ex-

amined by Colonius and Vorberg (1994). The situation is

opposite to that of the OR case: with a strictly positive

correlation, and with marginal invariance, it follows that

PAB(TA ≤ t and TB ≤ t) > PA(TA ≤ t)PB(TB ≤ t).
Therefore, a positive correlation now facilitates perfor-

mance rather than degrading it, as it did in the OR case,

because the marginals do not directly enter these mathe-

matical expressions. The converse holds for a negative de-

pendence. A maximal positive correlation elicits

PAB(TA ≤ t and TB ≤ t) =

MIN[PA(TA ≤ t), PB(TB ≤ t)]
(13)

and when a negative dependency is maximized

PAB(TA ≤ t and TB ≤ t) =

PA(TA ≤ t)
+PB(TB ≤ t)
−1,

(14)

as long as the right-hand sum is great than or equal to 0.

At this juncture, we have established that in the pres-

ence of context invariance, positive dependencies hurt

OR performance and negative dependencies help it. Con-

versely, in AND processing, positive dependencies enhance

performance whereas negative dependencies degrade per-

formance. How can the discussion be deepened and ex-

panded? The most natural expansion is to bring in the no-

tion of states of processing, as many if, not most, models of

RT in recent psychology are, indeed, like sequential sam-

pling models,founded on the concept of state spaces and

their stochastic behavior over time (e. g., Link & Heath,

1975; Ratcliff, 1978; Townsend & Ashby, 1983; Busemeyer &

Townsend, 1993; Donkin, Brown, & Heathcote, 2011; Smith

& Van Zandt, 2000).

Parallel Systems Based on Activation Accrual within
Channels
The need to explore inter-channel dependencies motivated

us to investigate very general parallel systems whose chan-

nels accrue activation until a decision threshold or crite-

rion is reached. As observed earlier, we have termed such

models accrual halting models (Townsend et al., 2012).

This class contains a considerable number of models, in-

cluding all sequential sampling models.

In this approach, each parallel channel is conceptual-

ized as a stochastic process on accumulating information

or activation, as illustrated in Figure 4a. In this represen-

tation Uj denotes the input value to each channel, and Nj

denotes the white noise in each channel, where j = A,B.
The activation coefficients a and b in each channel repre-
sent stabilizing self-feedback. These parallel channels may

or may not interact (Townsend &Wenger, 2004; Townsend

& Altieri, 2012). Activation or even noise associated with

one channel may feed over, in a positive or negative fash-

ion, to the other channel.
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In the current work, for the case where the marginal

probabilities can vary, we introduce dependencies in the

system by allowing cross-channel talk between channel A

and B. Specifically, α and β are cross channel activation co-
efficients. Ifα > 0, then the output of channel B is positively
dependent on channel A. If α < 0, then the output of chan-
nel B is negatively dependent on channel A, and vice versa

for β. The reader may observe the important facet that for
the invariantmarginals case, the dependency in the system

is introduced by a common noise to both channel A and B.

A critical aspect of accrual halting systems is that a pos-

itive dependence in the activation in two channels, A and

B, implies a positive dependence in the completion times

of the two channels. This is straightforward to understand

as the stopping times are completely tied up with the time

point when activation reaches a threshold cj :

P (Tj ≤ t) = P{[MIN T such thatXj(T ) ≥ cj ] ≤ t},
j = A,B

(15)

The intuition is that in, say a parallel system with posi-

tively correlated activated channels, the probability that

XA > cA given thatXB > cB at time t, is the same as stat-
ing the probability that TA ≤ t given that TB ≤ t and these
are greater than the marginal probability that TA ≤ t.
As noted earlier, Townsend andWenger (2004), Wenger

and Townsend (2006) studied a range of models based on

noisy linear systems, with special emphasis on interact-

ing vs. independent channels. With these models, it was

straightforward to use positive dependencies to violate the

Miller bound, although this outcome was avoided with

very weak interactions. If the channels were instead con-

figured to inhibit one another, then Grice’s inequality was

violated with moderate to high levels of negative interac-

tion. If one takes these channel dependencies to represent

correlations, then these results are inconsistent with the

predictions associated with the assumption of context in-

variance.

Now, for some time, all our applications tacitly ac-

cepted the premise that correlated systems facilitate speed

if the correlation is positive and cause slower processing

times if the correlation is negative (Townsend & Wenger,

2004; Wenger & Townsend, 2006; Eidels et al., 2011). How-

ever, as will be shown below,we were wrong: There do ex-

ist simple stochastic linear systems that embody the Colo-

nius (1990) logic rather than our own. First, we need to re-

call the fundamentals of the workload capacity functions.

These will make our statements of comparison and infer-

ences much easier to understand.

Brief Tutorial on the Workload Capacity Functions

The capacity coefficient (Townsend & Nozawa, 1995;

Townsend & Eidels, 2011) is a distribution-free response-

time measure used to index the processing efficiency

change as a function of alterations in the number of inter-

nal channels of a person’s cognitive processing. Townsend

and Eidels (2011) developed a unified set of indexes of per-

formance for OR and AND designs, that include the up-

per and lower bounds discussed earlier. Blaha and Houpt

(2016) presented statistic bounds comparable for situa-

tions where there exists one target accompanied by a sin-

gle distractor, the well known case of single-target, self-

terminating stopping rule. However, as noted earlier, the

emphasis here will be on the OR and AND designs.

In order to specify the capacity measure for the perti-

nent stopping rule, we must append a subscript to indicate

whether, an OR or AND rule is in effect; thus, Ci(t) where
i = OR or AND. Either capacity coefficient Ci(t), as shown
in Equation 16 and 17, can be regarded as a ratio compar-

ing the performance of the system in a double-channel con-

dition to the summation of performances from the single

channels.

COR(t) =
HAB(t)

HA(t) +HB(t)

=
ln(SAB(t))

ln(SA(t)) + ln(SB(t))
,

(16)

where

Hi(t) =

∫ t

0

fi(t
′)

Si(t′)
dt′

and

CAND(t) =
KA(t) +KB(t)

KAB(t)

=
ln(FA(t)) + ln(FB(t))

ln(FAB(t))
,

(17)

where

Ki(t) =

∫ t

0

fi(t
′)

Fi(t′)
dt′

For both versions (OR, AND) of the capacity coefficient, if

Ci(t) = 1, then the system is defined as possessing unlimited

capacity because that is the level associated with the stan-

dard parallel model as described above. If Ci(t) > 1, the sys-

tem is said to possess super capacity at t. And, this level of
Ci(t) indicates that the increasing number of internal chan-

nels actually improves the total processing efficiency of the

system. Super capacity is often associatedwith holistic pro-

cessing or a coactivation system (e. g., Wenger, Schuster, &

Townsend, 2002; Townsend & Wenger, 2014). If Ci(t) < 1,
the system is deemed to be of limited capacity, implying

that the increase in number of internal channels impairs

the overall performance of the system.

We implement a set of simulations of our linear sys-

tems to illustrate the regularities. The simulation methods
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Figure 2 (a) A special case for OR where for all t > 0, the system possesses moderately super capacity. (b) A special
case for OR where for all t > 0, the system possesses moderately limited capacity.(c) A special case for AND where for
all t > 0, the system possesses moderately super capacity. (d) A special case for AND where for all t > 0, the system
possesses moderately limited capacity.

(a) (b)

(c) (d)

are described in the Appendix. Figure 2a and b illustrate

special cases for OR where for all t > 0, the system is, re-
spectively, unlimited, or moderately super, or moderately

limited, in terms of COR(t). Figure 2c and d depict cases
for AND with moderate super and limited capacity, respec-

tively. Recall that extreme super capacity is inferred if an

upper bound is violated and extreme limited capacity is in-

ferred if a lower bound is violated. Then, Figure 3a and

b show instances of OR processing with extreme super or

extreme limited capacity where as Figure 3c and d show in-

stances of AND processing with extreme super or extreme

limited capacity, respectively.

OR and AND Parallel Accrual Systems Permitting Vari-
able Marginals
The details of channel interactions considered here differ

from those of Townsend and Wenger (2004). Specifically,

the interaction here takes place after integration whereas
in the former study the cross-talk was via recurrent feed-

back from the output back to be added to the input signal

plus noise. In spite of this difference, we will see that the

qualitative effects are quite similar.

We will now establish, through simulations, that our

present class of stochastic linear systems enfolds all the ba-

sic types of capacity effects that might be expected from

parallel channels that are either independent, positively

dependent, or negatively dependent. These include but

go beyond the earlier findings of Townsend and Wenger

(2004). Further sections will also reveal that they can cap-

ture the precise properties of the context invariant systems

of Colonius and colleagues (Colonius, 1990; Colonius & Vor-

berg, 1994). We pause to stress that our class of models

is not in competition with Colonius’s findings. The for-

mer, in the whole, is unfalsifiable where the latter is fal-
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Figure 3 (a) A special case for OR where for all t > 0, the system possesses extreme super capacity. (b) A special case for
OR where for all t > 0, the system possesses extremely limited capacity. (c) A special case for ANDwhere for all t > 0, the
system possesses extreme super capacity. (d) A special case for AND where for all t > 0, the system possesses extremely
limited capacity.

(a) (b)

(c) (d)

sifiable. However, we must emphasize that the stochastic

linear systems approach is extremely useful for theoreti-

cal explorations and interpretations of broad sets of exper-

imental paradigms.

So consider the OR case with varying marginals. Fig-

ure 4a presents a schematic for one of the many dynamic

systems in which the marginals are not invariant. When α
and β both have positive signs, it indicates mutual channel
facilitation. If α and β are both negative, it indicates in-
hibitory connections across channels. It is, of course, pos-

sible to have, say, α > 0 but β < 0 or vice versa, but we
do not consider those arrangements here. If α and β are
both 0, we retrieve the standard independent parallel self-

terminating model.

Figure 4b displays the COR(t) functions for two cases:

one in which α and β are 0, and one in which α and
β are > 0. Here it can be seen that when the channels
do not interact, performance obeys the Miller and Grice

bounds, and capacity is unlimited, that is COR(t) = 1
for all t > 0. However,when the channels do inter-

act, and the marginals do vary, performance violates the

Miller bound and the capacity coefficient indicates super-

capacity, that is COR(t) > 1. In this case, the increase in
the marginals far outweighs the negative influence of the

positive dependence. Figure 4c plots the contrast between

non-interactive and negatively interacting channels. Here

it can be seen that the negative interactions lead to per-

formance that violates the Grice bounds and for which the

capacity coefficient indicates limited-capacity processing.

Now consider the AND stopping rule with varying
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Figure 4 (a) A dynamic system in which the marginal distributions on processing times can vary. UA and UB are exter-

nal inputs. NA and NB are channels’ specific noise. D is the decisional logic gate that can follow either OR or AND rule.

α and β are parameters that control the amount of interactive inputs from the other channel. (b) Capacity coefficients
following the OR decisional rule simulated from independent and facilitatory systems. COR of the independent channels

is within the Miller and the Grice bounds, and is very close to unlimited capacity. COR of facilitatory channels violates

the Miller bound at early processing time,which indicates extreme super capacity. (c) Capacity coefficients following the

OR decisional rule simulated from independent and inhibitory systems. COR with inhibitory channels violates the Grice

bound, which indicates extremely limited capacity in inhibitory systems.

(a)
(b)

(c)

marginals with the addition of positive channel interac-

tions. The results here are consistent with those for the

OR case. In the case of positive interactions (Figure 5a),

it can be seen that performance violates the Colonius-

Vorberg bound and that the capacity coefficient indicates

super-capacity processing. In the case of negative in-

teractions (Figure 5b), performance falls well below the

Colonius-Vorberg bound and the capacity coefficient indi-

cates limited-capacity processing.

OR and AND Parallel Systems Permitting Variable
Marginals but Obeying the Bounds
The previous section demonstrated that, as in our earlier

study (Townsend &Wenger, 2004), the present class of sys-

tems can readily evoke marginal distributions that pro-

duce violation of the bounds and in the opposite direc-

tions of the original Colonius predictions. Our new sim-

ulations indicate that the general class of stochastic linear

systems is quite flexible with respect to invariance or non-

invariance of the marginals. In fact, it is possible for the

marginals to be altered, yet obtain performances that not

only obey the bounds but even lie in the province of the

Colonius (1990) predictions. Figure 6a and b illustrate sys-

tems with these characteristics.

In terms of our earlier constructions, these dynamics

are associated through the difference PAB(TA ≤ t) +
PAB(TB ≤ t) − PAB(TA ≤ t and TB ≤ t) in Equation
1 not being as large, either positive or negative, as in the

preceding section. Thus, there exist accrual halting sys-

tems, based on stochastic linear systems, that can behave

in a fashion consonant with the end-result predictions of

Colonius and Vorberg (1994) even though the marginals
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Figure 5 (a) Capacity coefficients following the AND decisional rule simulated from independent and facilitatory systems

with marginal variability. CAND of the independent channels is within the C-V upper and lower bounds and, again, is

very close to the unlimited capacity. CAND with facilitatory channels violating the C-V upper bound, indicating extreme

super capacity. (b) Capacity coefficients following the AND decisional rule simulated from independent and inhibitory

systems. CAND with inhibitory channels violating the C-V lower bound, which indicates extreme limited capacity.

(a) (b)

are not absolutely invariant. Further, it is straightforward

to find parameters which produce moderate super capac-

ity with positive dependence, or limited capacity with neg-

ative dependence, but which do not violate the upper or

lower AND bounds. This result is elicited simply by moder-

ating the degree of positive or negative dependence found

in PAB(TA ≤ t andTB ≤ t). Figure 7a and b illustrate this
behavior.

Parallel Systems with Absolutely Invariant Marginals
As mentioned earlier, we were initially surprised to learn

that our earlier perspective regarding dependent parallel

channels (Townsend & Wenger, 2004) was based on an in-

correct precept: that distributions which possess invariant

marginals lie outside the class of accrual haltingmodels. In

point of fact, we have discovered a simple parallel architec-

ture that does result in absolutely invariant marginals and

for which there are no parameter settings that can elicit

the Townsend and Wenger (2004) predictions.

Figure 8a thus shows a linear system with an OR deci-

sional rule which always leaves PAB(TA ≤ t) = PA(TA ≤
t) and PAB(TB ≤ t) = PB(TB ≤ t) completely un-
changed in moving from the single to the double stimulus

condition. Figure 8b indicates that under positive chan-

nel interactions the system is limited capacity, as foretold

by the Colonius interpretation, and that in the extreme

case, when the dependence is extreme, the Grice bound is

approached. Similarly, Figure 8c exhibits the predictions

with a negative correlation due to inhibitory connections.

Here processing is stochastically speeded up, as in the Colo-

nius schema. Capacity is moderately super capacity. Al-

though the marginals do not affect the AND predictions,

we include the AND behavior for symmetry of discussion.

First consider the positively dependent interaction with

the AND decisional rule: here we obtain super capacity but

do not violate the Colonius upper bound (Figure 9a). Simi-

larly, with negative dependence (Figure 9b), we obtain lim-

ited capacity but without violations of the Colonius lower

bound. In sum, we suspect the elementary noisy linear

model here is possibly the simplest system which leaves

the marginals absolutely invariant. Such systems provide

an existence proof that reasonable state space models can

deliver perfect context invariance.

Moving Toward Experimental Tests: Consideration of
Some AND and OR Response Time Data
The results we presented above demonstrate that the

general class of interactive parallel accrual halting mod-

els are capable of predicting both invariant and varying

marginals. Our developments indicate that even our rel-

atively simple linear-systems-with-noise models can attain

impressive levels of complexity. These facts raise a new set

of questions about model mimicry and experimental iden-

tifiability. Specifically, this set of models, as well as models

based on more complex interactions, cannot be falsified by

standard experiments using AND and OR designs, at least

in the usual way of implementing them in the laboratory

(e. g., Colonius & Diederich, 2018; Miller, 2016; Otto & Ma-

massian, 2017). Yet, the question of the variance or invari-

ance of the marginals is of significant importance. Most

experiments that have attempted to measure workload ca-

pacity have run only one or the other stopping rule condi-

tion, usually the OR alternative (but c. f. Fournier, Bowd,

& Herbert, 2000). Otto and Mamassian (2012) provide one
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Figure 6 (a) Capacity coefficients following the OR decisional rule simulated from independent and facilitatory systems

with marginal variability. COR of the facilitatory system is within the Miller and the Grice bounds, but lower than the

unlimited capacity coefficient. This indicates that there is moderately limited capacity in this facilitatory system. (b)

Capacity coefficients following the OR decisional rule simulated from independent and inhibitory systems. COR of the

inhibitory channels is within the Miller and the Grice bounds, but above the unlimited capacity coefficient.This indicates

that there is moderate super capacity in this inhibitory system.

(a) (b)

of the few studies that not only gathered data from both

OR as well as AND trials. In addition they used the fits

from one to make predictions about the other. Perhaps

those data might be disinterred in order to examine the

predicted linkages found here.

Now, consider the kind of results reported for the

Townsend and Wenger (2004) simulations where the

marginals were typically far from invariant. If the

marginals are dominant (overpowering any increment in

the joint probability) as in those explorations, then per-

formance in both the OR and the AND conditions with

positive channel dependence will likely elicit super capac-

ity. Contrarily, with a negative dependence, with high

marginal variability and therefore a major diminishment

of the marginals, that situation will subdue the effect of

the declined joint probability and cause limited capacity

in the OR condition as well as in the AND condition. As

shown above,the Colonius and colleagues’ (e.g., Colonius,

1990; Colonius & Vorberg, 1994) interpretation can neither

make predictions that violate the bounds nor ones where

OR and AND go in the same directionwith regard to limited

vs.super capacity. This is a positive feature since it implies

falsifiability.

On the other hand, suppose that the OR and AND exper-

imental conditions generate qualitatively distinct capacity

findings, that is OR with limited (but not extremely lim-

ited) and AND with super (but not exceedingly super) or

vice versa. Then, either the Colonius-Vorberg or the mod-

ified Townsend-Wenger approximations of that behavior

(Figures 6,7) could be underlying performance as indexed

by the capacity coefficients. In such an instance, the ex-

perimenter might be able to render the interactions even

stronger in hopes of violating the appropriate bounds, sup-

porting the earlier Townsend and Wenger (2004) interpre-

tation or if not, thereby buttressing the specific Colonius-

Vorberg account.

Eidels, Townsend, Hughes, and Perry (2015) have con-

tributed one of the relatively rare data sets containing

both AND as well as OR capacity coefficients. Moreover,

we have re-analyzed the data utilizing upgraded statisti-

cal tools (Houpt, MacEachern, Peruggia, Townsend, & Van

Zandt, 2016) which were not available when the earlier

study was carried out. Our present conclusions with refer-

ence to the current issues are based on these new analyses.

The OR findings were extremely consistent: All nine

observers revealed limited capacity, that is COR(t) < 1
consistently and in a statistically significant fashion. But,

COR(t) never violated the Grice bound for any of the ob-
servers, though some observer’s C(t) functions appear to
approach that bound. This result means that capacity was

moderately but not extremely limited. Due to the high

degree of conformity in the OR data, we plot the average

capacity measures in Figure 10a. The figure includes the

averaged upper OR Miller bound as well as the averaged

lower Grice bound. These OR data, by themselves are not

contradictory to a hypothesis of context invariance and

suggest, under that interpretation, a positive correlation.

Alternatively, context invariance may fail in the presence

of a negative correlation but with relatively mild effects on

the marginal terms.

The AND results were vastly different, as illustrated in

Figures 10b and c. These figures also contain the averaged
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Figure 7 (a) Capacity coefficients following the AND decisional rule simulated from independent and facilitatory systems

with marginal variability. CAND of the facilitatory system is within the C-V upper and lower bounds but above unlimited

capacity. This indicates that this facilitatory system possesses moderate super capacity. (b) Capacity coefficients following

the AND decisional rule simulated from independent and inhibitory systems. CAND of the inhibitory system is within the

C-V upper and lower bounds but lower than the unlimited capacity. This indicates that this inhibitory system possesses

moderate limited capacity.

(a) (b)

Figure 8 (a) A dynamic system obeys strict marginal invariance and follows the OR decisional rule. (b) Capacity co-

efficients following the OR decisional rule simulated from independent and facilitatory Colonius’ systems. COR of the

facilitatory channels is within the Miller and the Grice bounds, but lower than the unlimited capacity coefficient.This

indicates that this facilitatory system is moderate limited capacity. (c) Capacity coefficients following the OR decisional

rule simulated from independent and inhibitory Colonius’ systems. COR of the inhibitory channels is within the Miller

and the Grice bounds, but is above the unlimited capacity coefficient, which indicates moderate super capacity.

(a)

(b)

(c)
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Figure 9 (a) Capacity coefficients following the AND decisional rule simulated from independent and facilitatory Colo-

nius’ systems with marginal invariance. CAND is within the C-V lower bound but above the unlimited capacity, which

indicates moderate super capacity. (b) Capacity coefficients following the AND decisional rule simulated from indepen-

dent and inhibitory Colonius’ systems. CAND is within the C-V lower bound but lower than the unlimited capacity, which

indicates moderate limited capacity.

(a) (b)

upper and averaged lower Colonius-Vorberg bounds. Four

of the nine exhibited extreme limited capacity through-

out their CAND(t) trajectories, with CAND(t) consistently
violating the lower Colonius-Vorberg bound. In contrast,

five of the nine observers revealed a transition from early

moderate limitations in capacity to extreme super capacity

in later portions of their data. Neither set is in line with

context invariance when taken in conjunction with the OR

data.

Nevertheless, we can explicate the two subsets of data

in an approximative fashion with our stochastic linear

systems models. Observe that we are not attempting to

demonstrate the best possible fits here; rather to see if

our model class can produce the very basic qualitative pat-

terns. Thus, if a system possesses inhibitory interactions

with α = β = −0.25, thenCOR(t) is found to be of moder-
ately limited capacity but CAND(t) breaks the lower Colo-
nius (1990) bound. Figure 11a and b exhibit the predictions

of a model possessing negative interactions. It captures the

essential patterns for both the OR as well as the AND data.

The second subset of observers evidence OR capacity

which is also moderately limited but their AND capacity

starts in a zone of moderately limited capacity then as-

cends to super capacity status. This dual pattern requires a

more dramatic initiative: moderately limited OR capacity

suggests either moderate across-channel inhibition if the

marginals are affected more than the joint term or mod-

erate across-channel facilitation if the marginals are (as in

Colonius, 1990) less than the joint term. The initial moder-

ately low level of AND capacity rules out the second alter-

native but the subsequent super AND capacity excludes the

former. The next simulations explore, for the first time, a

dynamic variation in the cross-talk parameters. In this sit-

uation, α is a function of time and moves from a negative
value of -0.1 up to a positive value of 0.8. Figures 11c and

d exhibit behavior which roughly approximates the quali-

tative behavior of the designated observers.

Again, we emphasize that these developments support

the view of our stochastic linear systems not as in and of

themselves, specific falsifiable models. Rather they should

be regarded as constituting a very general class of mod-

els which can provide a rich environment for exploration.

Thus, they may prove quite helpful in both exposing key

data characteristics but also in bringing forth potential ex-

planatory dynamic models, such as those varying the input

signal, that might lead to further experimental testability.

Conclusions
We have developed a comprehensive meta-theory for par-

allel multi-channel processing. This class, which we pre-

viously termed parallel accrual halting models (Townsend

et al., 2012), encompasses a very broad set of parallel en-

tities since it allows positive or negative interactions, even

a dynamic variation of these over time. Obviously, accrual

halting models lie within the broad spectrum of sequen-

tial sampling models. Our initiative here emphasizes and

extends our earlier purview (e. g., Townsend & Nozawa,

1995; Colonius & Townsend, 1997; Townsend & Wenger,

2004) which uncompromisingly argues against the com-

mon practice of inferring coactivation from a violation of

the race inequality. Instead, it favors viewing all interac-

tive parallel models (including those characterized by fail-

ure of context invariance) in OR situations, as true race

models.
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Figure 10 (a) Estimated average capacity from the OR condition (Eidels et al., 2015).The capacity coefficient lies between

the Miller bound and the Grice bound. It suggests that subjects on average, possess moderately limited capacity in the

OR condition. (b) Estimated average capacity of five observers from AND condition (Eidels et al., 2015). The estimated

capacity coefficient shifts from limited capacity to super capacity with increase in response time. (c) Estimated average

capacity of four observers from AND condition who showed extremely limited capacities with increase in response time.

(a) (b)

(c)

We proceeded by developing first the class of models

characterized only by their joint processing times, then

moving to parallel accrual halting models (i.e., with paral-

lel sequential sampling channels, based on activation state

spaces accompanied by decision criteria). Subsequently,

we presented the class of parallel stochastic linear systems

with decision boundaries and employed them to realize the

most critical of models which did, or did not, obey context

invariance and in turn, their relationship to the major OR

and AND inequalities. We stated our view that this class of

models is not falsifiable, at least within the usual types of

paradigms.

In the course of our theoretical sojourn, we demon-

strated that the crucial assumption of context invariance

can be falsified if AND and OR conditions yield the same

conclusions about capacity, either both super or both lim-

ited. If AND results are limited capacity and OR results are

super capacity or vice versa, then a system obeying con-

text invariance could be responsible. This logic does not

require model fitting or even the assumption of sequential

sampling.

However, we advocate this class as an extremely use-

ful toolbox. First, it is highly general in that it includes all

single decision boundary diffusion processes per channel

(see e.g., Smith & Van Zandt, 2000). Second, being founded

on stochastic differential equations, the constituent mod-

els can be prospectively employed to represent not only

critical aspects of input functions but also vital character-

istics of the processing filters and therefore the basic com-

ponents of the processing mechanisms. Third, all of our

channel models, though couched in stochastic fashion, are

linear and therefore can bypass the still formidable haz-

ards of non-linear dynamics (potential chaos being but one

of these). Fourth, and quite critically, if a particular model

constructed using this approach accounts well for a set of

data, that model can be used to specify informative behav-

ioral or physiological tests.

We regard the field of modeling multi-object (dimen-
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Figure 11 (a) Estimated moderately limited COR(t) from an inhibitory interactive system with α = β = −0.3.
(b)Estimated extremely limited CAND(t) from the same inhibitory system as a. (c) Estimated moderately limited COR(t)
from a dynamic variation in correlation where α = β = −0.1 at beginning and changes to 0.8 after simulating for 550
ms. (d) Estimated CAND(t) from the same system as in c, which now exhibits a limited-capacity pattern in early time
and changes to super capacity later.

(a) (b)

(c) (d)

sion, feature, etc.) processing as in an embryonic phase.

We envision expansion of theory, methodology, and ex-

perimentation to include other architectures, such as se-

rial or more complex (e. g., Schweickert, 1978; Schweick-

ert, Fisher, & Sung, 2012), continuous rather than discrete

flow (Eriksen & Spencer, 1969; Townsend & Schweickert,

1989; Schweickert, 1989; Townsend & Fikes, 1995), and pat-

terns of response frequency rather than RTs alone (e. g.,

Townsend & Altieri, 2012; Townsend et al., 2012).

Authors’ note
Matlab code for the simuluations is available on request

from JTT.
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Appendix: Simulation Methods
The model used for simulations follows a stochastic dynamic linear system approach used in Townsend and Wenger

(2004). The systems use this basic form:

d

dt
X(t) = AX(t) + BU(t) + H(t)

Y(t) = CX(t) + DU(t)

Here, A is the activation matrix and determines how information within each channel is accumulated. In our simula-

tions, we fixed

A =

[
−1 0
0 −1

]
,

so that the dynamic system is stable and no interaction between channels is introduced through channel accumulations.

B is the channel activation coefficient matrix and determines how much the input information goes into each channel.

In our simulations, we fixed B =

[
1 0
0 1

]
so that inputs selectively influence correspondent channels. U is the input

matrix containing input values to each channel. H is the matrix of noise power determining how much noise goes into

each channel,H =

[
η1
η2

]
. The noise power ηi can be transformed into variance by the following:

ηi
tc

= (σ
√

∆T )2
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where tc is the sampling rate of the simulation, which was set to 0.001 in our simulations. C is the channel distributed
coefficient matrix determining howmuch accumulated information from each channel goes to outputs. D is the input ac-

tivated coefficient matrix for corresponding channels’ outputs. In our simulations,D is fixed atD =

[
0
0

]
. In addition,

there is a criterion γi for each channel. Criteria were set to be the same across channels in our current simulations.
Interactions between channels were introduced through either H matrix for cases where context invariance holds,

or the C matrix for cases in which it does not. Specifically, in cases where context invariance holds, the correlations

between channels were introduced into the system by a common source. In this case, we set

C =

[
1 0
0 1

]
and η1 ∼ N(0, (σ2

1 + α2σ2
c )∆T ) and η2 ∼ N(0, (σ2 + β2σc)∆T ) where σ1 and σ2 are the standard deviations of

each of the channel noise, and σc is the standard deviation of the common noise. If the interaction is positive, we set
α = β = 0.2. If the interaction is negative, we set α = β = −0.4. In cases where context invariance was violated, we
set η1 ∼ N(0, σ1∆T ) and η2 ∼ N(0, σ2∆T ) so that there was no longer any interaction between channels introduced
through common noise. The cross-channel interactions were introduced into the system bymanipulating the off-diagonal

elements ofC. For positive interactions, we set the off-diagonal elements to be 0.5, and for negative interactions, we set
them to be equal to -0.5.
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