
¦ 2020 Vol. 16 no. 4

Writing effective and reliable Monte Carlo simulations

with the SimDesign package

R. Philip Chalmers
aB

and Mark C. Adkins
a

a
Department of Psychology, York University

Abstract The purpose of this tutorial is to discuss and demonstrate how to write safe, effective,

and intuitive computer code for Monte Carlo simulation experiments containing one or more simu-

lation factors. Throughout this tutorial the SimDesign package (Chalmers, 2020), available within
the R programming environment, will be adopted due to its ability to accommodate a number of

desirable execution features. The article begins by discussing a selection of attractive coding strate-

gies that should be present inMonte Carlo simulation experiments, showcases how theSimDesign
package can satisfy many of these desirable strategies, and provides a worked mediation analysis

simulation example to demonstrate the implementation of these features. To demonstrate how

the package can be used for real-world experiments, the simulation explored by Flora and Curran

(2004) pertaining to a confirmatory factor analysis robustness study with ordinal response data is

also presented and discussed.

Keywords Monte Carlo simulation, simulation experiments. Tools R package.

B rphilip.chalmers@gmail.com

10.20982/tqmp.16.4.p248

Acting Editor De-

nis Cousineau (Uni-

versité d’Ottawa)

Reviewers
Kevin Hallgren (UW

Medical Center)

Gellen-Kamel

Alexandre (Univer-

sité du Québec à

Montréal)

Introduction
Monte Carlo simulation (MCS) experiments represent a

set of computer-driven, stochastic sampling-based meth-

ods that researchers can utilize to approximate difficult

to track mathematical and statistical modeling problems.

At their core, MCSs involve the generation and analysis of

synthetic variables by means of one or more computers

that have been designed to execute a set of user-defined

instructions (i.e., code). In many cases, particularly when

studying mathematical and statistical models, synthetic

variables are constructed by way of drawing random sam-

ples from one or more probability distributions of interest.

Ultimately, the goal behind MCSs is to independently re-

peat a computational experiment many times, collect the

results of the mathematical models or statistical analyses,

summarise these results, and interpret the summaries of

the results to draw approximately asymptotic conclusions

about the behaviour of the analyses under investigation.

The execution of simulation experiments can often be

run on personal (i.e., local) computers, though for more in-

tensive simulation experiments the use of remote comput-

ing resources (commonly referred to as “super” or “clus-

ter” computing) is an effective strategy to evaluate thou-

sands of simulation replications across different “nodes”.

However, optimally organizing MCS code that is amenable

to this type of parallel computing architecture, among

other types of necessary features (e.g., saving files to the

hard-drive), is entirely the responsibility of the investiga-

tor. As such, if the investigator does not carefully plan

the structure of their code early in the development pro-

cess then inefficient, error-prone, inflexible, and multiple

trial-and-error coding attempts (with a significant amount

of effort dedicated to debugging) will often be required.

Unfortunately, in order for investigators to avoid coding

issues when constructing their computer simulation they

must have obtained a great deal of technical mastery of

their select programming language prior to writing their

MCS experiment.

As Burton, Altman, Royston, and Holder (2006) have

highlighted, writing high-quality simulation experiments

that reflect real-world phenomenon is not a simple pro-

cess in that it involves careful prior considerations of all

design aspects — including the coding strategies and de-

sign. To help guide the process of writing effective MCSs

code, as well as to ensure the written code is “optimal” in

The Quantitative Methods for Psychology 2482

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248
https://www.orcid.org/0000-0001-5332-2810
https://www.orcid.org/0000-0002-3173-9479
mailto:rphilip.chalmers@gmail.com
https://doi.org
https://doi.org/10.20982/tqmp.16.4.p248
https://www.orcid.org/0000-0001-5908-0402
https://www.orcid.org/0000-0001-5908-0402
https://www.orcid.org/0000-0001-8386-3984
https://www.orcid.org/0000-0002-0382-2478
https://www.orcid.org/0000-0002-0382-2478

¦ 2020 Vol. 16 no. 4

some sense, a number of practical design features ought to

be included at the outset to ensure that a simulation runs

smoothly throughout the development process, and so that

the likelihood of writing problematic code can be mini-

mized as early as possible. Although it is difficult to list all

the desideratum that investigators should wish to have in

their simulation experiment, the following contains a num-

ber of code-based features that are often desirable:

• Intuitive to read, write, and debug. If not properly orga-
nized early in the planning stages of the development

process, MCS code can quickly become unwieldy. This

makes distributing the written code to others problem-

atic in that the implementation may be difficult to cog-

nitively parse. Most importantly though, unorganized

code causes difficulties in detecting executionmistakes,

and often makes debugging an arduous rather than

straightforward task.

• Flexible and extensible. Selecting sub-optimal ap-

proaches to coding, such as applying nested for-loops

or while-loops, can make the execution flow inflexible

if and when code needs to be edited at a later time (e.g.,

adding or removing simulation factors and conditions).

Such loop or “go-to” style approaches also create issues

regarding the definition of suitable storage containers,

and require the use of temporary variables that repre-

sent indexed elements or locations of the object being

looped over.

• Computationally efficient. It is desirable to have com-
puter code that: is executed as quickly as possible to

make optimal use of all available processors; requires

minimal random access memory (RAM) demands; and

avoids using excess hard-drive space when storing sim-

ulation results. Hence, MCS code should be designed

with optimal functional execution in mind, automati-

cally support parallel processing in the form of local

and remote computing, and be organized to avoid al-

locating excess computer storage resources in the form

of RAM or hard-drive space.

• Reproducible at the macro and micro level. In principle,
the entire simulation, as well as any given combination

of the simulation factors investigated, should be repro-

ducible on demand; this is termed macro replication.
This is useful, for instance, to ensure that the complete

simulation study is reproducible by independent inves-

tigators. Additionally, any given Monte Carlo simula-

tion replicate should also be reproducible, should the

need arise, which is termed micro replication. Micro
replication is particularly important for debugging pur-

poses so that code or execution errors can be tracked

down and replicated with minimal effort.

• Safe and reliable. Finally, simulation code should: avoid
hard-to-spot errors related to storing simulation results

and writing files to hard-disks; avoid infinite loops in

situations where redrawing simulated data is required;

track and record warnings and error messages so that

these are easy to reproduce at a later time; utilize meta-

analysis functions (e.g., bias, root mean-square errors,

etc) that are pre-written and well tested to avoid com-

mon calculation errors; and so on. Ensuring safety and

reliability of MCS code is perhaps the most cognitively

and technically demanding aspect of MCS coding be-

cause it requires intimate familiarity and foresight of

the select programming language and MCS design.

Unfortunately, and as Sigal and Chalmers (2016) have

noted, the process of evaluating the simulation experiment
is what is of interest to investigators, not specific coding-

related issues pertaining to organization, debugging, ob-

ject structures, formatting, computer storage, and so on.

Hence, the task of programming feature-rich and safe sim-

ulation code is largely a secondary concern to the inves-

tigator, despite the clear importance of writing defensive

and readable code. Ideally then, such features should be

automated as best as possible to (at least initially) release

the investigator from several responsibilities so that their

cognitive efforts can be more efficiently spent on writing

the design and logic of the MCS experiment itself. For a re-

cent example that demonstrates the necessity for first mas-

tering the R programming language, as well as the manual

implementation of a small selection of the desired features

listed above, see the tutorial written by Lee, Sriutaisuk, and

Kim (2019) which adopts the tidyverse (Wickham et al.,
2019) workflow for writing MCSs. Note that in their pre-

sentation, features such as parallel processing, debugging,

micro and macro reproducibility, storage and RAM con-

siderations, use of predefined functions for meta-statistics,

and many other important and desirable features are not

included; evidently, even within state-of-the-art program-

ming frameworks the burden of writing an optimal simula-

tion workflow is still unfortunately left to the investigator

to implement.

The purpose of this tutorial is to demonstrate how

to write more optimal code for MCS experiments.

To do so, the structure utilized by the R package

SimDesign (Chalmers, 2020) is presented to demonstrate
how optimal principles and coding practices can be in-

cluded in all defined simulation studies without requir-

ing the investigator to explicitly program these impor-

tant features themselves.
1
Following the discussion of

MCSs and the SimDesign package, a real-world simula-

1
While the R programming language is used for presentation purposes, the coding aspects and practical recommendations largely translate to other

general purpose programming languages that can be used for MCSs as well.

The Quantitative Methods for Psychology 2492

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

tion experiment is presented and discussed. This simu-

lation experiment pertains to a robustness study for con-

firmatory factor analyses with ordinal response data ex-

plored by Flora and Curran (2004). This specific simu-

lation study is included to provide first-hand recommen-

dations when designing more complex simulation code.

Throughout the presentation some familiarity with the R

programming language is assumed, particularly with re-

spect to implementing user-defined R functions and debug-

ging. Readers who are less familiar with utilizing R for

constructing Monte Carlo simulations should refer to Hall-

gren (2013), Jones, Maillardet, and Robinson (2014), and Si-

gal and Chalmers (2016). Readers less familiar with writ-

ing and debugging R functions should refer to the relevant

chapters in Jones et al. (2014) and Wickham (2019).

Optimal Coding Practices When Writing Monte Carlo
Simulations
While there is an abundance of literature exploring the

topic of Monte Carlo simulation experiments (e.g., Burton

et al., 2006; Mooney, 1997; Paxton, Curran, Bollen, Kirby, &

Chen, 2001), very few recommendations regarding optimal

coding practices and strategies have been suggested. Most

recently, Morris, White, and Crowther (2019) provided a

small number of coding recommendations to adopt when

designing MCSs; namely, start with very few replications

in the early stages of coding, store the computer seeds for

macro reproducibility, begin with small coding tasks, catch

and record errors (which in R is achieved via the try()
family of functions) and treat these errors as “missing val-

ues”, and if more than one software program is required

for analyses then a single general-purpose software pack-

age should be selected for generating the data and collect-

ing the results.

In addition to Morris et al. (2019)’s general recommen-

dations, there are a number of other features that should

be considered that are related to the desideratum pre-

sented above. Specifically, in addition to saving all poten-

tial seeds for macro replication it is desirable to actively

record seeds that are specifically problematic during exe-
cution of the code. As an example, if a simulation repli-

cation were to throw an error message (or less severely

a warning message) then recording how often these er-
rors occur, as well as which specific seeds caused these er-

rors, should be readily available to the investigator to help

gauge the severity of the issues and to help track down,

reproduce, and debug the causes of these errors. In this

situation, macro reproducibility alone would be highly in-

efficient because several non-problematic replication in-

stances would needlessly be re-executed until the problem-

atic replication appeared in the sequence of random seeds

— which, for more intensive simulations, can be particu-

larly time consuming.

Regarding the coding structure of MCSs in R specif-

ically, Sigal and Chalmers (2016) have highlighted why

various MCS coding strategies should be avoided, particu-

larly with respect to nested loops (e.g., while, for, and
repeat loops). In addition to executing more slowly

in interpretive languages (such as R), nested loops of-

ten cause conceptual and practical organizational issues

when extracting and storing components of numerical

experiments. For instance, identical results could be

stored into 1) a three-dimensional array, indexed via
obj[i,j,k], 2) a list containing matrices, indexed
with obj[[i]][j,k], 3) a one-dimensional vector,
indexed via obj[i*j+k], and so on. Clearly, specific
object indices are more difficult to track and debug be-

cause locating the exact index state of a nested-loop can

be tedious, object assignment is more difficult to paral-

lelize, conditional statements (if-then-else) are harder to

setup for simulation condition combinations that should

not be evaluated, objects must be completely re-designed

if more simulation conditions need to be evaluated (e.g.,

a nested list may be required instead, indexed via
obj[[i]][[j]][k,l]), and so on.
To avoid using a for-loop strategy and non-

standardized object containers, Sigal and Chalmers (2016)

recommend replacing nested for-loop combinations in-

volving the simulation factors by organizing all experi-

mental factors and combinations into data.frame-type
objects, where the factors are organized in each column

and unique combinations of the factors in each respective

row. After constructing this object the entire simulation

can then be executed by applying a single for-loop (or

apply() function) over the respective row elements.2

The advantage of this organizational structure is that se-

lecting particular simulation combinations is notablymore

straightforward, redundant or irrelevant factor combina-

tions may be excluded row-wise if they are not required

(creating “partially-crossed” simulation designs), execu-

tion times are typically lower than using nested for-loop

strategies (see below), and the organization of the output

object(s) will often be more consistent and easier to ma-

nipulate. This particular structure reflects a cornerstone

component of the SimDesign package (Chalmers, 2020)
known as the design component, which is discussed in
greater detail in the following sections.

Additional recommendations applicable within the R
environment
To help detect potential problems in MCSs, Morris et al.

(2019) suggested using various diagnostic techniques to use

2
Lee et al. (2019) have also recently adopted this single object simulation conditions structural approach when writing MCSs.

The Quantitative Methods for Psychology 2502

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

early in the writing process. For instance, when draw-

ing data from select probability sampling functions (e.g.,

R’s rnorm()) the use of summary statistics or plots can
be adopted. In the event that the results do not visu-

ally or statistically conform to the investigators expecta-

tions, the investigator can then begin to check for cod-

ing issues, such as accidentally passing a variance pa-

rameter to a function that was expecting a standard de-

viation (Morris et al., 2019). Taking this one step fur-

ther, it is therefore recommended that investigators explic-
itly match the respective argument names for their func-
tion inputs, particularly for functions that they (or mem-

bers of their team) are less familiar with. In the case

of the rnorm()function, users should try to avoid in-
voking order-based inputs for the function’s arguments,

such as rnorm(N, m, d), and instead match the argu-
ments explicitly according to the argument names, such

as rnorm(n=N, mean=m, sd=d). Explicitly matching
function arguments not only improves readability of the

code but helps in detecting whether the function’s inputs

were indeed what the investigator was anticipating at the

outset.
3

In interpretive programming languages such as R, ex-

tracting information from statistical analysis objects is

also of paramount importance. R provides many ways

to extract data elements, though naturally the extraction

method depends upon the class of the storage object.
As a small set of examples, elements in a vector may
be extracted via the [] operator, elements in a list or
data.frame via the $ or [[]] operators, elements from
an S4 class via the function slot() or the @ operator, and
so on. As such, knowing the structure of an object and

the contents found within the object is extremely impor-

tant. One very useful function in R for this purpose is the

str() function (alternatively seedplyr::glimpse()),
which can be used interactively (e.g., when debugging) to

print the structure and contents of an object, and provides

information regarding how the elements in the object(s)

can be extracted. As was true regarding the matching of

arguments to functions, whenever possible investigators

should also extract elements from R objects according to

the name of the element (e.g., x[“element_name”] and
x$element_name) rather than based on the respective
location of the element (e.g., x[2] and x[[2]]) since this
will help improve the overall readability of the code and

help protect against extracting incorrect information in the

event that future code modifications (either by the writers

or by package developers) alter the ordering of an object’s

elements.
4

While R’s extraction approaches are indeed power-

ful and flexible, they may not be the most consistent

approaches to use, particularly when using third-party

packages. For example, lavaan (Rosseel, 2012) and
mirt (Chalmers, 2012) are two packages that provide ex-
plicit extraction functions that should be used to obtain

internal object information. The purpose of these extrac-

tion functions is to provide consistency and stability in the

code-base across package versions so that if internal ob-

ject information is ever moved the behaviour of the extrac-

tion functions will remain consistent.
5
Therefore, when-

ever possible it is recommended that investigators use ded-

icated extraction functions provided by package develop-

ers, which also require the explicit name of the element to

be extracted (see above), since these are often safer than

extracting elements manually and, consequently, are often

better documented.

The SimDesign package
In addition to the general desirable features of MCSs listed

in the introduction section, there are of course numerous

specific defensive programming features that should be

considered before the writing of MCS code begins. For ex-

ample:

• Accidentally overwriting previously defined files on

the hard-drive should be prevented, and instead new

file names should be generated automatically in cases

of naming conflicts,

• Temporary storage of the simulation state should be

saved to the hard-drive in case of power outages or

other computational issues,

• MCS conditions should be terminated early if more

than a certain number of consecutive errors appear,

which ultimately helps to avoid infinite loops and ex-

ecution inefficiency,

• External package and software information (useful for

independent reproducibility), computer hardware in-

formation, dates, execution times, etc, should be auto-

matically stored,

• ... and much more.

The list of specific desirable features forMCSs is potentially

quite large, and each feature adds additional complexity

to the MCS code-base. Given the above coding recommen-

dations and desired properties, it is clear that in order to

write a safe, efficient, well-organized, reproducible, and

3
Integrated development environments (IDEs), such as RStudio, are useful in this respect in that they provide effective support for auto-completion

matching of function arguments.

4
Again, high-quality IDEs such as RStudio are helpful in this setting due to their auto-completion features, which also applies to extracting data

elements by name from defined objects.

5
Compare this behavior to the extraction of an element from an S3 wrapped list object via the $ operator that no longer exists, which would

inadvertently return NULL instead of the desired element.

The Quantitative Methods for Psychology 2512

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Figure 1 Conceptual organization of SimDesign’s workflow. Top graphical boxes represents the four steps required,
while the bottom elliptical image depicts the conceptual organization and interaction of the functions and R objects uti-

lized by the package.

otherwise optimal MCSs requires adding a large (and of-

ten unrealistic) amount of extra code to the simulation ex-

periment’s code-base. In this vein, we recommend that in-

vestigators begin writing their MCS code using previously

developed template tools from software that are specif-

ically dedicated to implementing the features and over-

all desideratum listed above. Specifically, we recommend

adopting the SimDesign package (Chalmers, 2020) be-
cause it has been designed to contain all of the coding prin-

ciples and features previously discussed, either automat-

ically or with minimal effort to the investigator, thereby

reducing the cognitive load and technical barriers that in-

vestigators will likely encounter.

When first constructing a MCS experiment with

SimDesign (and after installing the package via

install.packages(“SimDesign”)) the following
four steps are required. As well, see Figure 1 for a visual

portrayal of SimDesign’s coding workflow.
1. Use SimDesign::SimFunctions() to generate

a structural template containing a generate-analyse-

summarise functional workflow
6
. The first argument

to SimFunctions() (labeled file) can be used to
automatically save this template to a suitably named R

script on the hard-drive, which by default saves the file

to the current working directory. If front-end users are

using the RStudio IDE then this associated file will also

be opened automatically, allowing editing to begin im-

mediately.

2. Modify the default Design object definition to include
the simulation factors and combinations to be stud-

ied. This is performed by passing named, comma

separated vector objects to createDesign(), which
builds a completely-crossed MCS experimental design

object containing all combinations of the supplied fac-

tor variables row-wise. For designs that are not com-

pletely crossed, for reasons of redundancy or explicit

removal of problematic simulation conditions, a sub-

set of this object can be obtained by supplying a logical

vector to argument subset.
3. Modify the Generate(), Analyse(), and

Summarise() functions to generate the data, per-
form the statistical/mathematical analyses, and sum-

6
The :: operator avoids the need for first loading the package via library(SimDesign)when defining the template code.

The Quantitative Methods for Psychology 2522

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 1 Code-block output which contains the template result when calling SimDesign::SimFunction()with no
additional arguments passed

#--
library (SimDesign)
Design <- createDesign(factor1 = NA,

factor2 = NA)
#--
Generate <- function(condition, fixed_objects = NULL) {

dat <- data.frame()
dat

}
Analyse <- function(condition, dat, fixed_objects = NULL) {

ret <- c(stat1 = NaN, stat2 = NaN)
ret

}
Summarise <- function(condition, results, fixed_objects = NULL) {

ret <- c(bias = NaN, RMSE = NaN)
ret

}
#--
res <- runSimulation(design=Design, replications=1000, generate=Generate,

analyse=Analyse, summarise=Summarise)
res

marise the results over a large number of independent

replications, respectfully. If not completed earlier, in-

vestigators should also define/source() any other
user-defined functions that are to be utilized in the

simulation.

4. Finally, modify the arguments to runSimulation()
to control the execution features of the MCS experi-

ment. This includes, but is not limited to: the number

of replications, enabling parallel processing, sav-
ing the simulation results and temporary object states,

debugging, attaching third-party packages for ease of

function calling, and so on.

Finally, the code-block output of Listing 1 (as part

of Step 1) contains the template result when calling

SimDesign::SimFunctions() with no additional ar-
guments passed.

Before beginning with SimDesign, users

may find it helpful to inspect the documenta-

tion associated with runSimulation() by typing

help(runSimulation) in the R console after first at-
taching the package. This documentation, though complex,

provides helpful examples and technical descriptions of

the function arguments, describes the coding work-flow

required for utilizing the SimDesign package, docu-
ments several of the additional features that the package

supports, and provides references to other functions that

may be of interest in other sections of the package. As

well, readers may find it helpful to inspect the (somewhat

dated) pedagogical overview of the SimDesign package
provided by Sigal and Chalmers (2016), in addition to the

freely available examples located on the package’s wiki

page: https://github.com/philchalmers/SimDesign/wiki.

A walk-through example adapted from Hallgren (2013)
As a motivating example that expands upon previously

published simulation code, the following represents a re-

expression of the simulation presented by Hallgren (2013)

pertaining to the performance of mediation analyses using

the Sobel (1986) test. In this simulation, Hallgren provided

R code to investigate whether mediation models produce

significant results (i.e., p < .05) when correctly and incor-
rectly specifying a linear three-variable system intended

to reflect an underlying causal mediation structure. For

more detailed information regarding this simulation refer

to Hallgren (2013), as well as their Appendix A. Finally, for

ease of execution, the following described code blocks are

presented as a single script in Appendix , which can be

copy-pasted into an active R session.

Simulation template, user-defined functions, and sim-
ulation design
As discussed above, when writing simulation code inves-

tigators should avoid tackling the whole task all at once.

Instead, investigators should think of ways to organize and

The Quantitative Methods for Psychology 2532

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248
https://github.com/philchalmers/SimDesign/wiki

¦ 2020 Vol. 16 no. 4

Listing 2 Sobel’s delta method

Generate then edit R template file ’’Hallgren2013.R’’
SimDesign::SimFunctions(’Hallgren2013’)
function returns data.frame of p-values, estimates, SEs, etc
sobel_test <- function(X, M, Y){

M_X <- lm(M ~ X)
Y_XM <- lm(Y ~ X + M)
a <- coefficients(M_X)[’X’] # coef for ’X’
b <- coefficients(Y_XM)[’M’] # coef for ’M’
stdera <- summary(M_X)$coefficients["X", "Std. Error"] # SE for ’X’
stderb <- summary(Y_XM)$coefficients["M", "Std. Error"] # SE for ’M’
sobelz <- a*b / sqrt(b^2 * stdera^2 + a^2 * stderb^2)
sobelp <- pnorm(abs(sobelz), lower.tail=FALSE)*2
ret <- data.frame(a=a, SE_a=stdera, b=b, SE_b=stdera,

z=sobelz, p=sobelp)
ret

}

test the coding steps in an isolated function-by-function ba-

sis and, particularly early on, frequently inspect whether

each line of the code is providing the intended result (Mor-

ris et al., 2019). In the context of the SimDesign pack-
age, this functional organizational task is strictly imposed

by following and modifying the default simulation tem-

plate provided, which in this example was generated using

SimDesign::SimFunctions(“Hallgren2013”)
to save the template to a file named“Hallgren2013.R”.
This template provides a stand-alone R script to be (some-

times recursively) edited from top-to-bottom until the in-

vestigator has implemented their MCS design successfully.

In this example, the coding information was largely pre-

written by Hallgren (2013), and therefore only minimal

changes were required after copy-pasting code from the

original publication.

After executing SimFunctions() it is important to
locate the statistical analyses and data generation func-

tions that are required for the MCS. If a particular analy-

sis/generation function is not available in the base R instal-

lation, nor in third-party R packages, then the investigator

must define these functions themselves.
7
In this example,

the construction of a user-defined sobel_test() func-
tion was created to perform Sobel’s delta method test (So-

bel, 1986), which in this functional implementation re-

turns a data.frame containing the inferential informa-
tion and parameter estimates of a linear three-variableme-

diation analysis. It is provided in Listing 2.
8

After locating or defining all the necessary statistical

analysis functions, the next step in the MCS code is the

construction of the simulation factors to study and their
respective combinations to form the unique simulation

conditions, as given in Listing 3. In SimDesign’s tem-
plate this information is organized via the object Design,
which is conveniently created by createDesign() after
supplying a set of meaningfully named vector objects. The

simulation factors passed to createDesign() will au-

tomatically generate a fully-crossed simulation experiment

containing all possible combinations of the supplied factor

levels, where the resulting rows of the Design object in-
dicate the unique factor combinations (and therefore the

unique simulation conditions to be evaluated). In this ex-

ample there are four factors that are completely crossed:

the sample size (N) with two levels, and three distinct sets
of slope parameters (a, b, and cp), each with three levels,
resulting in 2 × 3 × 3 × 3 = 54 unique simulation condi-
tions; hence, Design will have 54 unique rows and four
columns. Again, for this Design object it is important
to name the associated factors meaningfully, and in most

cases concisely, because the column names of Designwill
be used in the subsequent code-base (e.g., if N was not a
particularlymeaningful factor name the investigator could

instead use sample_size to improve subsequent read-
ability).

By default, the returned object fromcreateDesign()
is a tibble, which is effectively a modern variant of

7
“Locating or defining functions” could be performed before or after the Design object has been constructed because these steps are largely inde-

pendent.

8
The bda package contains the function mediation.test(), which could have been adopted instead of the user-defined function, and could be

included in the simulation by passing runSimulation(..., packages = “bda”) to attach the package for single or multi-core execution of
the simulation. However, the user-defined function approach below is included to keep consistent with Hallgren (2013).

The Quantitative Methods for Psychology 2542

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 3 Construction of the simulation factors and their respective combinations
library(SimDesign)
fully-crossed simulation experiment
Design <- createDesign(N = c(100, 300),

a = c(-.3, 0, .3),
b = c(-.3, 0, .3),
cp = c(-.2, 0, .2))

Design

A tibble: 54 x 4
N a b cp
<dbl> <dbl> <dbl> <dbl>
1 100 -0.3 -0.3 -0.2
2 300 -0.3 -0.3 -0.2
3 100 0 -0.3 -0.2
4 300 0 -0.3 -0.2
5 100 0.3 -0.3 -0.2
6 300 0.3 -0.3 -0.2
7 100 -0.3 0 -0.2
8 300 -0.3 0 -0.2
9 100 0 0 -0.2
10 300 0 0 -0.2
... with 44 more rows

the data.frame object with better print formatting,
and is a cornerstone of the tidyverse framework.

SimDesign’s philosophy when creating this tibble ob-
ject is also consistent with the tidyverse in that, for ex-
ample, character vectors are not automatically coerced
to factor variables (which is the default behaviour in
the data.frame() function in R in versions lower than
4.0.0), and the R output is automatically adjusted to fit the

width of the investigator’s console. However, printing the

Design object may be slightly different when a list el-
ement is passed to createDesign(), in which case the
output is printed as a modified character vector if this
is deemed reasonable (e.g., see the Flora & Curran, 2004

example below).
9

The runSimulation() function
Although runSimulation() is the last function pre-
sented in the generated SimFunctions() template, it
is beneficial to introduce this function at this stage be-

cause it provides a conceptual end-of-the-road goal that

investigators are ultimately working towards. This func-

tion is also briefly discussed now because a selection of

arguments passed also appear in the required generate-

analyse-summarise functional definitions, and therefore

being aware of their origin will be helpful in conceptually

understanding their purpose.

By default, SimFunctions() definesrunSimulation()
as

res <- runSimulation(design=Design,
replications=1000,
generate=Generate,
analyse=Analyse,
summarise=Summarise

)

indicating that the function requires, at minimum, three

functional definitions for the generate-analyse-summarise

steps, the previously described simulation Design, and
the number of independent simulation replications
to evaluate for each row condition in Design (default is
1000). For simplicity, we will retain these default argu-

ments in the example in this section; however, in the next

section the details of runSimulation() are unpacked
further to discuss the features and benefits of executing

MCS code through this controller function.

When editing the remaining template functions, it is

important to keep in mind that runSimulation() will
accept only a single function for each of the generate,
analyse, and summarise arguments. Much the same
as R’s “apply” function, this strict structure implies that

9
This does not change the values within the list object, it just modifies how it is printed to the console to improve readability of the list elements.

The Quantitative Methods for Psychology 2552

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

the to-be-redefined template functions must validly sup-

port each of the supplied row conditions in Design. This
is important to be aware of early on because if a particu-

lar row in Design requires a notably different set of cod-
ing instructions then the investigator must provide a suit-

able “logical branch” to accommodate these forks in the

execution workflow. Such forks are accomplished by way

of if(logical) statements, where logical is a single
TRUE/FALSE value to be defined according to R’s logical
evaluation operators (e.g., ==, !=, <, <=, is()). Fortu-
nately, in the current example such if(...) branches

are not required due to the general simplicity of the simu-

lation; however, in the simple extension (Appendix B) and

the real-world example below such forks are required due

to the added complexity of the experimental conditions

and analyses.

Commonalities across generate-analyse-summarise func-
tions
Following the definition of theDesign object, and keeping
focus on the execution control via runSimulation(),
the body of the templated Generate(), Analyse(),
and Summarise() functions must be modified to suit
the purpose of the simulation. Each of these core func-

tions share a common design and grammar for internal

consistency to help reduce the cognitive load required to

understand the code. An example of this consistency can

be found in the argument condition, which is the first
argument to all three MCS definition functions. This in-

ternally defined variable always represents a single ex-

tracted row from the Design object (e.g., on the first ma-
jor MCS iteration, condition <- Design[1,]), and
therefore will always contain only one simulation condi-

tion at a time. By default, this object will be a tibblewith
one row, where the names of the columns are identical to

the names of the supplied Design object. As alluded to
earlier, this is why naming the columns in Design is par-
ticularly important because the names of the supplied vari-

ables are used directly in the resulting simulation code. Ad-

ditionally, a new column variable called ID is included in
this object to indicate which row in Design is currently
being evaluated, and a new column called REPLICATION
is included to indicate which independent replication is

currently being evaluated; hence, ID will range from 1 to
nrow(Design), while REPLICATION will be an integer
between 1 and replications.
The benefit of using a subset of the Design object

directly in the form of the condition variable is that
extracting and creating temporary objects for each factor

level is not required. Additionally, becausemeaningful fac-

tor names have already been assigned to Design there is
no need to create new naming conventions based on the

specific levels being extracted. Compare this conceptual

indexing setup to the more common for-loop strategy (Si-

gal & Chalmers, 2016), which strictly requires creating tem-

porary index objects such as for(n in N){...} and

tracking the original (N) and indexed (n) version of the ob-
ject. If, on the other hand, the for() loop is designed as
an integer indexing value to extract the ith element from,
for instance, a list, then a total of three objects will be re-
quired: n, N, and thelist object being indexed. Evidently,
the added complexity in the for-loop approach will always

double or triple the number of objects to track, making

it more likely to accidentally replace or misplace an ob-

ject in the workflow (e.g., n or N may be redefined as a
new object within the for()), ultimately increasing the
cognitive load when reading, writing, and debugging the

script. This highlights one of the underlying philosophies

of the SimDesign package, and why the supplied tem-
plate structure is structurally strict: readability is greatly
improved by avoiding multiple named instances of the same
conceptual object.
Additionally, one of the main benefits of isolating

the data generation (Generate()), statistical analyses
(Analyse()), and summerization (Summarise()) pro-
cedures by way of independent functional implementa-

tions is that they help to keep the programming en-

vironment as uncluttered as possible. This is accom-

plished by recognizing that only the final object cre-

ated within Generate(), for example, will be accessi-
ble to Analyse(), while all other objects defined within
Generate() will be discarded after the function exits.
Moreover, the underlying structural benefit of returning

a single data object from Generate() is that it keeps
the data generation and subsequent statistical/mathemat-

ical analyses completely independent, thereby forcing in-

vestigators to explicitly organize (and meaningfully name)

the variables in their generated data. This functional sep-

aration of the simulation components naturally results

in the removal of any temporarily defined objects that

were required to create the final data object returned by

Generate() (incidentally also resulting in lower mem-
ory usage due to R’s garbage collector). More impor-

tantly, this separation conceptually reflects the structure

of how statistical/mathematical analyses are implemented

with real data: analyses are performed after collecting em-

pirical data without definitive knowledge of the population
generating structure. As such, MCS code should respect this
particular data-analysis separation nature so as to avoid

any temptation to utilize ‘known’ population information

10
There are special practical exceptions to this general data-analysis separation philosophy, such as supplying better starting values to analysis func-

tions that require iterative estimation methods that are prone to terminating on local optimums given their respective objective functions. In these

The Quantitative Methods for Psychology 2562

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 4 Construction of the Generate() function

Generate <- function(condition, fixed_objects = NULL) {
Attach(condition) # make N, a, b, and cp directly accessable
X <- rnorm(N)
M <- a*X + rnorm(N)
Y <- cp*X + b*M + rnorm(N)
dat <- data.frame(X=X, M=M, Y=Y)
dat

}

from the data generation steps that could be unrealistically

borrowed in the analyse step
10
.

Continuing on, the template of the generate-analyse-

summarise functions also contains an optional argument

called fixed_objects, which can be of any data type
or structure, and is caught from the respective argument

passed to runSimulation(). This argument is useful
when various fixed objects are to be used across two or

more simulation conditions, and acts as though the sup-

plied object is ‘global’ information to be shared across

conditions. Most often, it is sufficient for this object to

be a named list containing the entire set of fixed ob-
jects required within the simulation conditions

11
. As an

example of its use, say that an investigator has three sets

of distinct matrix objects containing structured popula-
tion parameter definitions called mat1, mat2, and mat3.
Supplying runSimulation(..., fixed_objects
= list(mat1=mat1, mat2=mat2, mat3=mat3))
will create a named listwith the respective objects to be
indexed from inside the simulation code.

12
This said, the

use of fixed_objects is generally only necessary for
convenience purposes, and by-and-large can be avoided

until it becomes practically beneficial to utilize.

The Generate() function
Focusing on the first templated MCS function that should

be modified, Generate(), the goal of this function is
to return a suitable data object that subsequently will

be supplied to the analysis function(s) implemented in

Analyse(). The object returned by Generate() is not

limited to one object class, in that it could be a numeric
vector, list, array, and so on, though more often re-
turning a data.frame (or in some cases, a tibble) will
be the most appropriate since this is R’s primary data con-

tainer for statistical analysis functions. Continuing with

Hallgren’s 2013 simulation with respect to the body of

Generate() given in Listing 4, after defining the distri-
bution of X, as well as the required linear equation defini-
tions for M and Y, the data are organized and returned as a
data.frame object. Notice that regardless of the selected
row in Design (defined as the variable condition) the
code executes correctly.

Readers familiar with R’s scoping rules will notice at

this point that the objects N, a, b, and cp technically
should not be accessible within the scope of this func-

tion because they are contained within the condition
object; hence, in traditional R code these elements

must be accessed using, for example, condition$N,
condition$a, condition$b, and condition$cp in
all instances when they appear, or wrapped within a

with() call. However, the SimDesign package contains
a useful convenience function called Attach(), which
extracts or “attaches” any object contained in a given list
object (which data.frames and tibbles are a special
case of) and places these objects in the environment from

which the function was called.
13
Attaching the names of a

list object this way has a number of inherent benefits:
it reduces the amount of typing required, makes the code

more readable, reduces the cognitive load of object track-

ing, eliminates the need to rename conceptually identical

cases, the population generating parameters could be passed along with the dataset as a list object from Generate() to provide the starting values
for the statistical estimates as well as the generated data. Nevertheless, what is important here is that although SimDesign imposes a strict coding
philosophy, there remains sufficient flexibility in the package to allow violating the base recommendations, should the need arise.

11
Some examples include defining larger objects such as covariance matrices, large sets of population parameters, regression-based design matrices

that would be identical across multiple simulation condition combinations, and so on.

12
If convenient, the names of the fixed objects can also be included in the Design definition for ease of tracking in the simula-

tion design and for extraction since only one defined name will be included at a time on a per-row basis. Specifically, Design <-
createDesign(..., mat=c(’mat1’, ’mat2’, ’mat3’)), and selecting the respective matrix during the simulation can be achieved via
mat <- fixed_object[[condition$mat]].
13Attach() is similar in spirit to R’s attach() function in that objects can be directly accessed via their explicit names. However, Attach()
differs from attach() in that it only assigns objects to a specific environment (not the global environment), requires much less execution time, and
will throw an error if an object exists in the scope that would be replaced upon attaching. This is one of the many silent built-in safety features to

prevent investigators from making unnecessary mistakes.

The Quantitative Methods for Psychology 2572

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 5 Definition of SimDesign’s Analyse() function for replicating Hallgren’s (2013) simulation study

Analyse <- function(condition, dat, fixed_objects = NULL) {
Attach(dat) # make objects X, M, and Y directly accessible
sobel <- sobel_test(X=X, M=M, Y=Y)$p
sobel_incorrect <- sobel_test(X=X, M=Y, Y=M)$p
ret <- c(sobel=sobel, sobel_incorrect=sobel_incorrect)
ret # named vector of p-values

}

objects, and capitalizes on the originally meaningful factor

names supplied to the Design object (i.e., N now always
represents a single value for sample size in the code).

The Analyse() function
Moving now to Analyse(), the purpose of this function
is to return all the analysis information (given a gener-

ated data object) required to answer the researcher’s sim-

ulation experiment questions. Depending on the nature

of the simulation experiment this function may return a

set of parameter estimates, confidence intervals, p-values,
goodness-of-fit test statistics, and so on. As such, the goal

when writing the contents of Analyse() is to 1) perform
all the desired statistical analyses on the generated dataset,

which in the definition of Analyse() appears in the sec-
ond argument called dat, 2) extract the required informa-
tion from these resulting analysis objects, and 3) return

this information in the form of a meaningfully labeled R

object. As a safety feature, if a numeric vector is to be
returned then SimDesign will check whether a unique
label has been assigned to each element in the vector for

future identification purposes. This forces investigators to

explicitly label their resulting analysis information so as to

avoid subsequent confusions regarding the collected simu-

lation results (more on this below).

In the mediation analysis example, and looking at

Listing 5, the generated data vectors X, M, and Y are
first made accessible by SimDesign’s Attach() func-
tion and subsequently passed to the user-defined func-

tion sobel_test() described earlier. Recall that while
sobel_test() returns a data.frame containing sev-
eral named elements, the goal of this particular MCS study

is to investigate the difference between the statistical sig-

nificance of Sobel’s test when the mediation system is cor-

rectly or incorrectly specified; hence, we must extract the

element p from the resulting analysis objects to obtain the
required p-values, whose sampling behaviour will be sum-
marised later. In the following, two extracted p-values
are returned in a named vector object with the elements

named “sobel” and “sobel_incorrect”, indicating
whether the mediation system was or was not correctly

specified, respectively.

As was the case with Generate() there is no strict
structural rule regarding the object type that must be re-

turned from Analyse(), though most often a named
numeric vector will be the most effective form of output
for the package to automate. As such, a named vector ob-

ject is the recommended object that users should try and

return since it will ultimately make the final MCS func-

tion, Summarise(), the most general, and also releases
the investigator from additional data reshaping steps. In

more complicated simulations, data.frames (with mul-
tiple rows) or lists may be returned, for instance, though
indexing these resulting objects will ultimately require

manual reshaping and indexing by the investigator.

The Summarise() function
Finally, given a single row from the Design ob-

ject (i.e., condition), the provided Generate()
and Analyse() functions are independently repli-

cated R times, where R is the number of independent

replications to be evaluated. After these replications
have been executed and collected within each simulation

condition, it becomes important to summarise the general

sampling behaviour of these replicates for inferential pur-

poses. Depending on the purpose of the MCS, many meta-

statistical summaries are available, including, but not lim-

ited to: bias, root mean-square error, mean-absolute error,

andmore, for judging the “closeness” of the parameter esti-

mates (θ̂) to the population generating parameters (θ); em-
pirical detection and coverage rates for evaluating the be-

havior of p-values and confidence intervals at nominal α
levels; estimator comparison measures such as relative ab-

solute bias, relative difference, relative efficiency, mean-

square relative standard error; and so on.

Depending on which meta-statistics are deemed appro-

priate, investigators are typically faced with manually pro-

gramming their desired summary meta-statistics (e.g., see

Mooney, 1997), which can often lead to unnecessary coding

errors and other inefficiencies. To circumvent these po-

tential coding issues, SimDesign conveniently includes
predefined functions that implement a variety of meta-

statistics to ensure that they are computed accurately. As

seen in Table 1 at the end of the article, SimDesign

The Quantitative Methods for Psychology 2582

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 6 Definition of SimDesign’s Sumarise() function for replicating Hallgren’s (2013) simulation study

Summarise <- function(condition, results, fixed_objects = NULL) {
ret <- EDR(results, alpha = .05) # results object is a data.frame
ret # empirical detection rate returned

}

Listing 7 Final output

res
A tibble: 54 x 10
N a b cp sobel sobel_incorrect REPLICATIONS SIM_TIME COMPLETED
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <chr>
1 100 -0.3 -0.3 -0.2 0.462 0.048 1000 7.59 Sat Nov ~
2 300 -0.3 -0.3 -0.2 0.997 0.374 1000 8.35 Sat Nov ~
3 100 0 -0.3 -0.2 0.01 0.225 1000 8.15 Sat Nov ~
4 300 0 -0.3 -0.2 0.049 0.863 1000 8.21 Sat Nov ~
5 100 0.3 -0.3 -0.2 0.465 0.448 1000 7.32 Sat Nov ~
6 300 0.3 -0.3 -0.2 0.994 0.987 1000 8.03 Sat Nov ~
7 100 -0.3 0 -0.2 0.016 0.003 1000 6.63 Sat Nov ~
8 300 -0.3 0 -0.2 0.034 0.021 1000 6.80 Sat Nov ~
9 100 0 0 -0.2 0 0.006 1000 6.70 Sat Nov ~
10 300 0 0 -0.2 0.001 0.026 1000 6.84 Sat Nov ~
... with 44 more rows, and 1 more variable: SEED <int>

provides a wide variety of these meta-statistics as pre-

defined functions. Moreover, related summary meta-

statistics are bundled into single functions, and specific

types can be accessed via the type argument; for example,
bias(..., type = "relative") or bias(...,
type = "standardized") will compute the relative

bias or standardized bias meta-statistics, respectively.

In and of themselves the meta-statistics available

within SimDesign are useful for avoiding unneces-

sary implementation errors; however, their usefulness

stretches further in the context of Summarise(). Af-
ter Generate() and Analyse() have been executed
R times a results object is internally defined to con-
tain these R sets of analysis results, and is ultimately

passed as an argument to Summarise() given in List-
ing 6. Whenever possible, however, SimDesign will at-
tempt to combine all of these replications by row to form a
data.frame object with R rows and P named columns
(where P is the length of the named returned object from
Analyse()). This will occur only when Analyse() re-
turns a named vector object; otherwise, resultswill be a
list object of length replications. This data.frame
simplification is performed because all of SimDesign’s
meta-statistical functions have been constructed to support

column-dominant inputs, meaning that the meta-statistics
are applied independently to each respective columnwhile

preserving the associated column names in the resulting

objects.

While the column-dominant nature of SimDesign’s
functions may sound intimidating at first, the concep-

tual application of this approach is straightforward. In

the running simulation example, and given the descrip-

tion above, the reader can understand results as

an R × 2 data.frame containing the collected p-
values, where the column names are “sobel” and

“sobel_incorrect”, in accordance with the named
vector output from Analyse(); hence, each column in
results pertains to theR observed p-values from the re-
spective statistical analyses. In the above code, results
is passed to SimDesign’s empirical detection rate func-
tion, EDR(), and the proportion of collected p-values that
fall below α = .05 are computed for each respective
column. The object ret, which stores the results from
EDR(), will in turn be a numeric vector consisting of two
proportion estimates given α, and most importantly will
retain the associated variable names for each respective

element. The flexibility of this simplification and column-

dominant nature is now hopefully more clear and appeal-

ing: regardless of the number of statistical analysis proce-

dures utilized in Analyse(), the results from the meta-
statistics suppliedwithinSummarise() are capable of re-
taining the associated vector names originally returned by

Analyse() without any further modifications, thereby
preserving the original object labels. As such, this greatly

reduces the chance of incorrectly relabeling/mislabeling

any meta-statistical summary operation.

Final output
After suitable definitions of the generate-analyse-

summarise functions have been constructed, the simula-

The Quantitative Methods for Psychology 2592

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

tion can be finally be executed using runSimulation()
and stored into an R object, such as the default template

object named res. This object, which for this example is
printed in Listing 7, inherits the properties of a tibble,
and therefore gains many attractive printing qualities such

as: clipping the rows and columns of the output to the di-

mensions of the R console, printing the class of each
column variable at the top of the output, and implicitly

supports dplyr’s powerful verbs for data manipulations
and summarizing. This output structure is useful because

after a simulation is completed the subsequent results are

often further disentangled through the use of (conditional

or marginal) summary statistics, visualization methods,

statistical modeling, and so on, as though the collection

of summarized MCS results were obtained as a sample of

observations in an empirical experiment (Mooney, 1997).

Regarding the variables in the res object, the structure
of this tibble can be best understood as three distinct
pieces that have been combined by columns: the initial

Design object in the left block (or the leftmost column(s)
in the tibble), the results from Summarise() in the
middle block (columns sobel and sobel_incorrect
in this case), and extra MCS implementation information

in the right block. The extra information in this ob-

ject, whose columns are always labeled with capital let-

ters by convention, reflect the number of replications used

for each simulation condition (REPLICATIONS), the ex-
ecution time each simulation condition took to complete

(SIM_TIME), the date at which the simulation completed
(COMPLETED), and the initial seed used for each simu-
lation combination to allow for macro reproducibility of

each row condition (SEED). These are not the only addi-
tional pieces of information stored in this object, however,

as more column variables may be appended depending on

the arguments passed torunSimulation() (e.g., see the
boot_method argument) or whether noteworthy charac-
teristics were observed during the simulation (such as the

frequency of error/warning messages).

Other useful implementation information stored

within the returned simulation object res can be ex-
tracted by using summary(res). This S3 generic func-
tion extracts information such as the R session informa-

tion used to execute the simulation, which additional

packages (if any) were requested and passed through

runSimulation(..., packages), the file and di-
rectory information used if any objects were saved to the

hard-disk, the number of cores requested (if parallel pro-

cessing was used), the number of simulation conditions

executed, the date and time the simulation completed,

and the total time required to complete the simulation.

Coupled with the variables located within the tibble
object itself, such additional information is of great im-

portance when attempting to reproduce or report the de-

tails of a simulation study. Additional information may

be extracted from this object through functions such as

SimExtract(), some of which are discussed in the next
section.

Finally, while the code-base from the simulation above

and the code provided by Hallgren (2013) are functionally

identical, it seems noteworthy to highlight that there were

immediate organizational and performance benefits when

using SimDesign’s setup. Specifically, as can be readily
seen there are no visible for-loops required in the code-

base, where instead the simulation is controlled by auto-

matically iterating over the row conditions in the Design
object. This has obvious organizational benefits, some of

which were briefly discussed in this section and above.

Perhaps most surprisingly, however, is that executing the

SimDesign variant of Hallgren’s simulation on a single-
core R session was more than twice as fast as the original

for-loop approach, despite the fact the SimDesign is per-
forming many more safety checks and data manipulation

operations behind the scenes.

A Selection of Noteworthy Features and Helper Func-
tions
This section overviews a number of important features

currently supported by SimDesign; however, it is by no
means exhaustive. Interested readers may locate further

information pertaining to how SimDesign: catches and
manages errors and warnings; handles objects and func-

tions for parallel computing architecture; saves simulation

results to hard disks; and more, by visiting the associated

CRAN location on-line and perusing the HTML vignette

files at https://cran.r-project.org/web/packages/SimDesign/

index.html.

In-line simulation modifications
One particularly attractive property of SimDesign is that
coping with future changes to the experimental conditions,

data generation process, statistical analyses, and meta-

statistical summaries will often require minimal — and of-

ten entirely isolated — modifications to the working ver-

sion of the simulation script. For instance, adding addi-

tional levels to existing factors, such as in Hallgren’s (2013)

example above (e.g., Design <- createDesign(N =
c(100, 300, 500), ...))), does not require any
modification to the internal code-base, while adding or re-

moving factor variables will require minor modifications

to accommodate these structural changes. For example, in-

cluding an additional factor dictating whether the X vari-
able should be drawn from a standard normal distribution

or a Bernoulli distribution with ρ = .5 could be achieved
by adding a new factor to Design,

The Quantitative Methods for Psychology 2602

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248
https://cran.r-project.org/web/packages/SimDesign/index.html
https://cran.r-project.org/web/packages/SimDesign/index.html

¦ 2020 Vol. 16 no. 4

Listing 8 Construction of the Generate() function

Generate <- function(condition, fixed_objects = NULL) {
Attach(condition)
X <- if(dist == ’norm’) rnorm(N) else rbinom(N, size=1, prob=.5)
... # remainder of Generate() code is the same as above

}

Listing 9 Construction of the Analyse() function

Analyse <- function(condition, dat, fixed_objects = NULL) {
... # portion of Analyse() code from sobel_test() and above
boot <- boot_test(X=X, M=M, Y=Y)$p
boot_incorrect <- boot_test(X=X, M=Y, Y=M)$p
ret <- c(sobel=sobel, sobel_incorrect=sobel_incorrect,

boot=boot, boot_incorrect=boot_incorrect)
ret

}

Design <- createDesign(
include all previous factors
...,
add new factor to cross
dist = c(’norm’, ’bern’))

where “norm” and “bern” indicate whether a normal
or Bernoulli distribution should be used in the data gen-

eration, and after including this new factor a one-line

modification can be made for the X variable definition in
Generate(), as seen in Listing 8.
This example highlights the usefulness of the logical

flow-controller if() to create a fork in the code depend-

ing on the given instance of dist, and also highlights the
ease withwhich new simulation factors and conditions can

be added to existing code.

Adding additional statistical analyses in Analyse()
also generally requires a trivial amount of effort on the in-

vestigator’s end. In this case, investigators need only in-

clude their new statistical function(s), extract the relevant

information they are interested in, and add these new re-

sults as named elements in the final object in Analyse().
SimDesign will then automatically adjust the size of the
internal storage objects by adding new column(s) to the

results object in Summarise(). Listing 9 is an ex-
ample of such an extension, where a bias-corrected boot-

strap analysis using the lavaan package (Rosseel, 2012)
has been added to Analyse() to return suitable non-
parametric bootstrapped p-values. Notice that the only
changes to the code are 1) the inclusion of the new function

boot_test(), and 2) the organization of the returned
named vector in Analyse(), which now contains four el-
ements instead of two. For completeness, each of the above

described modifications to the original code-base, as well

as a suitable definition for boot_test(), are presented
in Appendix B.

The purpose of the above modification information

was to highlight that adding, removing, andmodifying sim-

ulation code should have minimal impact on the struc-

ture and readability of the original code-base. Under

SimDesign’s structure, investigators are free to begin
with simulation code that is of minimal working com-

plexity, such as defining only one simulation factor in

the Design object at first, and writing bare-minimum
Generate(), Analyse(), and Summarise() func-
tions until the simplest version of the code executes as de-

sired. Once this baseline has been established and well

tested, additional complexity can gradually be added since

the majority of the (typically distracting) data organiza-

tional programming work is automatically managed by the

package.

Noteworthy features in runSimulation()
In addition to the general performance and readability im-

provements compared to for-loop strategies, implicit sup-

port for parallel architecture execution, and ease of adding

modifications to the code-base, runSimulation() can
be used to control other commonly desired features in

MCSs. For instance, if users are worried about power-

outages or software crashes while executing their MCS,

and therefore wish to include temporary checkpoints to

store the progress of their simulation, then the arguments

save and filename should be included. The argument
save (defaulted to TRUE) triggers the automatic storage
of a temporary .rds file (an R binary file that can be read

The Quantitative Methods for Psychology 2612

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

into R and assigned to a unique object using readRDS())
that is saved in the current working directory, while

filename specifies the hard-drive file to save the final
simulation results to upon completion (also as a .rds file;
default is NULL). When save = TRUE, and in the event
that a simulation is interrupted, all that is required to re-

start the simulation is to re-run runSimulation() in
the original working directory. SimDesign will then au-
tomatically detect the temporary file at the last stable state,

and continue the MCS at this checkpoint. Both of these

inputs are recommended for more intensive simulations,

where the likelihood of computer crashes or power outages

increases as a function of time and resources available. As

a safety precaution, files saved to the working directory,

including temporary ones, will never accidentally be over-

written by the package; instead, unique file names will be

generated if SimDesign detects a name conflict, thereby
preventing accidental over-writing of objects on the hard-

disk.

The following code block demonstrates the use of file

saving inputs, in addition to executing the code using

all available computing cores (i.e., processors) by passing

parallel = TRUE. In many simulations, slower com-
putations within each independent generate-analyse iter-

ation will benefit from parallel execution, where computa-

tion times will typically decrease at a rate proportional to

the number of cores available
14
. For comparison purposes,

when inspecting the original for-loop code presented by

Hallgren it is more difficult to discern how to add paral-

lel computation support due to the use of a single mutat-

ing R storage object, whose purpose was to store the sim-

ulation replication results across iterations (see the use of

the rbind() function on p. 18 in Hallgren, 2013). With
SimDesign, no such issues can occur because the struc-
ture is organized to always allow for parallel processing.

res <- runSimulation(
design=Design,
replications=1000,
generate=Generate,
analyse=Analyse,
summarise=Summarise,
parallel=TRUE,
filename=’Hallgren’)

The three new arguments to runSimulation() de-
scribed above are, of course, not the only useful inputs

that could have been supplied. runSimulation() can

also be modified to save the complete sets of R simula-

tion results per simulation condition to the hard-drive for

later inspection and manipulations (via save_results
= TRUE), while all possible .Random.seed states can all
be saved for complete micro replication of the simulation

(via save_seeds = TRUE).
For larger simulation studies, particularly studies

that are to be submitted for publication purposes, it

is recommended that save_results be set to TRUE.
This is because SimDesign contains suitable post-

summarising functions for re-summarising any generated

results, should the need arise. Hence, any statistical infor-

mation that may be required for summary purposes will

be stored efficiently on the hard-drive, ultimately allowing

for more flexibility in returning object information in the

Analyse() step, even if these results were never used in
the initial version of Summarise(). Storing the simula-
tion results is also particularly important during the peer-

review process in that if the investigator can anticipate re-

viewers’ requests for additional information, or anticipate

requests for alternative summarisation meta-statistics to

be reported, then the simulation need not be re-run as all

the analysis information has been previously stored on the

hard-disk.

As a specific example regarding the usefulness of

save_results = TRUE, suppose a MCS were designed
for the purpose of studying the sampling behaviour of p-
values, and therefore Analyse() will, at the bare mini-
mum, return suitable p-values for Summarise() to uti-
lize. However, there is little consequence in also re-

turning additional information not used by the initial

Summarise() definition, such as including the degrees
of freedom, parameter estimates, standard errors, and so

on, because this information could be (re-)summarised

at a later time via SimDesign with little difficulty. As
well, if a different α cut-off should have been used for
the empirical detection rate estimates (e.g., α = .10) then
re-summarising the saved results using SimDesign’s
reSummarise() function is also entirely possible with
minimal effort.

Other safety features
In addition to supporting explicit features by passing ad-

ditional arguments, runSimulation()will also silently
perform various safety operations that are common in the

development of MCS experiments. For instance, in the

event that the R interpreter catches a warning or error

message (via calls from functions such as warning() or
stop(), which may or may not have been explicitly writ-

14
Users familiar with the scoping rules for parallel processing in R will notice that predefined custom functions do not need to be exported explicitly.

This is because, for convenience purposes, all functions visible in R’s global workspace are exported automatically when runSimulation() is called,
thereby reducing the need for front-end users to track this process. Users more familiar with R’s parallel computing definitions may also pass their own

“cluster” object definition to runSimulation()’s argument cl. That said, parallel computations are generally only useful in more intensive MCSs
since the time it takes to distribute and collect the information across computing cores can itself be a bottleneck.

The Quantitative Methods for Psychology 2622

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

ten by the investigator) then these messages, as well as

the frequency with which they occurred, will be stored

in the final simulation object. These important details

regarding errors and warnings help investigators gauge

whether, and to what extent, problems are occurring in

their MCS, as well as provides an opportunity to supply

their own simulation state checks to assure the simulated

data and analysis information conform to their expecta-

tions. For instance, when generating code for a 2 × 2 con-
tingency table for the purpose of studying φ correlation
coefficients, investigators may only wish to compute this

statistic when all the counts are greater than some cut-

off in each cell (e.g., counts of 5); otherwise, the gener-

ate data should be discarded and re-drawn until this re-

quired condition has been achieved. To accomplish this in

SimDesign, investigators need only create their desired
test in the form of an if(...) statement, and supply a
conditional stop(“...”) call to interrupt the MCS flow.
One of the more important built-in safety procedures

inSimDesign appearswhen toomany consecutive errors
arise. By default, if consecutive errors appear inmore than

50 replications then the respective simulation condition

will be completely terminated. In this event, the last error

message will be printed to the console, and the next row

condition in the Design object will begin to be evaluated.
MCSs that return many consecutive errors indicate severe

coding or implementation issues since analysis/data gen-

eration functions are consistently failing, and therefore re-

quire additional (potentially immediate) attention. While

this behaviormay seem trivially obvious at first, such built-

in safety features help safeguard against early (and frus-

trating) coding mistakes, guarantees that the desired num-

ber of replications are constant for all the simulation de-

sign conditions, and promotes the reporting of any error or

warning messages that could negatively affect the veracity

of the experimental results (Hoaglin & Andrews, 1975).

Debugging
Writing optimal MCS code on the first attempt is rather un-

common, particularly for larger and more involved simu-

lation experiments. Similar mistakes often appear when

preparing virtually any text document in that revisions

to the content are frequent, of varying intensity, and are

required when unexpected or important events come to

fruition. These revisions can range from something as sim-

ple as typographical errors to more serious (and difficult to

track down) issues caused by third-party functions throw-

ing obscure error messages under rare circumstances. As

such, the process of debugging, even in the early stages of

the coding development, is of utmost importance.

As should come as no surprise at this point,

SimDesign includes special debugging features to initial-

ize R’s interactive debugging mode for each function in the

generate-analyse-summarise workflow. These appear in

the form of the debug argument to runSimulation(),
which accepts three global debugging options (“none”,
“error”, and “all”) and three function-specific op-
tions (“generate”, “analyse”, “summarise”). Be-
ginning with the latter, passing runSimulation(...,
debug = “generate”) will trigger the debugging of
Generate() on the first line of the function; debug
= “analyse” and debug = “summarise” have the
same behaviour for their respective functions. The op-

tion “error” will initialize the debugger when any er-
ror message is detected in one of three generate-analyse-

summarise functions, which is useful during early testing

stages for quickly tracking down initial coding errors in-

teractively, while “all” will debug all the user defined
functions regardless of whether an error was thrown or

not. The option “all” is useful when testing the code-
base in exploratory and experimental writing stages, or

when walking through a specific .Random.seed state
to inspect all the objects in each function to understand

the nature of an error (more on this important feature

below). Finally, if more explicit debugging is preferred

then a browser() call may be placed inside the desired
function at the exact location where the debugger should

be initiated, which is particularly useful when utilized in

conjunction with conditional if() statements.
Once the debugger begins, investigators may interac-

tively use their R console to trace the properties of the

defined objects, make use of functions such as print()
and str() to view the objects within the debugger, and
execute specific debugger commands to navigate the ex-

ecution flow; specifically, n (next line), f (finish loop), c
(continue until next debugger flag called), Q (quit the de-
bugger), and so on (see help(debug) for more specific
details). This has the usual “debugging functions” flavour

found throughout R, however SimDesign also contains
built-in safety features to ensure that debugging is prop-

erly executed when requested. For example, in every-

day for-loop or apply function applications, when par-
allel processing is requested the R debugger will be in-

voked yet will not be accessible by the user since the inter-
active debugger is initialized within each distributed core;

hence, no single debugger will be entered into on the in-

vestigators console due to the processor distribution am-

biguity. SimDesign forbids such ambiguous behaviour
by first checking whether a browser() or debugging flag
has been activated, and if present will temporarily disable

any unwanted parallel processing to ensure the interactive

debugger is properly activated.

Perhaps the most useful feature of debugging is the

ability to quickly replicate error states that arose in pre-

The Quantitative Methods for Psychology 2632

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

vious implementation attempts. As mentioned above,

SimDesign automatically catches any error or warn-
ing messages that occur during the code execution, and

the frequency of these messages will appear in the

rightmost-columns of the final simulation object under

the names ERRORS and WARNINGS. In situations where
error messages are appended to the final results, the

final simulation object will also contain the associated

.Random.seed states for all error message that ap-
peared. This provides the investigator an efficient means

to replicate all recorded error messages to determine,

in a hands-on way, the object properties and simula-

tion state that cause errors to arise. Specifically, the

.Random.seed values may be extracted via seeds <-
SimExtract(res, what=”error_seeds”), where
the column names of the seeds object contains the error
messages that were recorded. Once the desired seed is lo-

cated (e.g., for presentation reasons the 10th column) this

can be passed via runSimulation(..., load_seed
= seeds[,10]) to reproduce the exact state when the
error appeared.

15
When paired with the debug input,

such as with debug = “all”, this allows the investiga-
tor to interactively inspect the simulation’s state in all rele-

vant functions, providing ameans to efficiently track down

where, how, and why the MCS code raised this specific er-

ror.

Flora and Curran (2004) Simulation
The mediation simulation presented by Hallgren (2013)

that was re-expressed above represents a relatively

straightforward simulation in terms of the overall de-

sign and code complexity. To demonstrate the use of

SimDesign in real-world simulation experiments, this
section presents a replication of the simulation published

by Flora and Curran (2004), which pertained to studying

violations of latent distributional assumptions in a selec-

tion of item factor analysis models estimated using struc-

tural equationmodeling software (see Muthén, 1984). Note

that although Flora and Curran used the Mplus software
package (Muthén & Muthén, 2008) to perform their analy-

ses, the following code uses the lavaan package (Rosseel,
2012) for simplicity, and to present a complete R code repli-

cation of this simulation experiment.
16

Without going into many of the specific details, the pur-

pose of Flora and Curran’s (2004) simulation was to de-

termine the properties of an item factor analysis model

for ordinal response data that utilizes polychoric correla-

tion matrices (Olsson, 1979). In particular, these authors

were interested in evaluating two types of estimation cri-

teria for empirical applications where the underlying la-

tent variables were, or were not, distributed multivari-

ate normal. The estimation criteria under investigation

were the weighted least squares (WLS) and a robust vari-

ant of the WLS where only the diagonal of the associated

weight matrix is used (termed diagonally weighted least

squares; DWLS) with a mean-variance correction to the

χ2
goodness-of-fit statistic (termed WLSMV). In their sim-

ulation, Flora and Curran investigated the effects of vari-

ous latent variable distribution shapes, the number of ob-

served response categories, sample size, and model com-

plexity (i.e., number of latent variables and observed in-

dicator variables). The analysis of their simulated data

focused on the behaviour of the (scaled) χ2
goodness-of-

fit test statistic, recovery of the population parameters,

and the consistency of the standard error estimates. Fi-

nally, simulation results were summarized using the rela-

tive bias meta-statistic, the distributional properties of the

(scaled) χ2
statistic relative to the model’s degrees of free-

dom, and the performance of the standard error estimates

relative to the standard deviation of the parameter esti-

mates across the independent replications.

Flora and Curran’s (2004) simulation was adopted in

this section because it contains a number of practically

difficult coding and implementation details, and therefore

provides a rich and sufficiently complex experimental de-

sign to study. Specifically, their simulation:

• Involves different population generating model struc-

tures (e.g., a one- versus two-factor model with five or

ten indicator variables each), implying that the num-

ber of properties to study in the analysis steps (such as

number of model parameters) varies across the simu-

lation conditions,

• Requires specialized estimation software suitable for

structural equation modeling (e.g., Mplus, or in this
section the lavaan package), largely requiring the
user to conform to a predefined syntax convention set

by the software,

• Implements specialized algorithms for generating con-

tinuous variables (e.g., Vale & Maurelli, 1983) as well as

manual transformations of these generated variables

to create categorical truncations,

• Is a partially-crossed simulation design due to the re-

moval of unstable factor combinations (details below),

which if not known a priori would result in crashes

during the execution of the simulation experiment,

• Utilizes different estimation criteria (WLS and DWLS)

by way of iterative numerical algorithms that are not

guaranteed to converge, and

15
The seeds object is actually stored as tibble, so indexing with the $ operator is also possible and generally preferable when using auto-

completion features in IDEs such as RStudio.

16
See SimDesign’s on-line wiki regarding how to call external software, such as Mplus, in Analyse() for single and multi-core applications.

The Quantitative Methods for Psychology 2642

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 10 Definition of SimDesign’s Design object by way of the createDesign() function for replicating Flora and
Curran’s (2004) simulation study

library (SimDesign)
Design <- createDesign(N = c(100, 200, 500, 1000),

categories = c(2, 5),
skewness_kurtosis = list(c(0, 0), c(.75, 1.75), c(.75, 3.75),

c(1.25, 1.75), c(1.25, 3.75)),
factors = c(1, 2),
indicators = c(5, 10),
estimator = c(’WLSMV’, ’WLS’),
remove known problematic conditions
subset = !(estimator == ’WLS’ & N %in% c(100, 200) &

factors == 2 & indicators == 10))
Design

A tibble: 300 x 6
N categories skewness_kurtosis factors indicators estimator
<dbl> <dbl> <lst> <dbl> <dbl> <chr>
1 100 2 [0, 0] 1 5 WLSMV
2 200 2 [0, 0] 1 5 WLSMV
3 500 2 [0, 0] 1 5 WLSMV
4 1000 2 [0, 0] 1 5 WLSMV
5 100 5 [0, 0] 1 5 WLSMV
6 200 5 [0, 0] 1 5 WLSMV
7 500 5 [0, 0] 1 5 WLSMV
8 1000 5 [0, 0] 1 5 WLSMV
9 100 2 [0.75, 1.75] 1 5 WLSMV
10 200 2 [0.75, 1.75] 1 5 WLSMV
... with 290 more rows

include syntax generation function
source (’FloraCurran2004-functions.R’)

• Collects heterogeneous analysis information to be sum-

marised in the form of goodness-of-fit statistics, stan-

dard errors, and (marginal) parameter estimates.

Taken together, this particular MCS experiment is wrought

with potential pitfalls that require a great deal of care early

on by the investigator. Below provides one such imple-

mentation using SimDesign, and includes discussions re-
garding how the process of the final code came to fruition.

Despite the fact that this simulation is more complicated

than the previous mediation analysis, the steps required to

begin coding this MCS in SimDesign is no different, and
by-and-large poses little to no difficulty for the package to

efficiently manage.

Before beginning, it is important to highlight that, in

addition to using different software for data generation

and statistical analyses, there are a few subtle differences

between the following simulation code and the study by

Flora and Curran (2004). Specifically, although the DWLS

estimator was used for the robust version of the WLS es-

timator, the value of the degrees of freedom in the fol-

lowing simulation were not estimated from the data. In-

stead, the χ2
goodness-of-fit statistic with a mean-variance

adjustment was applied (i.e., WLSMV), and therefore the

expected value of the scaled χ2
distribution will theoret-

ically equal the model degrees of freedom (as is the case

for the WLS as well). Additionally, in situations where

a model failed to converge a new dataset was automati-

cally redrawn until the requested number of replications

were collected (in this case, R = 500). This differs from
Flora and Curran’s study in that only a fixed number of

datasets were originally generated and analyzed, where

datasets with non-converged results were discarded from

their summaries (D. Flora, personal communication, Jan-

uary 6, 2020); hence, in their original article, reported ta-

ble cells with higher rates of non-convergence have greater

sampling variability than cells with lower rates of non-

The Quantitative Methods for Psychology 2652

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 11 Construction of the Generate() function

Generate <- function(condition, fixed_objects = NULL) {
Attach(condition)
syntax <- genLavaanSyntax(factors=factors, indicators=indicators)
cdat <- simulateData(syntax, model.type=’cfa’, sample.nobs=N,

skewness=skewness_kurtosis[1L],
kurtosis=skewness_kurtosis[2L])

tau <- if(categories == 5)
c(-1.645, -0.643, 0.643, 1.645) else 0

data generation fix described in Flora’s (2002) unpublished dissertation
if (categories == 5 && all(skewness_kurtosis == c(1.25, 1.75)))

tau[1] <- -1.125
dat <- apply(cdat, 2, function(x, tau){

dat <- numeric(length(x))
for (i in 1:length(tau))

dat[x > tau[i]] <- i
dat

}, tau=tau)
throw error if number of categories not correct
if (!all(apply(dat, 2, function(x) length(unique(x))) == categories))

stop(’Number of categories generated is incorrect’)
dat

}

convergence, while in the following implementation using

SimDesign all simulation conditions are guaranteed to
haveR = 500 valid replication instances.

Implementation in SimDesign
Beginning with the simulation factors, Design was

constructed by crossing: the sample size (N =
100, 200, 500, 1000), number of observed categories per in-
dicator (two versus five), five combinations of skewness

and kurtosis (specified as a list containing five sets of
two numbers to preserve the paired skewness-kurtosis in-

formation), number of latent factor variables (one or two),

and number of indicator variables per unobserved vari-

able (five or ten). Fully crossing these factors resulted in a

design with 160 unique conditions. However, this does not

completely reflect the organization of the object definition.

Specifically, in our first implementation attempt of this

Design object the factor estimator was not included,
and instead the WLS and DWLS criteria were applied to

the same generated dataset within the Analyse() step.
Using the same data typically results in reduced systematic

bias effects since the analyses are applied to identical data

characteristics, and will often decrease the overall simula-

tion times due to re-using the generated data. However,

due to the high rates of non-convergence for the WLS cri-

teria the two estimators were separated in the Design
object as an additional simulation factor so that only one

of the estimators would be used at a time, and so that a

clearer picture of the non-convergence rates could be ob-

tained for each estimator in isolation.

Additionally, in our first coding attempt the subset
argument was not supplied to createDesign(), which
resulted in a number of fatal crashes for a selection

of row combinations in Design (see Flora & Curran,

2004, for similiar observations). However, in this at-

tempt runSimulation() did not immediately termi-
nate upon encountering these fatal errors, and instead:

returned informative warning messages that were imme-

diately printed to the console; NA placeholders were pro-
vided in the final simulation object to indicate that the de-

sired results could not be computed, and; a character
vector column labeled FATAL_TERMINATION in the final
simulation object was included pertaining to the last ob-

served error message for the problematic row conditions.

Hence, even when evaluating highly problematic simula-

tion conditions, and whether the investigator anticipates

these problems beforehand or not, SimDesignwill grace-
fully manage these issues and inform the investigator of

any fatal errors so that these problems can be inspected at

a later time. That said, due to Flora and Curran’s prior re-

port and our own coding implementation it was clear that

there were a high number of non-converged results for the

N = 100 and N = 200 sample sizes when using the WLS
method for models with 10 indicators and two factors. In

The Quantitative Methods for Psychology 2662

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 12 Construction of the Analyse() function

Analyse <- function(condition, dat, fixed_objects = NULL) {
Attach(condition)
syntax <- genLavaanSyntax(factors=factors, indicators=indicators, analyse=TRUE)
mod <- cfa(syntax, dat, ordered = colnames(dat), estimator=estimator)
check that model and coefficients are reasonable
if (!lavInspect(mod, ’converged’)) stop(’Model did not converge’)
pick_lambdas <- matrix(TRUE, indicators*factors, factors)
if(factors == 2)

pick_lambdas[(indicators+1):(indicators*3)] <- FALSE
cfs <- lavInspect(mod, what="std")$lambda[pick_lambdas]
if(any(cfs > 1 | cfs < -1))

stop(’Model contains Heywood cases’)
if(factors > 2 && abs(lavInspect(mod, what="std")$psi[2,1]) >= 1)

stop(’Latent variable psi matrix not positive definite’)

extract desired results
fit <- fitMeasures(mod)
ses <- lavInspect(mod, what="se")$lambda[pick_lambdas]
stat_names <- extract_stats <- c(’chisq’, ’df’, ’pvalue’)
if(estimator == ’WLSMV’)

extract_stats <- paste0(extract_stats, ’.scaled’)
fitstats <- fit[extract_stats]
names (fitstats) <- stat_names
phi21 <- if(factors == 2)
lavInspect(mod, what="std")$psi[1,2] else NULL
ret <- c(fitstats, mean_ses= mean(ses), lambda=cfs, phi21=phi21)
ret

}

the following, these problematic conditions were removed

from the simulation a priori by utilizing the subset argu-
ment in createDesign().
Next, because the lavaan package requires a spe-

cific form of a character vector as an input to spec-
ify the structure of the model, generation of such syn-

tax is required for each simulation condition combi-

nation. For consistency with the program, lavaan
also supports supplying a syntax input for generating

data, which utilizes the Vale and Maurelli (1983) algo-

rithm to generate non-normal continuous variables. Both

the analysis and data generation syntax format were

written as a stand-alone user-defined function called

genLavaanSyntax(), which is a three argument func-
tion defined in Appendix C. This function returns the

associated lavaan syntax given the number of fac-

tor (factors) and indicator (indicators) variables,
and whether the function is to be used for data gen-

eration (analysis = FALSE) or analysis (analysis
= TRUE). To avoid needless clutter in the current pre-
sentation, the function is instead sourced into R us-

ing source() after having been saved to file called
“FloraCurran2004-functions.R”.
Following the structural definition of the MCS and

user-defined functions, we now turn to Generate().
For this simulation the desired object to return is a

data.frame because this is the type of object required
by lavaan. To simulate the continuous data the function
simulateData() is used, which is exported from the
lavaan package. However, rather than using the :: op-
erator to locate this function (as was used, for example, in

Appendix) the lavaan package is attached to the R ses-
sion by passing runSimulation(..., packages =
“lavaan”), which automatically distributes the pack-
age’s exported functions to each computing node when-

ever the simulation is executed using parallel computing

architecture. Next, the continuous data in the object cdat
is categorized according to the threshold values defined in

the tau vector to create either two- or five-category re-
sponse data byway of anapply() function. Finally, to en-
sure that the number of categories created was as expected

for each observed variable, a conditional if() test was in-

The Quantitative Methods for Psychology 2672

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 13 Construction of the Summarise() function

Summarise <- function(condition, results, fixed_objects = NULL) {
model parameters
lambdas <- results[, grepl(’lambda’, colnames(results))]
pool_mean_lambdas <- mean(apply(lambdas, 2, mean)) # Equation 10 in F&C (2004)
pool_SD_lambdas <- sqrt(mean(apply(lambdas, 2, var))) # Equation 11 in F&C
(2004)
RB_phi21 <- if (condition$factors == 2)

bias(results$phi21, parameter=.3, type=’relative’, percent=TRUE) else NULL
mean_se <- mean(results$mean_ses)

goodness-of-fit
edr_05 <- EDR(results$pvalue, alpha = .05)
mean_X2 <- mean(results$chisq)
sd_X2 <- sd(results$chisq)
RB_X2 <- bias(results$chisq, parameter=results$df, type=’relative’,

percent=TRUE, unname=TRUE)
ret <- c(mean_X2=mean_X2, sd_X2=sd_X2, edr_05=edr_05,

pool_mean_lambdas=pool_mean_lambdas,
pool_SD_lambdas=pool_SD_lambdas, mean_se=mean_se,
RB_X2=RB_X2, RB_phi21=RB_phi21)

ret
}

cluded with an associated stop() call. If this logical test
fails then an error is raised, recorded, and Generate()
is called again to draw a new dataset.

Moving on to Analyse(), the user-defined

genLavaanSyntax() function is again called, how-
ever this time the argument analyse = TRUE is passed
to trigger the generation of a syntax suitable for estima-

tion purposes. This syntax, along with the generated

dataset dat, are supplied to lavaan’s function cfa()
to estimate an item factor analysis model with ordinal re-

sponse data (specified by the ordered argument) given
some desired estimation criteria (estimator). After the
model has been fitted, a number of checks are performed

to ensure the quality of the model output; specifically,

lavInspect() is used to extract whether themodel con-
verged successfully (otherwise, an error is thrown and the

data are redrawn), whether the slope coefficient estimates

are within [−1, 1] (otherwise so-called “Heywood” cases
are present), and for two-factor models a check is made

regarding whether the absolute value of correlation esti-

mate is larger than 1 (in which case the correlation matrix
between the latent variables is not positive definite).

Following the estimation and quality checks of the fit-

ted models, the last portion of Analyse() extracts the
statistical information that is to be summarised across the

independent replications. In Flora and Curran’s 2004 sim-

ulation their interest was mainly in the properties of the

(scaled) χ2
values and their associated p-values, the esti-

mates of the factor loadings and correlation between the

latent variables, and the general behaviour of the esti-

mated standard errors relative to the standard deviation of

the factor loadings across replications (of which the stan-

dard deviations and standard errors should be of similar

magnitude). As such, all of the factor loadings (lambda)
are returned from Analyse() so that their respective
standard deviations can be obtained across all R repli-

cations, and the average of the standard errors within

a given replication were returned and later averaged in

the Summarise() function. As well, for the single fac-
tor models the latent correlation estimate (phi21) is not
applicable, and therefore phi21 is set to a NULL place-
holder in this situation to effectively drop it from the re-

turned object. Notice here that with SimDesign the
lengths of the returned objects from Analyse() (and also
Summarise()) are allowed to differ across the simula-
tion conditions, where in the final simulation object a set

of NA placeholders will appear for elements that are not
applicable to a given row condition.

Finally, Summarise() is defined to summarise the
overall behaviour of the analysis properties within each

unique row-condition in Design. This function first ex-
tracts all columns from the results object to create a
more manageable subset called lambdas, which allows
easier computations of the respective average estimates

The Quantitative Methods for Psychology 2682

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 14 Execution of Flora and Curran (2004) simulation through runSimulation().

res <- runSimulation(design=Design, replications=500, generate=Generate,
analyse=Analyse, summarise=Summarise, max_errors=100,
packages=’lavaan’, parallel=TRUE,
filename=’FloraCurran2004’, save_results=TRUE)

res

A tibble: 300 x 20
N categories skewness_kurtos~ factors indicators estimator mean_X2 sd_X2
<dbl> <dbl> <lst> <dbl> <dbl> <chr> <dbl> <dbl
1 100 2 [0, 0] 1 5 WLSMV 4.79 2.77
2 200 2 [0, 0] 1 5 WLSMV 5.13 3.15
3 500 2 [0, 0] 1 5 WLSMV 4.92 3.01
4 1000 2 [0, 0] 1 5 WLSMV 5.13 3.31
5 100 5 [0, 0] 1 5 WLSMV 5.12 3.35
6 200 5 [0, 0] 1 5 WLSMV 5.05 3.02
7 500 5 [0, 0] 1 5 WLSMV 4.97 3.16
8 1000 5 [0, 0] 1 5 WLSMV 4.94 3.02
9 100 2 [0.75, 1.75] 1 5 WLSMV 4.85 2.79
10 200 2 [0.75, 1.75] 1 5 WLSMV 4.97 3.15
... with 290 more rows, and 12 more variables: RB_X2 <dbl>, edr_05 <dbl>,
pool_mean_lambdas <dbl>, pool_SD_lambdas <dbl>, mean_se <dbl>,
RB_phi21 <dbl>, REPLICATIONS <int>, SIM_TIME <dbl>, COMPLETED <chr>,
SEED <int>, ERRORS <int>, WARNINGS <int>

and the to-be-averaged variability terms (see Equations 10

and 11 in Flora & Curran, 2004, p. 474). The average of

the standard errors across replications is also obtained, as

well as the relative bias (as a percent) of the latent vari-
able correlation estimate by using SimDesign’s built-in
bias() function. Finally, the mean, standard deviation,
and relative bias of the χ2

statistic given the respective de-

grees of freedom are obtained
17
, and the empirical detec-

tion rates given α = .05 are included.

Simulation Results
Although most of the defaults arguments provided by

SimFunctions() are useful out-of-the-box, for more
complex MCSs the arguments to runSimulation()
should generally be modified to accommodate the added

complexity and computational intensity. In the follow-

ing execution, the number of independent replications for

each condition was reduced to R = 500 to match Flora
and Curran (2004), the lavaan package was attached so
that functions such as simulateData() and cfa() are
available across nodes, the code is executed in parallel
using all available cores, temporary simulation files are

generated in case of unexpected crashes (save = TRUE;

the default), the completed simulation object is saved to

a file called “FloraCurran2004.rds”, the number of
allowable consecutive errors to occur was increased to

100 from 50 (max_errors = 100) to accommodate for
the frequency of non-converging models in some condi-

tions (see below), and finally the analysis results and as-

sociated information for each row-condition in Design
are saved into a sub-directory for future reference and

potential re-summarising (save_results = TRUE; see
also help(reSummarise) for further details about re-
summarizing the stored replication information).

runSimulation() was executed on a 48-core (2.6
GHz) Linux OS running Ubuntu 18.04.3 LTS, R version 3.6.1,

and required just under one hour to complete. As before,

further information regarding the R session and computer

information can be obtained using summary(res). Af-
ter executing this R script, a number of error and warn-

ing messages were observed, where the frequency of

the errors and warnings are printed in the ERRORS and
WARNINGS columns. For ease of inspection, conditions
with ERRORS greater than 500 (i.e., have a probability
of convergence less than

500
500+500 = 1/2) are printed in

Listing 15, where columns are selected using the dplyr

17
Note the use of bias(..., unname = TRUE) when computing the relative bias for the χ2

statistic. This is included to remove any of R’s

labeling information that was carried over from the original object definitions so that the resulting object does not inherent confusing names in the

subsequent computations.

The Quantitative Methods for Psychology 2692

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 15 Design conditions where the number of error messages raised was greater than 500.

library(dplyr)

subset of res containing many error messages
res %>% select(N:estimator, ERRORS) %>%

filter (ERRORS > 500)

A tibble: 11 x 7
N categories skewness_kurtosis factors indicators estimator ERRORS
<dbl> <dbl> <lst> <dbl> <dbl> <chr> <int
1 100 5 [1.25, 3.75] 1 5 WLSMV 681
2 100 5 [1.25, 3.75] 2 5 WLSMV 800
3 100 5 [1.25, 1.75] 1 10 WLSMV 777
4 100 5 [1.25, 3.75] 1 10 WLSMV 1803
5 100 5 [1.25, 1.75] 2 10 WLSMV 678
6 100 5 [1.25, 3.75] 2 10 WLSMV 2106
7 100 5 [1.25, 3.75] 1 5 WLS 999
8 100 5 [1.25, 3.75] 2 5 WLS 1114
9 100 5 [0.75, 1.75] 1 10 WLS 506
10 100 5 [1.25, 1.75] 1 10 WLS 837
11 100 5 [1.25, 3.75] 1 10 WLS 4753

package’s column (select()) and row (filter())
subsetting functions via the pipe operator (%>%). As is
clear from the output, models fitted with N = 100 and
only five indicators are much less likely to converge when

combined with non-zero skewness and kurtosis values for

the latent variable distribution definitions when using the

WLS and DWLS estimators, where the lowest convergence

rate occurred in the most extreme distribution combina-

tion for the WLS estimator (with an estimated probabil-

ity of convergence of
500

500+4753 ≈ .095). After extract-
ing the specific error messages by viewing the column

names of the object errors <- SimExtract(res,
what = “errors”), many of the error messages ap-
peared to pertain to Heywood cases and categorical data

generation issues, while most of the warning messages re-

lated to model estimation issues where the correlation ma-

trix for the latent variables became non-positive definite

during lavaan’s iterative parameter search.
At this point, summarizing the results from this simula-

tion experiment becomes important to capture the mean-

ingful variability in the results. For example, comparing

the marginal empirical p-value estimates may be of in-
terest to investigators, which can be computed using the

verbs from the dplyr package. The following demon-
strates two particular marginal results: averaging the em-

pirical p-values over all combinations of the estimators and

sample sizes, and again using these two experimental fac-

tors with the number of latent factors. The code in List-

ing 16 utilizes dplyr’s group_by() and summarise()
verbs to create marginal tables of results. Of course, other

data exploration techniques certainly could and should

be investigated for these data as well, such as generat-

ing graphical representations by way of expressive pack-

ages such as ggplot2 (Wickham, 2009), or by perform-
ing ANOVA-based decompositions of the meta-statistics to

determine which experimental simulation factors (and the

interaction of these factors) result in the largest observed

differences; see SimDesign::SimAnova() for a brief
demonstration of this type of post-analysis ANOVA explo-

ration.

Reproduced Table and Figure
Given the results from the above simulation study it is

possible to quickly reproduce many of the tables and fig-

ures presented in Flora and Curran (2004). For instance,

the pipe operator and additional data manipulation verbs

from the dplyr package can be used to: add column vari-
ables (mutate), rename columns (rename), merge dis-
tinct objects by columns (full_join), and sort by row
(arrange). Given these additional verbs, the R code in
Listing 17 provides a replication of the information dis-

played in Table 5 of Flora and Curran (2004), p. 480.
18

18
In the following code, if users are familiar with the purrr package for extracting elements from lists then the sapply() calls could instead

be replaced with s = map_dbl(res$skewness_kurtosis, 1) and k = map_dbl(res$skewness_kurtosis, 2), respectively.

The Quantitative Methods for Psychology 2702

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 16 Marginal summary statistics for Flora and Curran’s (2004) simulation experiment as implemented in SimDe-

sign.

marginalized detection rates given the estimator and sample size
res %>% group_by (estimator, N) %>%

summarise (EDR = mean (edr_05))

A tibble: 8 x 3
A tibble: 8 x 3
Groups: estimator [2]
estimator N EDR
<chr> <dbl> <dbl>
1 WLS 100 0.382
2 WLS 200 0.217
3 WLS 500 0.324
4 WLS 1000 0.214
5 WLSMV 100 0.0694
6 WLSMV 200 0.0570
7 WLSMV 500 0.0520
8 WLSMV 1000 0.0522

marginalized detection rates given the estimator, factors, and sample size
res %>% group_by (estimator, factors, N)

%>% summarise (EDR = mean (edr_05))

A tibble: 16 x 4
Groups: estimator, factors [4]
estimator factors N EDR
<chr> <dbl> <dbl> <dbl>
1 WLS 1 100 0.250
2 WLS 1 200 0.151
3 WLS 1 500 0.0868
4 WLS 1 1000 0.0644
5 WLS 2 100 0.646
6 WLS 2 200 0.350
7 WLS 2 500 0.561
8 WLS 2 1000 0.364
9 WLSMV 1 100 0.0529
10 WLSMV 1 200 0.0487
11 WLSMV 1 500 0.0507
12 WLSMV 1 1000 0.0504
13 WLSMV 2 100 0.086
14 WLSMV 2 200 0.0654
15 WLSMV 2 500 0.0534
16 WLSMV 2 1000 0.0539

If investigators intend to use packages such as

knitr (Xie, 2015) to dynamically prepare their doc-

uments using R objects then this table could be ren-

dered into a publication ready table via packages such as

xtable, pander, stargazer, and so on. Alternatively,
if the investigator wishes to convert this information into

a table manually then saving the information to an ex-

ternal text file via functions such as write.table() or
write.csv() will provide a sufficient means to access
the data (see the readr package for similar functions in-
volving tibbles). Finally, as a practical example of build-
ing graphics using the results from SimDesign, the code
in Listing 18 creates a comparable replication (Figure 2) of

Figure 6 in Flora and Curran (2004), p. 483.

Discussion
Sigal and Chalmers (2016) initially presented an overview

of the SimDesign package for the purpose of demonstrat-
ing an intuitive pedagogical approach to learning andwrit-

ing Monte Carlo simulation studies. However, the pur-

pose of the SimDesign package is, and has always been,
to provide a structure for optimally controlling real-world

simulation experiments in a safe, flexible, intuitive, and

efficient manner, where pedagogical applications are one

fruitful byproduct. The purpose of this tutorial was to pro-

vide a detailed discussion of several coding features that

ought to appear in many simulation experiments, empha-

size attractive coding practices when using scripting lan-

The Quantitative Methods for Psychology 2712

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 17 Code to replicate Table 5 in Flora and Curran (2004).

separate s and k values in skewness_kurtosis, create % variable,
select only 5 categories, rename columns to match
res %>% mutate(s = sapply(res$skewness_kurtosis, function(x) x[1]),

k = sapply(res$skewness_kurtosis, function(x) x[2]),
"% reject" = edr_05 * 100) %>%

filter(categories == 5) %>%
rename(M=’mean_X2’, SD=’sd_X2’, RB=’RB_X2’) -> res_5

construct Table 5 information from Flora and Curran (2004)
res_5 %>%

filter(indicators == 10, factors == 1, estimator == ’WLS’) %>%
select(N, s, k, M, SD, RB, "% reject") -> WLS

res_5 %>%
filter(indicators == 10, factors == 1, estimator == ’WLSMV’) %>%
select(N, s, k, RB, "% reject") -> WLSMV

full_join(WLS, WLSMV, by = c("N", "s", "k"), suffix= c(’’, ’.DWLS’)) %>%
arrange(N, s, k) -> tab5

tab5

A tibble: 20 x 9
N s k M SD RB ‘% reject‘ RB.DWLS ‘% reject.DWLS‘
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 100 0 0 57.8 18.7 65.2 62.4 6.37 7.
2 100 0.75 1.75 58.7 19.0 67.7 67.2 6.67 8.80
3 100 0.75 3.75 61.3 19.2 75.0 70.2 5.61 7.8
4 100 1.25 1.75 65.9 23.5 88.4 74.2 11.1 11
5 100 1.25 3.75 56.5 17.6 61.3 60.2 4.08 5
6 200 0 0 43.7 12.3 25.0 26.6 3.07 4.40
7 200 0.75 1.75 44.5 11.8 27.0 30.4 3.09 4.2
8 200 0.75 3.75 45.0 12.1 28.6 31.6 2.68 6.2
9 200 1.25 1.75 48.5 14.3 38.5 41.8 9.67 10.8
10 200 1.25 3.75 45.2 12.0 29.0 29.6 2.34 6.4
11 500 0 0 38.3 9.67 9.41 12.2 -0.449 3.4
12 500 0.75 1.75 38.4 9.68 9.69 12.6 1.62 4
13 500 0.75 3.75 38.3 10.2 9.36 13.8 0.737 5.2
14 500 1.25 1.75 41.6 10.3 19.0 20.8 6.83 9.6
15 500 1.25 3.75 38.2 9.49 9.23 10 1.09 4
16 1000 0 0 36.7 8.78 4.83 7.2 1.21 4.40
17 1000 0.75 1.75 36.5 8.79 4.27 7.6 0.898 6.8
18 1000 0.75 3.75 37.1 8.86 6.01 7.6 1.82 5.6
19 1000 1.25 1.75 38.8 9.23 10.9 12 7.00 7.2
20 1000 1.25 3.75 36.7 8.68 4.81 7.4 0.993 4.2

guages such as R, and to demonstrate how the SimDesign
package can be used to naturally implement many impor-

tant and desirable programming features when designing

simulation experiments.

As with all discussions of software, the information

presented herein is not intended to be exhaustive. Be-

low are some additional features currently supported by

SimDesign that interested readers may also wish to ex-
plore:

• In situations where more replications are required af-

ter the original simulation has been completed (e.g., at

the request of an anonymous reviewer) then the addi-

tional replications requested in a new execution, com-

binedwith the use of aggregate_simulations(),
can combine independent executions of the same sim-

ulation code into a single simulation. For instance, if

a simulation was executed initially with R = 500, and
at a later date the same simulation was independently

performed with another R = 500 replications, then
aggregate_simulations() could be used to com-
bine these two independent experiments into single

simulation as though R = 1000 were originally eval-
uated,

• In a similar spirit to aggregate_simulations(),
if additional levels of a factor variable (and therefore
subsequent conditions) were added to the Design ob-
ject at a later date (e.g., adding N = 5000 to the Flora
and Curran (2004) simulation above) then only the new

row combinations in the Design object would need to
be evaluated, and can be combined row-wise via the S3

The Quantitative Methods for Psychology 2722

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Listing 18 Code to replicate Table 6 in Flora and Curran (2004).

library(ggplot2)

generate summary data for Figure 6 in Flora and Curran (2004)
results_5 %>%

filter(indicators == 5) %>%
mutate(TypeI = edr_05 * 100,
est_fact = factor(estimator):factor(factors)) %>%
group_by(N, est_fact) %>%
summarise(mean_TypeI = mean(TypeI)) -> fig6dat

labels <- c("Model 1 (full WLS estimation)", "Model 3 (full WLS estimation)",
"Model 1 (robust WLS estimation)", "Model 3 (robust WLS estimation)")

draw graphic using the ggplot2 package
ggplot(fig6dat,

aes (x= factor(N), y=mean_TypeI, linetype=est_fact,
shape=est_fact, group=est_fact)) +

geom_line() + geom_point(size=4) +
geom_hline(yintercept=5, colour=’red’, linetype=’dashed’) +
xlab("Sample Size") + ylab("Type I Error Rate") +
scale_linetype_discrete(labels=labels) +
scale_shape_discrete(labels=labels) +
ylim(0, 80) + theme_bw() +
theme(legend.title= element_blank(),

legend.position = c(.8, .7),
axis.line = element_line(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank()

)
]

method rbind(),
• Additional data generation algorithms are included

in the package, such as rValeMaurelli() and

rHeadrick() to create multivariate non-normal dis-
tributions with specified skewness and kurtosis (Vale

& Maurelli, 1983; Headrick, 2002), rinvWishart()
for the inverse Wishart distribution, rmgh() for

the multivariate g-and-h distribution, rmvt() and
rmvnorm() for the multivariate t and Gaussian dis-
tribution, and rejectionSampling() to draw data
from complex distributions via rejection sampling. See

extraDistr (Wolodzko, 2019) for additional opti-
mized distribution functions outside base R,

• Estimating the sampling variability of the simula-

tion’s meta-statistical results within each condition

can be obtained via non-parametric bootstrapped

confidence intervals (e.g., runSimulation(...,
boot_method = “basic”), which may also be
obtained at a later time via similar arguments to

reSummarise() if save_results = TRUE were
originally supplied to runSimulation()). This can
used to gauge the sampling precision of the MCS es-

timates, and whether additional replications should

be performed to reduce the sampling uncertainty in

the obtained meta-statistics (see the first bullet point

above),

• A means for creating self-contained parametric boot-

strapping functions (e.g., Chalmers & Ng, 2017) is

also possible, which comes complete with all of

SimDesign’s built-in safety features, and
• A function called SimShiny() can be used to auto-
matically create template files for interactive simula-

tions via the shiny package. This allows investigators
to publish their simulation’s coding structure on-line

using a GUI presentation format with minimal effort,

and allows for full customization of the GUI output.

These and other features are included to streamline the

creation and evaluation of MCSs, and to defensively antic-

ipate many of the common stressors that appear through-

out the process of designing, writing, and publishing simu-

lation studies.

Finally, it is worth noting that the R program-

ming environment is not without its share of third-

party software packages for designing Monte Carlo sim-

ulation experiments (e.g., simFrame (Alfons, Templ,

& Filzmoser, 2010), simsalapar (Hofert & Mächler,

The Quantitative Methods for Psychology 2732

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Figure 2 Replication of Figure 6 in Flora and Curran (2004).

2016), simulator (Bien, 2016), ezsim (Chan, 2014),
MonteCarlo (Leschinski, 2019), simstudy (Goldfeld,
2020), and more). However, while many of these available

packages share similar characteristics, the overall philoso-

phy of code safety, efficiency, flexibility, and readability are

not strongly emphasized in these packages. SimDesign,
on the other hand, aims at each of these important and

desirable criteria. This is particularly important given the

current research climate where open science practices are

at a premium, whereby providing openly available MCS

code (e.g., via online appendices or repositories) reflects an

important consistency with the Open Science Framework’s

Transparency and Openness Protocol (Nosek et al., 2015).

Although providing MCS code is often encouraged by jour-

nal editors and reviewers, this step alone is not sufficient

for future investigators to ascertain the veracity of a sim-

ulation study. Fortunately, SimDesign makes publishing
code more feasible, where future readers will require less

effort in understanding and trusting theMCS code and sub-

sequent results.

Authors’ note
Special thanks to James Mallari, Kevin Hallgren, and

Alexandre Gellen-Kamel for providing constructive com-

ments on earlier versions of this manuscript. Correspon-

dence concerning this article should be addressed to R.

Philip Chalmers, Department of Psychology, York Univer-

sity, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.

References
Alfons, A., Templ, M., & Filzmoser, P. (2010). An object-

oriented framework for statistical simulation: The

R package simFrame. Journal of Statistical Software,
37(3), 1–36. Retrieved from http://www.jstatsoft.org/
v37/i03/

Bien, J. (2016). The simulator: An engine to streamline sim-

ulations. Submitted. Retrieved from http : / / faculty .

bscb.cornell.edu/~bien/simulator.pdf

Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006).

The design of simulation studies in medical statistics.

Statistics in Medicine, 25, 4279–4292. doi:10.1002/sim.
2673

Chalmers, R. P. (2012). mirt: A multidimensional item re-

sponse theory package for the R environment. Jour-
nal of Statistical Software, 48(6), 1–29. doi:10 .18637/
jss.v048.i06

Chalmers, R. P. (2020). SimDesign: Structure for Organiz-
ing Monte Carlo Simulation Designs. R package ver-
sion 2.1. Retrieved from https://CRAN.R-project.org/

package=SimDesign

Chalmers, R. P., & Ng, V. (2017). Plausible-value imputa-

tion statistics for detecting item misfit. Applied Psy-
chological Measurement, 41(5), 372–387. doi:10.1177/
0146621617692079

The Quantitative Methods for Psychology 2742

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248
http://www.jstatsoft.org/v37/i03/
http://www.jstatsoft.org/v37/i03/
http://faculty.bscb.cornell.edu/~bien/simulator.pdf
http://faculty.bscb.cornell.edu/~bien/simulator.pdf
https://dx.doi.org/10.1002/sim.2673
https://dx.doi.org/10.1002/sim.2673
https://dx.doi.org/10.18637/jss.v048.i06
https://dx.doi.org/10.18637/jss.v048.i06
https://CRAN.R-project.org/package=SimDesign
https://CRAN.R-project.org/package=SimDesign
https://dx.doi.org/10.1177/0146621617692079
https://dx.doi.org/10.1177/0146621617692079

¦ 2020 Vol. 16 no. 4

Chan, T. J. (2014). ezsim: Provide an easy to use framework
to conduct simulation. R package version 0.5.5. Re-
trieved from https : / /CRAN.R- project .org /package=

ezsim

Flora, D. B., & Curran, P. J. (2004). An empirical evaluation

of alternative methods of estimation for confirmatory

factor analysis with ordinal data. Psychological Meth-
ods, 9(4), 466–491. doi:10.1037/1082-989X.9.4.466

Goldfeld, K. (2020). Simstudy: Simulation of study data

(Version R package version 0.1.16). Retrieved from

https://CRAN.R-project.org/package=simstudy

Hallgren, K. A. (2013). Conducting simulation studies in the

R programming environment. Tutorials in Quantita-
tive Methods for Psychology, 9(2), 43–60. doi:10.20982/
tqmp.09.2.p043

Headrick, T. C. (2002). Fast fifth-order polynomial trans-

forms for generating univariate and multivariate

nonnormal distributions. Computational Statistics
and Data Analysis, 40, 685–711. doi:https : / / doi . org /
10.1016/S0167-9473(02)00072-5

Hoaglin, D. C., & Andrews, D. F. (1975). The reporting of

computation-based results in statistics. The American
Statistician, 29(3), 122–126.

Hofert, M., & Mächler, M. (2016). Parallel and other simula-

tions in R made easy: An end-to-end study. Journal of
Statistical Software, 69(4), 1–44. doi:10.18637/jss.v069.
i04

Jones, O., Maillardet, R., & Robinson, A. (2014). Introduction
to Scientific Programming and Simulation Using R. CRC
Press.

Lee, S., Sriutaisuk, S., & Kim, H. (2019). Using the tidyverse

package in R for simulation studies in SEM. Struc-
tural Equation Modeling: A Multidisciplinary Journal.
doi:https://doi.org/10.1080/10705511.2019.1644515

Leschinski, C. H. (2019). MonteCarlo: Automatic paral-
lelized monte carlo simulations. R package version
1.0.6. Retrieved from https : / / CRAN .R - project . org /

package=MonteCarlo

Mooney, C. Z. (1997). Monte carlo simulations. Thousand
Oaks, CA: Sage.

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Us-

ing simulation studies to evaluate statistical methods.

Statistics in Medicine, 38(11), 2074–2102. doi:https : / /
doi.org/10.1002/sim.8086

Muthén, B. O. (1984). A general structural equation model

with dichotomous, ordered categorical, and contin-

uous latent variable indicators. Psychometrika, 49,
115–132.

Muthén, L. K., & Muthén, B. O. (2008). Mplus (Version 5.0)

[Computer Program]. Author.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman,

S. D., Breckler, S. J., . . . Yarkoni, T. (2015). Promot-

ing an open research culture: Author guidelines for

journals could help to promote transparency, open-

ness, andreproducibility. Science, 6242(348), 1422–
1425. doi:10.1126/science.aab2374

Olsson, U. (1979). Maximum likelihood estimation of

the polychoric correlation coefficient. Psychometrika,
44(4), 443–460.

Paxton, P., Curran, P., Bollen, K. A., Kirby, J., & Chen, F.

(2001). Monte carlo experiments: Design and imple-

mentation. Structural Equation Modeling, 8(2), 287–
312. doi:https://doi.org/10.1207/S15328007SEM0802_7

Rosseel, Y. (2012). lavaan: An R package for structural equa-

tionmodeling. Journal of Statistical Software, 48(2), 1–
36. Retrieved from http://www.jstatsoft.org/v48/i02

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teach-

ing statistics with Monte Carlo simulation. Journal
of Statistics Education, 24(3), 136–156. doi:10 . 1080 /
10691898.2016.1246953

Sobel, M. E. (1986). Some new results on indirect effects

and their standard errors in covariance structure. So-
ciological Methodology, 16, 159–186.

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate

nonnormal distributions. Psychometrika, 48, 465–471.
Wickham, H. (2009). ggplot2: Elegant graphics for data

analysis. New York: Springer.
Wickham, H. (2019). Advanced R (2nd). Boca Raton: CRC

Press.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan,

L. D., François, R., . . . Yutani, H. (2019). Welcome to

the tidyverse. Journal of Open Source Software, 4(43),
1686. doi:10.21105/joss.01686

Wolodzko, T. (2019). extraDistr: Additional univariate and
multivariate distributions. R package version 1.8.11.
Retrieved from https://CRAN.R-project.org/package=

extraDistr

Xie, Y. (2015). Dynamic documents with R and knitr. Boca
Raton, FL: CRC Press.

Appendix A: Mediation Analysis Simulation
Simulation presented by Hallgren (2013), re-expressed using the SimDesign package’s generate-analyse-summarise
functional framework. To execute this simulation, copy and paste the following into an active R console.

Generate and edit the R template file ’Hallgren2013.R’
SimDesign::SimFunctions(’Hallgren2013’)

The Quantitative Methods for Psychology 2752

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248
https://CRAN.R-project.org/package=ezsim
https://CRAN.R-project.org/package=ezsim
https://dx.doi.org/10.1037/1082-989X.9.4.466
https://CRAN.R-project.org/package=simstudy
https://dx.doi.org/10.20982/tqmp.09.2.p043
https://dx.doi.org/10.20982/tqmp.09.2.p043
https://dx.doi.org/https://doi.org/10.1016/S0167-9473(02)00072-5
https://dx.doi.org/https://doi.org/10.1016/S0167-9473(02)00072-5
https://dx.doi.org/10.18637/jss.v069.i04
https://dx.doi.org/10.18637/jss.v069.i04
https://dx.doi.org/https://doi.org/10.1080/10705511.2019.1644515
https://CRAN.R-project.org/package=MonteCarlo
https://CRAN.R-project.org/package=MonteCarlo
https://dx.doi.org/https://doi.org/10.1002/sim.8086
https://dx.doi.org/https://doi.org/10.1002/sim.8086
https://dx.doi.org/10.1126/science.aab2374
https://dx.doi.org/https://doi.org/10.1207/S15328007SEM0802_7
http://www.jstatsoft.org/v48/i02
https://dx.doi.org/10.1080/10691898.2016.1246953
https://dx.doi.org/10.1080/10691898.2016.1246953
https://dx.doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=extraDistr
https://CRAN.R-project.org/package=extraDistr

¦ 2020 Vol. 16 no. 4

function returns data.frame of p-values, estimates, SEs, etc
sobel_test <- function(X, M, Y){

M_X <- lm(M ~ X)
Y_XM <- lm(Y ~ X + M)
a <- coefficients(M_X)[2] # extract from numeric vector
b <- coefficients(Y_XM)[3]
stdera <- summary(M_X)$coefficients[2,2] # extract from list first then matrix
stderb <- summary(Y_XM)$coefficients[3,2]
sobelz <- a*b / sqrt(b^2 * stdera^2 + a^2 * stderb^2)
sobelp <- pnorm(abs(sobelz), lower.tail = FALSE)*2
ret <- data.frame(a=a, SE_a=stdera, b=b, SE_b=stdera,

z=sobelz, p=sobelp)
ret

}

#--
library (SimDesign)

fully-crossed simulation experiment
Design <- createDesign(N = c(100, 300),

a = c(-.3, 0, .3),
b = c(-.3, 0, .3),
cp = c(-.2, 0, .2))

#--
Generate <- function(condition, fixed_objects = NULL) {

Attach(condition) # make N, a, b, and cp accessable
X <- rnorm(N)
M <- a*X + rnorm(N)
Y <- cp*X + b*M + rnorm(N)
dat <- data.frame(X=X, M=M, Y=Y)
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
Attach(dat) # make objects X, M, and Y directly accessible
sobel <- sobel_test(X=X, M=M, Y=Y)$p
sobel_incorrect <- sobel_test(X=X, M=Y, Y=M)$p
ret <- c(sobel=sobel, sobel_incorrect=sobel_incorrect)
ret # named vector of p-values

}

Summarise <- function(condition, results, fixed_objects = NULL) {
ret <- EDR(results, alpha = .05) # results object is a ’data.frame’
ret # empirical detection rate returned

}

#--
res <- runSimulation(design=Design, replications=1000, generate=Generate,

analyse=Analyse, summarise=Summarise)
res

The Quantitative Methods for Psychology 2762

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Appendix B: Modifications to the Mediation Simulation Example
The following reflects one possible extension of the mediation simulation presented in Appendix B, which adds: an addi-

tional experimental factor to the simulation Design object; provides a conditional discrete-continuous data generation
form for theX variable; and adds a bias-corrected bootstrapmediation p-value test in the Analyse() code block. Due to
the greater intensity of this simulation the final results are saved to a file called “modified_mediation”, the internal
results objects passed to Summarise() are all written to the hard-disk for each associated condition in the Design
rows conditions by passingsave_results = TRUE, and the simulation is executed in parallel using all available cores
by passing parallel=TRUE. Note the similarities and differences to the simulation code in Appendix .

sobel_test <- function(X, M, Y){
... # defined in Appendix A

}

boot_test <- function(X, M, Y, bootstrap = 5000){
dat <- data.frame(X=X, M=M, Y=Y)
syntax <- "

M ~ a * X
Y ~ b * M + cp * X
indirect and total effects
ab := a * b
total := cp + ab"

mod <- lavaan:: sem(syntax, data=dat, se="bootstrap", bootstrap=bootstrap)
bias-corrected bootstrap
cfs <- lavaan::parameterEstimates(mod, boot.ci.type = "bca.simple")
ret <- cfs[cfs$label == ’ab’,]
ret

}

#--
library (SimDesign)
Design <- createDesign(N = c(100, 300),

a = c(-.3, 0, .3),
b = c(-.3, 0, .3),
cp = c(-.2, 0, .2),
dist = c(’norm’, ’bern’))

#--
Generate <- function(condition, fixed_objects = NULL) {

Attach(condition)
X <- if (dist == ’norm’) rnorm (N) else rbinom (N, size=1, prob=.5)
M <- a*X + rnorm(N)
Y <- cp*X + b*M + rnorm(N)
dat <- data.frame(X=X, M=M, Y=Y)
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
Attach(dat)
sobel <- sobel_test(X=X, M=M, Y=Y)$p
sobel_incorrect <- sobel_test(X=X, M=Y, Y=M)$p
boot <- boot_test(X=X, M=M, Y=Y)$p

The Quantitative Methods for Psychology 2772

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

boot_incorrect <- boot_test(X=X, M=Y, Y=M)$p
ret <- c(sobel=sobel, sobel_incorrect=sobel_incorrect,

boot=boot, boot_incorrect=boot_incorrect)
ret

}

Summarise <- function(condition, results, fixed_objects = NULL) {
ret <- EDR(results, alpha = .05)
ret

}

#--
save temporary files, analysis results, and execute code in parallel
res <- runSimulation(design=Design, replications=1000, generate=Generate,

analyse=Analyse, summarise=Summarise,
parallel=TRUE, save_results=TRUE,
filename=’modified_mediation’)

res

Appendix C: User-defined functions required for Flora and Curran simulation
The following code contains a user-defined convenience function for the (Flora & Curran, 2004) replication study with

SimDesign, and should be saved to an external .R file (e.g., “FloraCurran2004-functions.R”). This func-
tion can be loaded into R via the source() function, which should be passed to the R console prior to executing
runSimulation().

#’ @param J number of variables
#’ @param analyse logical; is syntax being used for data generation or analysis?
#’ @examples
#’ cat(genLavaanSyntax(factors=1, indicators=10))
#’ cat(genLavaanSyntax(factors=2, indicators=10))
#’ cat(genLavaanSyntax(factors=1, indicators=10, analyse = TRUE))
#’ cat(genLavaanSyntax(factors=2, indicators=10, analyse = TRUE))
#’
genLavaanSyntax <- function(factors, indicators, analyse = FALSE){

ret <- if (factors == 1){
if (analyse){

paste0(paste0(’f1 =~ NA*x1 + ’, paste0(paste0(’x’, 2:indicators),
collapse=’ + ’)), ’\nf1 ~~ 1*f1’)

} else {
paste0(paste0(’f1 =~ ’, paste0(rep (.7, indicators),

paste0(’*x’, 1:indicators),
collapse=’ + ’), ’ \n’),

paste0(sprintf(’x%s ~~ 0.51*x%s’, 1:indicators, 1:indicators),
collapse=’ \n’))

}
} else if (factors == 2){

if (analyse){
paste0(paste0(’f1 =~ NA*x1 + ’,

paste0(paste0(’x’, 2:indicators), collapse=’ + ’)),
paste0(sprintf(’\nf2 =~ NA*x%s + ’, indicators+1),

paste0(paste0(’x’, 2:indicators + indicators),

The Quantitative Methods for Psychology 2782

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

collapse=’ + ’)),
’\nf1 ~~ 1*f1 \nf2 ~~ 1*f2 \nf1 ~~ f2’)

} else {
paste0(paste0(’f1 =~ ’, paste0(rep (.7, indicators),

paste0(’*x’, 1:indicators),
collapse=’ + ’), ’ \n’),

paste0(’f2 =~ ’, paste0(rep (.7, indicators),
paste0(’*x’, 1:indicators + indicators),
collapse=’ + ’), ’ \n’), ’f1 ~~ .3*f2 \n’,

paste0(sprintf(’x%s~~0.51*x%s’, 1:indicators, 1:indicators),
collapse=’ \n’))

}
} else stop (’factors input is incorrect’)
ret

}

Citation
Chalmers, R. P., & Adkins, M. C. (2020).Writing effective and reliableMonte Carlo simulationswith the SimDesign package.

The Quantitative Methods for Psychology, 16(4), 248–280. doi:10.20982/tqmp.16.4.p248
Copyright © 2020, Chalmers and Adkins. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Received: 13/01/2020∼ Accepted: 12/06/2020

Table 1 follows.

The Quantitative Methods for Psychology 2792

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248
https://dx.doi.org/10.20982/tqmp.16.4.p248

¦ 2020 Vol. 16 no. 4

Tab
le1

M
e
ta
-s
ta
ti
s
ti
c
s
u
s
e
f
u
l
f
o
r
s
u
m
m
a
r
iz
in
g
th
e
b
e
h
a
v
io
r
o
f
M
o
n
te
C
a
r
lo
s
im
u
la
ti
o
n
r
e
p
li
c
a
te
s
in
S
i
m
D
e
s
i
g
n
’s
S
u
m
m
a
r
i
s
e
(
)
f
u
n
c
ti
o
n
.

I
n
th
is
ta
b
le
θ
r
e
p
r
e
s
e
n
ts
a
p
o
p
u
la
ti
o
n
p
a
r
a
m
e
te
r
,
θ̂
a
s
a
m
p
le
e
s
ti
m
a
te
,
Ŝ
D
(·)
a
n
e
s
ti
m
a
te
o
f
th
e
s
ta
n
d
a
r
d
d
e
v
ia
ti
o
n
,
Ĉ
I
(·)
a
n
e
s
ti
m
a
te
o
f
th
e

c
o
n
fi
d
e
n
c
e
in
te
r
v
a
l,
a
n
d
#
a
c
o
u
n
ti
n
g
o
r
ta
ll
y
o
p
e
r
a
to
r
.

F
u
n
c
ti
o
n
in
S
i
m
D
e
s
i
g
n

N
a
m
e

t
y
p
e

=
“
.
.
.
”

D
e
fi
n
it
io
n

b
i
a
s
(
.
.
.
)

b
ia
s

b
i
a
s
(d
e
f
a
u
lt
)

1 R

∑ (θ̂
r
−
θ)

r
e
la
ti
v
e
b
ia
s

r
e
l
a
t
i
v
e

1 R

∑ R r
=
1

(θ̂
r
−
θ
)

θ

r
e
la
ti
v
e
a
b
s
o
lu
te
b
ia
s
(R
A
B
)

a
b
s
_
r
e
l
a
t
i
v
e

1 R

∑ R r
=
1

(θ̂
r
−
θ
)

|θ
|

s
ta
n
d
a
r
d
iz
e
d
b
ia
s

s
t
a
n
d
a
r
d
i
z
e
d

1 R

∑ R r
=
1
θ̂
r
−
θ

Ŝ
D
(θ̂

)

R
M
S
E
(
.
.
.
)

r
o
o
t
m
e
a
n
-s
q
u
a
r
e
e
r
r
o
r
(R
M
S
E
)

R
M
S
E
(d
e
f
a
u
lt
)

√ 1 R

∑ R r
=
1
(θ̂
r
−
θ)

2

n
o
r
m
a
li
z
e
d
R
M
S
E

N
R
M
S
E

R
M
S
E

m
a
x
(θ̂

)−
m
in

(θ̂
)

s
ta
n
d
a
r
d
iz
e
d
R
M
S
E

S
R
M
S
E

R
M
S
E

Ŝ
D
(θ̂

)

c
o
e
ffi
c
ie
n
t
o
f
v
a
r
ia
ti
o
n
(C
V
)

C
V

R
M
S
E

1 R

∑ R r
=

1
θ̂
r

r
o
o
t
m
e
a
n
-s
q
u
a
r
e
lo
g
-e
r
r
o
r

R
M
S
L
E

√ 1 R

∑ R r
=
1
[l
o
g
(θ̂
r
+
1
)
−

lo
g
(θ

+
1
)]
2

M
A
E
(
.
.
.
)

m
e
a
n
a
b
s
o
lu
te
e
r
r
o
r
(M
A
E
)

M
A
E
(d
e
f
a
u
lt
)

1 R

∑ R r
=
1
|θ̂
r
−
θ|

n
o
r
m
a
li
z
e
d
M
A
E

N
M
A
E

M
A
E

m
a
x
(θ̂

)−
m
in

(θ̂
)

s
ta
n
d
a
r
d
iz
e
d
M
A
E

S
M
A
E

M
A
E

Ŝ
D
(θ̂

)

I
R
M
S
E
(
.
.
.
)

in
te
g
r
a
te
d
r
o
o
t
m
e
a
n
-s
q
u
a
r
e
e
r
r
o
r

—

∫ ψ
(f
(ψ
,θ̂
)
−
f
(ψ
,θ
))

2
g
(ψ

)

E
D
R
(
.
.
.
)

e
m
p
ir
ic
a
l
d
e
te
c
ti
o
n
r
a
te

—
1 R

∑ R r
=
1
#
(p
r
≤
α
)

E
C
R
(
.
.
.
)

e
m
p
ir
ic
a
l
c
o
v
e
r
a
g
e
r
a
te

—
1
−

1 R

∑ R r
=
1
#
[Ĉ
I
(α
/2
) r
≥
θ
∩
Ĉ
I
(1
−
α
/2
) r
≤
θ]

M
S
R
S
E
(
.
.
.
)

m
e
a
n
-s
q
u
a
r
e
r
e
la
ti
v
e
s
ta
n
d
a
r
d
e
r
r
o
r

—

1 R

∑ R r
=

1
Ŝ
E
(θ̂

r
)

Ŝ
D
(θ̂

)

R
A
B
(
.
.
.
)

r
e
la
ti
v
e
a
b
s
o
lu
te
b
ia
s

—
R
A
B
2

R
A
B
1

R
E
(
.
.
.
)

r
e
la
ti
v
e
e
ffi
c
ie
n
c
y

—

(RMS
E
2

R
M
S
E
1

) 2

The Quantitative Methods for Psychology 2802

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p248

