
¦ 2020 Vol. 16 no. 4

Commentary on “A review of effect sizes and their

confidence intervals, Part I: The Cohen’s d family”:
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Abstract In their review of effect sizes of the Cohen’s d family, Goulet-Pelletier and Cousineau
(2018) proposed several methods for generating confidence intervals for the unbiased standardized

mean difference, g. Among them they proposed using degrees of freedom ν = 2(n − 1) instead
of ν = (n − 1) for all paired samples designs that use a pooled standard deviation to standardize
the mean difference (pooled paired samples) when calculating g and its confidence limits from a

noncentral t distribution. Simulations demonstrate that the exact ν for a pooled paired samples
design vary as a function of the population correlation ρ between 2(n − 1) at ρ = .0 and (n −
1) at ρ = 1.0. This affects the calculation of g and the selection of the appropriate noncentral
t distribution for calculating the confidence limits. Using a sample r to estimate the unknown ρ
causes a further deviation from the presumed noncentral t distribution evenwhen the ν are known.
These facts adversely affect the coverage of the confidence intervals computed as recommended by

the authors. These methods for calculating noncentral t confidence intervals should not be used
as described with pooled paired samples designs. Noncentral t confidence intervals for either a
two sample design or a paired samples design where the mean difference is standardized by the

standard deviation of the difference scores are unaffected by this problem. An R script and C source

code are provided.
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Introduction

Goulet-Pelletier and Cousineau (2018) proposed several

methods for generating confidence intervals for the un-

biased standardized mean difference, g. This paper crit-
ically evaluates some of those methods. As described in

their review, a confidence interval for an unbiased stan-

dardized effect size should use a noncentral t distribution
to determine the limits. Their paper states that the de-

grees of freedom, ν, for any paired samples design using
a pooled error term (pooled paired samples design) should

be ν = 2(n − 1) to calculate g and its variance, Var(g),
where n is the number of pairs of scores. This contrasts
with the ν = (n− 1) used with a paired t test. The present
simulations followed their methods as proposed and test

whether 2(n − 1) or (n − 1) provide the proper coverage

for a 95% confidence interval across a range of effect sizes,

sample sizes, and correlations.

A paired samples design can be any design with two

repeated measures such as a pretest and posttest in a sin-

gle group of subjects or two groups of subjects that have

been matched into pairs on a different but positively cor-

related variable. I have not considered negative values of ρ
because few researchers would set out to use a pairedmea-

sures designwhen the correlation is not expected to be pos-

itive. For example, subjects are never matched based on a

negatively correlated matching variable. For convenience

below, formulas are described as a pretest and posttest in

a single group of subjects.
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Methods and Results

Simulations employed a C language program that gener-

ated pseudorandom data from a normal-bivariate distri-

bution (see Fitts, 2018, C code and documentation avail-

able at: https : / /osf . io / jdtcz/). The paired samples model

was: xpre, i ∼ N(µpre, σ
2), xpost, i ∼ N(µpost, σ

2),
i = 1, . . . , n, Correlation(xpre, xpost) = ρ. The population
standard deviationwas σ = 1.0, and the size of the sample,
n, was varied. A general standardized mean difference, d,
is a mean difference divided by a standard deviation. In

the present simulations, the population (δP ) and sample
(dP) standardized mean differences were, respectively:

δP =
µpre − µpost

σP
; (1a)

dP =
X̄pre − X̄post

SP
(1b)

with the pooled standard deviation as proposed by Goulet-

Pelletier and Cousineau (2018) as:

SP =
Spre + Spost

2
(2)

and degrees of freedom for calculating g and its variance
as recommended by Goulet-Pelletier and Cousineau (2018)

as:

ν = npre + npost − 2 = 2(n− 1). (3)

In separate sets of simulations I also used ν = (n − 1) for
comparison with the recommended method.

Hedges (1981) demonstrated that the sampling distri-

bution of d times a constant is a noncentral t with appro-
priate degrees of freedom and non-centrality parameter.

The non-centrality parameter λ for a general noncentral t
distribution corresponding to δ is:

λ = δ
√
A; λ̂ = d

√
A (4)

and the general equation for the variance of d (Var(d)) is:

V ar (d) =

(
1

A

)
ν

ν − 2

(
1 + (A) δ2

)
− δ2

J(ν)
2 . (5)

In these equations, δ can be estimated by d, and A varies
according to experimental design:

Pooled paired samples: A =

(
n

2 (1− ρ)

)
(6a)

Difference paired samples: A = (n) (6b)

Two groups: A = (
ñ

2
); ñ = 2

n1n2
n1 + n2

(6c)

and J(ν) is the correction for bias:

J (ν) =
Γ
(
ν
2

)√
v
2 Γ

(
(v−1)

2

) (7)

owing to Hedges (1981).

The unbiased standardized mean difference, g, is cal-
culated as:

g = d× J(ν); (8a)

V ar(g) = V ar(d)J(ν)2 (8b)

Empirical Coverage of Confidence Interval and Variance

A 95% confidence interval was calculated for each of

10,000 simulated experiments, and for each it was noted

whether or not the interval included the population stan-

dardized mean difference δP . Coverage was calculated as
the number of intervals that included δP divided by 10,000.
Independent simulations were conducted for δ = 0, 0.5,
and 1.0 and for ρ = 0, 0.45, and 0.90.
I simulated sequential experiments beginningwithn =

10, added 1 sample at each iteration, and summarized re-
sults at all sample sizes to a fairly large number. The code

was borrowed from a sequential sampling simulator (Fitts,

2018). See Appendix A for reliability information.

These simulations employed a noncentral t cumula-
tive probability algorithm (ASA243) written originally in

Fortran77 by Lenth (Lenth, 1989) and converted to C by
Burkhardt. This algorithm is used by R. I wrote a binary

search function that performs the same task as the qt()

function in R. This function performs a binary search using

ASA243with different t values until a quantile is found that
matches a target probability value to eight decimal digits.

Figure 1 illustrates the coverages for pooled paired

samples tests in two parts, ν = (n − 1) (left) and ν =
2(n− 1) (right). Coverages with (n− 1)were not far from
the expected .95 although coverage did increase toward .96

as the effect size increased. Coveragewas low at small sam-

ple sizes with δ = 0. Coverage with 2(n − 1) was reduced
with increasing values of δ and ρ and was unacceptable
with ρ = .9. It was also too low with small sample sizes.
Please note in the bottom panels of Figure 1 for δ = 1.0,
where the variability between curves is greatest, that the

curve for ρ = .9 is closest to .95 on the left side (with
ν = (n− 1)) and the curve for ρ = 0 is closest to .95 on the
right side (for ν = 2(n− 1)).
I ran additional simulations to explore the deviance of

the empirical variance from the theoretical variance with

pooled paired samples tests. If a noncentral t distribution
with ν = npre + npost − 2 is a good model of the sam-

pling distribution of dP
√
n/(2 (1− ρ)) , then the variance

of empirical dP values from a simulation should match the
theoretical variance calculated from Equation 5. The dP
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Figure 1 Pooled paired samples design. Coverage of 95% noncentral t confidence intervals for the unbiased standard-
ized mean difference in pooled paired samples experiments across a variety of sample sizes and effect sizes. The g, λ̂,
and the limits at the t quantiles were calculated using ν = (n− 1) (left side) or ν = 2(n− 1) (right side). Severe deficits
of coverage according to n, ρ and δ emerged when using ν = 2(n− 1). The r used in calculations for this figure was the
uncorrected Pearson correlation coefficient.

was calculated according to the pooled formula in Equa-

tions 1b and 2. Figure 2 plots the empirical variance of

10,000 dP values at sample sizes of 10, 30, 50, and 100 in a
paired samples design with δP = 1.0 and with ρ set at .0 to
.9 in increments of .1. These empirical variance values are

plotted as circles. The different sample sizes were taken

from separate simulation runs and are independent.

Plotted as guides in Figure 2 are the calculated popu-

lation variance values (Equation 5) for δ = 1.0 at each ρ
when using either ν = 2(n − 1) (triangles Goulet-Pelletier
& Cousineau, 2018) or ν = (n − 1) (squares Morris, 2000;
Borenstein, Hedges, Higgins, & Rothstein, 2009). The calcu-

lations with ν = 2(n−1) are a reasonable fit for the empir-
ical variance below ρ ≈ 0.4, but the empirical curve begins
to flatten out at higher values of ρ until the ν = (n−1) cal-
culation is a better fit at ρ = .9. At each sample size, a
quadratic equation was found for the empirical variance

as a function of ρ that accounted for 99.9% of the variance.

Fit of λ̂ to Noncentral t Distribution

Presuming that the correct degrees of freedom could be

calculated for any statistic dP
√
n/(2 (1− ρ)) , the distri-

bution of the statistic would be a noncentral t because the
factor

√
n/(2 (1− ρ)) is a constant. However, if one as-

sumes the degrees of freedom are either ν = 2(n − 1)
or ν = (n − 1) for all values of ρ, the fit of the empir-
ical data with that noncentral t will be incorrect when ρ
is anything other than 0 or 1.0. Furthermore, we rarely

know ρ in an experiment and must estimate it using r. The
statistic dP

√
n/(2 (1− r)) will almost never be exactly a

noncentral t with λ̂ = dP
√
n/(2 (1− ρ)) because the fac-

tor

√
n/(2 (1− r)) is a random variable that changes with

the sample value of r.
These issues are illustrated in Figure 3 through Fig-

ure 5, which compares calculated noncentral t cumulative
probability distributions (green triangles) with empirical

cumulative relative frequency distributions from a sim-

ulation of dP
√
A values (red circles). The tested effect
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Figure 2 Simulations of the empirical variance of dP for the pooled paired samples experiment (circles) at various levels
of ρ and n with δ = 1.0. The dP was calculated according to Equation 1b and 10,000 iterations were used. Plotted as
guides are the calculated population variance values (Equation 5) using either ν = 2(n − 1) (triangles) or ν = (n − 1)
(squares). Neither set of theoretical calculations explains the empirical variance of dP at all levels of ρ.

sizes were 0.0, 0.666, and 1.0, ρ-values were .0, .65, and
.90, and the relative frequencies were determined from

500,000 simulated experiments for excellent stability. Sam-

ple size was n = 12. The values δ = 0.666, ρ = .65,
and n = 12 were selected to match the example given in
Goulet-Pelletier and Cousineau (2018, Figure 8). A cumu-

lative relative frequency distribution of the statistic was

constructed with approximately 50 bins. The three pan-

els are the different levels of ρ. Figures 3 through 5 rep-
resent different degrees of freedom and methods used for

the experiment. Figure 3 used ν = (n− 1), and the empir-
ical statistic plotted was dP

√
n/(2 (1− ρ)) (titled “n − 1

(ρ)”). Figure 4 used ν = 2(n−1) and the empirical statistic
plotted was also dP

√
n/(2 (1− ρ)) (titled “2(n − 1) (ρ)”).

Figure 5 used ν = 2(n − 1), but the statistic plotted was
dP
√
n/(2 (1− r)) (i.e., using the observed r instead of a

constant ρ in the calculation of factor A, titled “2(n − 1)
(r)”). In each figure, separate curves are drawn for the
three effect sizes increasing from left to right.

For “n − 1 (ρ)” (Figure 3), the fit with the noncentral t
was poor at ρ = .0 or .45 and a little better at ρ = 0.9. For
“2(n − 1) (ρ)” (Figure 4), the fit with the noncentral t was

clearly worst at ρ = 0.9 and best (exact) at ρ = .0. Nei-
ther Figure 3 nor Figure 4 is possible in practice unless ρ is
known, which is a rare circumstance. Instead, we have to

substitute the sample r for ρ. When the dP was multiplied
by the random variable

√
n/(2 (1− r)) (“2(n − 1) (r)”,

Figure 5) instead of the constant

√
n/(2 (1− ρ)), even the

case where the fit should be exact, ρ = .0, was erroneous,
and the fit was wildly inaccurate at ρ = .9.
Themean and standard deviation of 1,500,000 values of

A = n/(2 (1− r)) are printed in Figure 5. Note the large
standard deviations. The constant calculated values of A
in the population are: ρ = .0, A = 6; ρ = .65, A = 17.14;
ρ = .9, A = 60. The mean value of r from the 500,000
simulations and the mean value of A = n/(2 (1− r)) cal-
culated using n = 12 for δ = 0.0, 0.5, and 1.0, respec-
tively, were r = 0.00024, A = 5.998507; r = 0.631611,
A = 16.28713; r = 0.891007, A = 55.04942. Be-

cause r was an underestimate of ρ (Zimmerman, Zumbo,
&Williams, 2003) thisA calculated from the average r was
an underestimate of the population A. Because the distri-
bution of A is skewed with increasing ρ, the actual mean
values printed in Figure 5 were evenmore discrepant from
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Figure 3 Fit using ρ and ν = (n − 1). Cumulative relative frequency distribution of 500,000 randomly sampled values
of dP

√
n/(2 (1− ρ)) in pooled paired samples tests (red circles, “Observed”) at different population effect sizes δ and

correlations ρ, with n = 12 and ν = (n − 1). The cumulative noncentral t distribution with population non-centrality
parameter λ and ν = (n − 1) is plotted as green triangles. The fit is not unreasonable, but it is certainly not as perfect
as would be expected. The ratio of the mean of 500,000 estimates of the population variance, Var(g), to the empirical
variance of 500,000 dP values (“Var(g)/Emp”) was greater than 1.0, meaning that Var(g) is not a good estimate of the
actual variance of the dP values.

the population value with increasing ρ. However, there
was a perfect predictive relationship (r2(7) = .9996) be-
tween the 9 estimates using the mean value of r and the
direct mean value of 500,000 values of A given in the Fig-
ure 6 (Adirect = 1.510 × Amean estimate − 2.52). The A is not
variable in two-sample or one-sample-difference tests.

The inset tables in Figures 3 and 4 for the constants

“n(ρ)” and “2(n − 1)(ρ)” display the ratios of the mean of
500,000 calculated Var(g) values to the empirical variance
of 500,000 dP values for different effect sizes and for each
level of ρ. The mean Var(g) was calculated for each exper-
iment from Equations 5 and 8b using dP to estimate δ and
using the degrees of freedom given in the titles of Figures

3 and 4, respectively. This Var(g) was the unbiased esti-

mate of the population variance of dP for each experiment
assuming that the sample dP

√
A is distributed exactly as

a noncentral t. The empirical variance was the actual cal-
culated variance of simulated dP values and made no as-
sumption about the distribution. When each Var(g) was
calculated with ν = (n−1) themean Var(g) often overesti-
mated the empirical variance (Figure 3). When Var(g)was
calculated with ν = 2(n− 1) it underestimated the empir-
ical variance badly as effect size and correlation increased

(Figure 4). The empirical variance was the same in both

tests because dP was calculated identically, and the only
difference was the degrees of freedom used in calculating

Var(g) from Equations 5, 6a, and 8b. In these inset tables in
Figures 3 and 4, note that the fit between the circles and tri-
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Figure 4 Fit using ρ and ν = 2(n−1). Cumulative distribution of 500,000 randomly sampled values of dP
√
n/(2 (1− ρ))

in pooled paired samples tests (red circles, “Observed”) at different population effect sizes δ and correlations ρ, with
n = 12 and ν = 2(n − 1). The cumulative noncentral t distribution with population non-centrality parameter λ and
ν = 2(n − 1) is plotted as green triangles. The fit is excellent with ρ = .0, but it is poor with ρ = .9 and nonzero effect
sizes. The ratio of the mean of 500,000 estimates of the population variance, Var(g), to the empirical variance of 500,000
dP values was less than 1.0, especially where the fit was worst with ρ = .9 and large effect sizes.

angles is best when the ratio of “Var(g)/Emp” is closest to
1.0. The instances of poor fit imply that dP

√
n/(2 (1− ρ)))

was not distributed as a noncentral t with the given de-
grees of freedom. Note in the top panel of Figure 4, where

the fit of the observed distribution and the theoretical dis-

tribution were exact, that the Var(g)/Emp ratio is slightly
below 1.0, indicating that Var(g) is slightly underestimat-
ing the empirical variance. This is typical of small sample

sizes such as n = 12 (see tables). Figures 2 through 4 sug-
gest that the exact degrees of freedom for a pooled paired

samples design are 2(n − 1) when ρ = 0 (Figure 4, top),
(n − 1) when ρ = 1.0 (Figure 3, bottom is ρ = 0.9 in-
stead of 1.0), and some function of ρwhen the ρ is between
0 and 1.0. Presumably, if the proper degrees of freedom

were known, all plots using the constant

√
n/(2 (1− ρ))

would fit as well as the top panel in Figure 4. This is how

the distributions look for a two independent groups de-

sign or a difference paired samples design (graphs with-

held to conserve space). However, when ρ is unknown and
must be estimated from the random variable r, the sam-
pling distribution of the statistic does not fit a noncentral

t with λ = δ
√
n/(2 (1− ρ)) even when the correct de-

grees of freedom are known (Figure 5, top panel, ρ = 0,
ν = 2(n− 1)).
The fit in Figure 5, bottom panel, ρ = .90, ν = (n− 1),

was close to a noncentral t distribution, and the remain-
ing discrepancy was probably because the correlation was

only .90 instead of 1.0. We can test this by using a correla-
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Figure 5 Fit using empirical r rather than the constant ρ and ν = 2(n−1). Cumulative distribution of 500,000 randomly
sampled values of dP

√
n/(2 (1− r)) in pooled paired samples tests (red circles, “Observed”) at different population ef-

fect sizes δ and correlations ρ, with n = 12 and ν = 2(n− 1). The cumulative noncentral t distribution with population
non-centrality parameter λ and ν = 2(n − 1) is plotted as green triangles. The fit is poor with ρ = .0 and even worse
with ρ = .9 at nonzero effect sizes. The mean and standard deviation of 1,500,000 values of A = n/(2 (1− r)) are given
for each value of ρ. Note the progressive inflation of the standard deviation with increases in ρ. The r used in this figure
was the uncorrected Pearson correlation coefficient.

tion closer to 1.0 than the .90 given in Figure 3. Because the

constant

√
n/(2 (1− ρ)) is undefined when ρ = 1.0, I ran

a simulation using ρ = .999, δ = 1.0, and n = 12 (Figure
6). With the one set of 500,000 simulated dP values I calcu-
lated both the constant dP

√
n/(2 (1− ρ)) and the variable

dP
√
n/(2 (1− r)). Because r is a biased estimator of ρ, as

noted above, I calculated dP
√
n/(2 (1− r)) using both the

usual biased r and an unbiased r (Olkin & Pratt, 1958), as
marked in Figure 6. The calculation is:

ρ̂ = r

[
1 +

(
1− r2

)
2n

]
(9)

The noncentral t distribution is drawn as a curved line for
ν = (n − 1) = 11. The fit of the noncentral t with the dis-

tribution calculated using the constant ρ was better than
the fit with ρ = .90 in Figure 3 (bottom). This supports
the notion that the correct degrees of freedom for ρ = 1.0
is ν = (n − 1). The fit using the biased r was poor, and
the fit using the unbiased r was even worse. The mean
biased r in all simulations was .9989, and the mean unbi-
ased r was .9990. Consider what happens when the value
dP
√
n/(2 (1− r)) is recalculated with an unbiased r that

is slightly larger than the biased r: the smaller denomi-
nator makes the value larger. This shifts the entire dis-

tribution to higher t values, which is what we see for the
unbiased r in Figure 6. Examples for A calculated with
each mean r value are: Using biased r, 12/(2 (1− .9989))
= 5,454.55 and Using unbiased r, 12/(2 (1− .9990)) = 6000.
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The tiny difference in r makes a large difference in A.
Clearly, the poor fit of the statistic dP

√
n/(2 (1− r)) with

this noncentral t distribution, even with the correct de-
grees of freedom, does not result from using the biased r.
Please note that the r used in Figure 5 was the biased

Pearson r. As demonstrated here, correcting for that bias
in r would shift the distribution of observed values to the
right.

Calculation of g and Estimation of Correct ν
Next, we consider what happens to the calculation of

g itself when used with a pooled paired samples design.
According to Equation 8a, g is calculated as g = (d)J(ν),
where d is the biased standardized mean difference and
J is the bias coefficient with ν degrees of freedom. At the
smallest sample size used in Figure 1, n = 10, a paired
samples test would have ν = (n − 1) = 9 for a difference
method and, according to Goulet-Pelletier and Cousineau

(2018), ν = 2(n − 1) = 18 for a pooled method. From
Equation 7, J(9) = 0.91387 and J(18) = 0.95765. Table 1
lists the mean d values of 10,000 pooled paired samples ex-
periments at n = 10. This was calculated as dP for pooled
paired samples and two independent groups designs (i.e.,

using the pooled standard deviation as the divisor) and as

dD for difference paired samples designs (i.e., using the
standard deviation of difference scores as the divisor). The

degrees of freedom are not used in these calculations of

mean d. Note that the mean d becomes biased above δ as
the effect size increases. To the right are the g values cal-
culated by multiplying the mean d by either J(9) or J(18).
If the degrees of freedom are correct, the g should remove
the bias in mean d and become closer to δ. The research
designs are indicated by “Design” (pairs or 2Gps) and “SD-

type” (pool or diff). The top section of the table gives data

for pooled paired samples (pairs, pool) at different values

of δ and ρ as given in Figure 1. With this design, g(ν = 18)
is closer to δ than g(ν = 9) when ρ is .0; and g(ν = 9) is
closer to δ than g(ν = 18) when ρ is .9, although the fit
is not perfect. If the degrees of freedom for ρ = 1.0 are
(n−1) = 9, we should expect that the true degrees of free-
dom for ρ = .90 would be slightly larger than 9.
The lower parts of Table 1 give the same information

for d values using either a difference paired samples de-
sign or a two independent groups design. The g is a good
estimate of δ in all cases. The ρ has no effect on g in these
two designs.

Table 2 summarizes the problems of estimation when

using the pooled paired samples method compared with a

two independent samples method or a difference paired

samples method. Six simulations of 500,000 iterations

were conducted for the “worst case” scenario in Figure 1

of n = 10, δ = 1.0 and ρ = .9, including four simu-
lations for the pooled paired samples method with either

ν = 2(n − 1) or ν = (n − 1) and using either the bi-
ased r (Sim) or the Olkin-Pratt-corrected unbiased r (OP-
cor, Equation 9 Olkin & Pratt, 1958) in calculating Var(d)
or in converting between d- or g-scaled values and the cor-
responding t-scaled values. In each, the data from the

simulation were compared with expected population val-

ues (Pop). The expected value of d, (E(d)), was calcu-
lated as δ/J(ν) (Hedges, 1981). Results for the examples
with designs using either two samples or difference paired

samples were: (1) the empirical variance (Emp var) of d
matched the theoretical population value; (2) g matched δ;
(3) the mean value of d matched E(d); and (4) the Var(g)
was a slight underestimate because of small sample size

(see Figure 4, ρ = 0 top). Results for the example with de-
signs using pooled paired samples were: (1) the empirical

variance was different from Pop (asterisks); (2) g did not
match δ; (3) the mean observed d did not match E(d); and
(4) Var(g) overestimated Pop. TheA in this case was calcu-
lated fromA = n/(2 (1− r)) using themean value of r (bi-
ased or unbiased) rather than averaging 500,000 values of

A directly, but we saw in the results for Figure 5 that there
is a highly predictive relationship between the values cal-

culated from the means and the values calculated directly.

The mean bias of r andAwas nearly eliminated by OPcor,
but this did not eliminate the variability of r and A. The
empirical variance for pooled paired samples, 0.096, is be-

tween 0.057 with ν = 2(n− 1) and 0.114 with ν = (n− 1),
so the proper ν for ρ = .9 is between 2(n− 1) and (n− 1)
for the pooled paired samples model.

Putting Tables 1 and 2 together we can roughly esti-

mate the correct degrees of freedom for the pooled paired

samples problem with δ = 1.0, ρ = .9 and n = 10. From
Table 1, the mean d in 500,000 simulations (done 4 times)
was 1.082, which is between the E(d) values given in Ta-
ble 2 as 1.044 with ν = 18 and 1.094 with ν = 9. The cor-
rected ν is therefore between 9 and 18. Through some trial
and error we observe that, when calculated with ν = 10.2,
E(d) = 1.0/J(10.2) = 1/.0.9243049 = 1.08194, which is
close to our observed mean d of 1.082. This implies neces-
sarily that the observed g value will be 1.0 as we would
expect if the ν were correct. Using this new ν = 10.2 we
can now calculate Var(g) = 0.091 using Equations 5, 6a,
and 8b. This 0.091 is between the Var(g) values in Table
2 for pooled paired samples with either 9 or 18 degrees of

freedom, but it is a slight underestimate of the empirical

variance of .096. However, we note that the Var(g) for the
two independent samples and difference paired samples

methods were also a slight underestimate of the empirical

variance at n = 10, so that is not a difference between
designs. This method of finding the best ν forE(d) is prob-
ably preferred to a method of finding the best ν for Var(g)
because the mean d is a better predictor of E(d) than the
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Figure 6 Fit of noncentral t with ν = (n − 1) to simulations with δ = 1.0, n = 12 and ρ = .999, where the statistic
dP
√
A is calculated using either the constant ρ, the variable biased r, or the variable unbiased r. The slight bias in the

mean r was corrected in the mean unbiased r. The fit of the statistic dP
√
n/(2 (1− ρ))with the noncentral twas almost

perfect. The fit of dP
√
n/(2 (1− r)) using the biased r was bad and the fit with the unbiased r was worse even though

(n− 1) is presumably the correct degrees of freedom when ρ is this close to 1.0.

mean Var(g) is a predictor of the actual variance at small
sample sizes.

Discussion

The research designs that employ Cohen’s d include a sin-
gle group design, a two independent groups design, a two

repeated (paired) measures design, and a comparison to

baseline design. The effect size for a paired measures de-

sign can be calculated either as a difference between the

two means divided by the pooled standard deviation of the

two sets of scores, dP, or as a mean of a single set of dif-
ference scores divided by the standard deviation of those

scores, dD. If the difference scores are not available, the
mean of the difference scores will be identical to the differ-

ence between the means of the two sets of scores, and the

standard deviation of the difference scores can be calcu-

lated exactly from the standard deviations of the two sets

of scores and their correlation using this formula,

SD =
√
S2
1 + S2

2 − 2 r12 S1S2 (10)

The problems with degrees of freedom identified in this ar-

ticle apply only to the pooled paired difference design, dP.
Calculating dP for a paired samples design is a legitimate
way to compare the effect size of a paired measurements

design to an effect size from a different experiment with

two independent groups. The dD cannot be compared di-
rectly with the dP of the two groups design. If one conducts
a pairedmeasures experiment and calculates dD , onemay

be able to convert dD into a dP so that the results can
be compared with a two independent groups test. Goulet-

Pelletier and Cousineau (2018) give a formula in their Table

1 that is incorrect, and this was corrected in their corrigen-

dum (2019). The correct interconversion formulas are:

dD =
dP√

2 (1− r)
(11a)

dP = dD
√

2 (1− r) (11b)

Unfortunately, this formula works well only when the sam-

ple variances are homogeneous (Lakens, 2013). The dif-

ference paired samples design, dD , requires a normal dis-
tribution of difference scores, but, unlike the dP design,
it does not require that the two set of scores are equally

distributed. Suppose, for example, that a meta-analyst is

given a properly conducted, paired samples t test in a tar-
get article and wants to calculate dP from the t (Lakens,
2013). The meta-analyst should not assume without other

evidence that the variances of the two sets of scores were

homogeneous. Trying to find dP from dD is not always
straightforward, and dP should be calculated directly if
possible.

The problem is more serious if one instead calculates

gD and then tries to convert the unbiased gD into a gP . The
formula for calculating a g is given in Equation 8a, and it
involves multiplying a d times a correction factor J(ν) that
depends on the degrees of freedom, ν. The correct degrees
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Table 1 Effect of research design and degrees of freedom on the calculation of the unbiased standardized mean differ-

ence g. The design was either paired samples (pairs) or two independent groups (2 Gps) and the standard deviation for
standardizing d was either a pooled standard deviation (pool) or the standard deviation of the difference scores (diff).
The mean d value of 10,000 simulated experiments is given for each combination of δ and ρ with n = 10. A g value was
calculated as g(ν = 9) using ν = (n − 1) or as g(ν = 18) using ν = 2(n − 1). The g(ν = 9) was a better estimate of δ
with the pooled paired samples design when ρwas large (0.9), and the g(ν = 18)was a good estimate of δ when ρwas .0.
The other research designs are unaffected by ρ, and g was always a good estimate with the proper degrees of freedom.

Design SD type δ ρ Mean d g(ν = 9) g(ν = 18)
pairs pool 0 0 -0.002 -0.002 -0.002

pairs pool 0 0.45 -0.002 -0.002 -0.002

pairs pool 0 0.9 0.001 0.001 0.001

pairs pool 0.5 0 0.517 0.473 0.495

pairs pool 0.5 0.45 0.528 0.483 0.506

pairs pool 0.5 0.9 0.543 0.496 0.520

pairs pool 1 0 1.045 0.955 1.001

pairs pool 1 0.45 1.056 0.965 1.011

pairs pool 1 0.9 1.082 0.990 1.037

pairs diff 0 0 0.001 0.001 –

pairs diff 0.5 0 0.540 0.494 –

pairs diff 1 0 1.089 0.995 –

2 Gps pool 0 0 -0.002 – -0.001

2 Gps pool 0.5 0 0.530 – 0.508

2 Gps pool 1 0 1.043 – 0.999

of freedom for gD is (n− 1), but we have seen that the cor-
rect ν for gP varies between (n−1) and 2(n−1) depending
on the value of ρ. Converting a gD based on ν = (n − 1)
into a gP based on some other degrees of freedom and us-
ing a sample r instead of the proper ρ is problematic and
will not be attempted here. Caution is advised, and the ac-

tual gP should be calculated directly if possible, using the
correct degrees of freedom once they are known.

Of course, ρ is rarely known in an experiment like it is
in a simulation. Presumably, one might estimate ρ using
the sample r and then invent a formula that estimates ν
for calculating g and for identifying a noncentral t distri-
bution from the estimate of ν. The problem with this is the
fact that the dP values must be multiplied by a constant
in order for them to be scaled and distributed exactly as

a known noncentral t variate (Hedges, 1981). In this arti-
cle I call that constant

√
A, such that λ = δP

√
A (Equa-

tion 4), andA is calculated differently for different designs
(Equation 6a, 6b, 6c). For the difference paired samples

test and the two independent groups test A is a constant
in every experiment (A = n and A = ñ/2, Equations

6b and 6c, respectively) and the distribution of λ̂ is always
a unique noncentral t distribution with known degrees of
freedom. Replacing the ρ in A = (n/(2 (1− ρ))) with r as
A = (n/(2 (1− r))) replaces the required constant with a

random variable, and the distribution of λ̂ calculated with
r is rarely the correct noncentral t distribution correspond-
ing to ρ.
For example, suppose we have three experiments with

different experimental designs that all have the result d =
0.5 and n = 10 per group. Experiment 1: For a two
independent groups design, ν = 2(n − 1) = 18 and

λ̂ = dP
√
ñ/2 = 1.118, and the distribution tλ,ν for comput-

ing a confidence interval with d = 0.5 is always t1.118,18.
Experiment 2: For a difference paired samples design,

ν = (n−1) = 9 and λ̂ = dD
√
n = 1.581, so the distribution

tλ,ν for computing a confidence interval with d = 0.5 is
always t1.581,9. Experiment 3: For a pooled paired samples
design with unknown ρ, the ν and λ are both unknown
even though d = 0.5 as in Experiments 1 and 2, and the
distribution tλ,ν for computing a confidence interval is un-
known. Unlike the other two designs, we must estimate

both ν and λ̂ based on an r that will vary from experiment
to experiment even if d remains the same. This adds error
to the pooled paired samples design that is not present in

the other designs. Presumably, as the sample size grows

larger, r will vary less and less from ρ, and the error will
be less, but this is a qualification we do not have to place

on Experiment 1 or Experiment 2. Whether the error is ac-

ceptable for practical purposes at a given sample size must
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Table 2 Summary of problems with a pooled paired samples design. Mean values of 500,000 simulations for the vari-

ance of d with worst-case parameters n = 10, δ = 1.0 and ρ = .9. Simulations include designs for two independent
samples, difference paired sample, and pooled paired samples. The latter was repeated for (n − 1) or 2(n − 1) degrees
of freedom, and r was either corrected for bias (Olkin-Pratt correction, “OPcor”) or not (“Sim”) in simulations. “Pop”,
theoretical population value; “E(d)” = δ/J(ν), expected value of d; “calc A”, the value of A calculated using the mean r
(either biased or unbiased) in n/(2 (1− r)).

TWO SAMPLES PAIRED SAMPLES PAIRED SAMPLES

(difference) (pooled)

2(n− 1) n− 1 2(n− 1) n− 1
Sim Pop Sim Pop Sim OPcor Pop Sim OPCor Pop

n 10 10 10 10 10 10 10 10 10 10

ν 18 18 9 9 18 18 18 9 9 9

r 0 0 0.889 0.9 0.889 0.901 0.9 0.889 0.901 0.9

S 0.986 1 0.973 1 0.975 0.975 1 0.976 0.976 1

d 1.045 1 1.094 1 1.082 1.082 1 1.082 1.082 1

E(d) 1.044 – 1.094 – 1.044 1.044 – 1.094 1.094 –

J(ν) 0.958 – 0.914 – 0.958 0.958 – 0.914 0.914 –

g 1.001 1 1.000 1 1.036 1.037 1 0.989 0.989 1

Var(d) 0.272 0.260 0.254 0.217 0.069 0.066 0.057 0.141 0.137 0.114

Var(g) 0.249 0.260 0.212 0.217 0.063 0.061 0.057 0.117 0.115 0.114

Emp var 0.261 0.260 0.218 0.217 *0.096 *0.097 0.057 *0.096 *0.096 0.114

calc A 5 5 10 10 45.045 50.505 50.000 45.045 50.505 50.000

Note. *The empirical variance (“Emp Var”), 0.096, is between .057 and .114, so the proper ν for ρ = .9 is between
2(n− 1) and (n− 1) for the pooled paired samples model.

await further studies of the coverage of confidence inter-

vals based on some novel formula to estimate the degrees

of freedom for gP from r.
In their Table 3, Goulet-Pelletier and Cousineau (2018)

list the true formula and six different approximation for-

mulas for calculating the variance of Cohen’s d. Their true
formula is equivalent to the current Equation 5, which I

used in conjunction with Equation 8b to calculate Var(g)
in Figures 3 and 4 and Table 2. This variance is not re-

quired for calculating noncentral t confidence intervals for
d or g. However, the variance of d and its square root
have been used in calculating central normal approxima-

tions to the noncentral t distribution (Hedges, 1981, 1982;
Morris, 2000). These normal approximations to the non-

central t confidence intervals using approximations to the
true formula for the variance of d leave a lot of room
for error even when the sample size is large. Goulet-

Pelletier and Cousineau (2018) replace the normal approx-

imations of Hedges and Morris with central t approxima-
tions for their tests, whichwill always producewider confi-

dence intervals, especially at small sample sizes. These au-

thors and I agree that noncentral t confidence intervals are
greatly preferred to these approximations. The approxi-

mations were necessary before fast computers and appro-

priate software made computations from the gamma func-

tion and the noncentral t distributions easy.

Goulet-Pelletier and Cousineau (2018) give a listing in

the R statistical programming language at the end of their

paper that calculates noncentral t confidence intervals us-
ing the method of Hedges and Olkin (alluded to by Hedges,

1981; first fully described for d in Hedges and Olkin, 1985,
p. 91) for two of the discussed experimental designs, the

two independent groups design and the pooled paired sam-

ples design. Because of the problems with degrees of free-

dom identified in this paper, their pooled paired samples

design should not be used. They did not provide a script

to calculate the difference paired samples design. I am ap-

pending code in Listing 1 that demonstrates how to calcu-

late noncentral t confidence intervals using the method of
Hedges andOlkinwith two independent groups orwith dif-

ference scores in a paired samples design.

An executable program and its source code are avail-

able to demonstrate the functions used in these simula-

tions (see paragraph 1 of the Methods and Results sec-

tion). It allows calculations similar to the R listing but also

does simulations like Figure 1 and demonstrates the lim-

its of the functions used. Users can simulate a two groups

design, a difference paired samples design, or the prob-

lematic pooled paired samples design with the erroneous

degrees of freedom recommended by Goulet-Pelletier and

Cousineau (2018) using the software. The problemwith de-

grees of freedom for the pooled paired samples design af-
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fects the performance of any method, approximate or ex-

act, for calculating its confidence intervals. For the exact

noncentral t methods this includes both the Hedges and
Olkin (1985) method and the Steiger and Fouladi (1997)

method.

Goulet-Pelletier and Cousineau (2018) recommend

abandoning the interval estimation approach of Steiger

and Fouladi (1997) in their Appendix C. In an erratum

Goulet-Pelletier and Cousineau (2020), they retracted that

recommendation. This method generates different con-

fidence intervals from the method of Hedges and Olkin

(1985). The true tests of a confidence interval are its per-

formance in covering the parameter with the nominal con-

fidence and its compactness (precision). Goulet-Pelletier

and Cousineau (2018) do not demonstrate which method

provides better coverage although the Steiger and Fouladi

method gives slightly more compact confidence intervals.

Software is freely available to calculate confidence inter-

vals with the Steiger and Fouladi approach (Cumming &

Finch, 2001; Kelley, 2007), although neither handles paired

samples based on the difference scores (dD). The Cum-
ming and Finch software computes intervals based on dP
with ν = (n − 1) instead of the correct degrees of free-
dom. In my opinion, we should await a comparative study

of the coverages and compactness of the two approaches

with various experimental designs, effect sizes and sample

sizes before recommending the abandonment of either ap-

proach.

Goulet-Pelletier and Cousineau (2018) cite three groups

who promote the use of the pooled paired samples de-

sign over the difference paired samples design. Dunlap,

Cortina, Vaslow, and Burke (1996) compare the size of ef-

fect generated by the two methods in the context of meta-

analysis. They convert between dD to dP using a formula
that is equivalent to Equation 11a. None of their calcu-

lations involve the degrees of freedom, such as calculat-

ing gP or a noncentral t confidence interval, so their con-
clusions are not affected by the present results. Lakens

(2013) demonstrates how to calculate dP and also how to
calculate gP = dP(J(n − 1)) using ν = (n − 1), and
refers to Cumming’s (2012) lament that the gP is not com-
pletely unbiased. Goulet-Pelletier and Cousineau (2018)

thought (p. 253) that this bias problem was solved by us-

ing ν = 2(n − 1), but the present simulations show that
the correct degrees of freedom, and therefore the correct

gP , both depend on a knowledge of ρ.
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intervals for pooled paired samples that were each calculated as recommended by Goulet-Pelletier and Cousineau (2018).
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Appendix A

Because experiments in Figure 1 were sequential, each sample size in a single experiment is dependent on those before it.

The simulation was the mean of 10,000 such experiments, and comparisons within a curve must be made with caution.

Each curve was independent of the others, and comparisons between curves is the point of the simulation. Figure 7

shows the mean ± 1 standard deviation for coverage probabilities of 5 independent simulations of 10,000 sequential
experiments each for n = 5 through 50. Independent simulations were conducted with δ = 1.0 and ρ = 0, .45, and .90,
and ν = 2(n˘1). Compare to Figure 1, bottom right panel, for n = 10 through 50.
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Listing 1 Calculation of noncentral t con1dence intervals using the method of Hedges and Olkin with two independent

groups or with difference scores in a paired samples design

#Noncentral t confidence interval generic calculator Hedges&Olkin (1985) method.
#Edit values between the rows of dotted lines
#..........................................................
Samples <- 1

# must be 1 for paired samples or 2 for independent samples, no error checking!
# For two samples, d is calculated as the mean difference divided by the pooled standard deviation.
# For one sample (paired, matched) the standard deviation of the difference scores is used.
#

alpha <- .05
# 1 minus confidence coefficient; e.g., for 95% interval alpha = 1 - .95.
#

Meandiff <- -0.6
#sample unstandardized mean difference used to form d; positive, negative, or 0
#

SD <- 2
# SD for independent samples is the pooled standard deviation of the two groups
# SD for paired, correlated, matched is the standard deviation of the difference scores
#

n <- 9
#equal n, sample size per group or number of differences

#.........................................................
#Do not change anything below here

Harmmean <- 2*(n*n)/(n+n)
if (Samples == 1) df <- n - 1
if (Samples == 2) df <- 2*(n - 1)
#Calculating A
if (Samples == 1) {

A <- n # if difference scores
} else {

A <- Harmmean/2 # if 2 samples
}
sqrtA <- sqrt(A)
J <- exp(lgamma(df/2)-(log(sqrt(df/2))+(lgamma((df-1)/2))))
d <- Meandiff/SD
varD <- (1/A)*(df/(df-2))*(1+A*d*d)-(d*d)/(J*J)
g <- d*J
varG <- varD*J*J
ncpD <- d * sqrtA #non-centrality parameters
ncpG <- g * sqrtA
lldt <- qt(alpha/2, df, ncpD) #lower limit biased, t-scaling
uldt <- qt(1-alpha/2, df, ncpD) #upper limit biased, t-scaling
lld <- lldt/sqrtA #lower limit biased, d-scaling
uld <- uldt/sqrtA #upper limit biased, d-scaling
llgt <- qt(alpha/2, df, ncpG) #lower limit unbiased, t-scaling
ulgt <- qt(1-alpha/2, df, ncpG) #upper limit unbiased, t-scaling
llg <- llgt/sqrtA #lower limit unbiased, g-scaling
ulg <- ulgt/sqrtA #upper limit unbiased, g-scaling

#Show calculated values
cat("Samples = ",Samples, " Mean difference =",Meandiff," SD =",SD, " n =",n,"\n")
if (Samples == 2) {cat("SD is pooled standard deviation of the two equal groups.\n")
} else {cat("SD is standard deviation of the differences between the paired scores.\n") }
cat("degrees of freedom = ",df, " A =",A," J =",J, "\n")
cat("Effect size\nBiased d", d, " Var(d)", varD,"\nUnbiased g", g, "Var(g)", varG, "\n")
cat (100*(1-alpha),"% noncentral t confidence interval\n")
cat("Standardized Biased scaling: d =",d," Interval [", lld,",", uld, "]","\n")
cat("Standardized Unbiased scaling: g =",g," Interval [", llg,",", ulg, "]\n")
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