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Introduction

The work of Spearman (1904) on general intelligence laid

the groundwork for what has become one of the most uti-

lized statistical methods for latent construct development:

Exploratory Factor Analysis (EFA Green, 2000). EFA is a

complex statistical process that involves making decisions

that are not necessarily objective in nature. However,

these decisions can be supported by best practice recom-

mendations in the literature. EFA is an iterative process,

which has many applications across fields that allow for

the exploration of relationships among observed variables

(items) in a survey instrument or questionnaire. Decisions

must yield solutions that are “parsimonious, mathemati-

cally sound, and theoretically grounded” (Beavers et al.,

2013, p. 12).

The development of EFA allowed researchers the abil-

ity to discover latent constructs (i.e., those that are unob-

served, hidden, and not directly measured), such as atti-

tude, motivation, and personality types that must be as-

sessed through investigations of a set of observed variables

in an instrument. This exploration affords researchers the

opportunity to interpret the variables of the instrument in

the form of a few latent constructs or what researchers in

the social and behavioral sciences refer to in some form

as factors, factor solutions, factor structures, factor pat-

terns (Fabrigar, Wegener, MacCallum, & Strahan, 1999;

Fabrigar & Wegener, 2012; Osborne, 2014) or latent traits

(Ferrando & Lorenzo-Seva, 2018). These factors are inter-

pretable when they are parsimonious (i.e., sharing little

to no variance between factors). Other terms used to de-

scribe parsimonious solutions are factor solutions that are

well-defined (Beavers et al., 2013) or have achieved simple

structure (Fabrigar &Wegener, 2012). In otherwords, most

items have large loadings on one factor but small loading

on other factors.

Numerous decisions are made throughout the EFA pro-

cess from dealing with missing data, interpretation, and

the computation of factor score estimates to be used in sub-

sequent analyses. Other issues relate to the violation of as-

sumptions, discrepancies regarding recommended sample

sizes, the best methods to use for retaining, extracting, and

rotating factors (Basto & Pereira, 2012; Costello & Osborne,

2005; Fabrigar et al., 1999; Osborne, 2014; Zumbo, Gader-

mann, & Zeisser, 2007). If there were ever a word that

would describe the varied decision-making needed, then

it would be that EFA is a heuristic approach; a problem-

solving approach that involves the process of making deci-

sions to produce optimal results.

The purpose of this paper is to present a heuristic ap-

proach to employing statistical techniques found to en-

hance the EFA process to derive optimal factor solutions
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geared towards novice applied researchers. The focus will

be to make use of modern statistical techniques that are: 1)

alternatives to other methods that tend to violate assump-

tions; 2) found to produce better factor loadings than the

more commonly used techniques; and 3) methods now ac-

cessible in readily available free, easy to use, software (e.g.

FACTOR). The following sections will describe a heuristic

approach specifically geared towards improving the EFA

process using oblique methods.

The Process of Exploratory Factor Analysis

Prior to data collection. The heuristic approach begins
before any data are collected, cleaned, analyzed, or inter-

preted. Poor item measurement can limit interpretability

of results (DeVellis, 2012). The wording of items, the choice

of response options, directions for the instrument, and the

organization of items needs careful consideration. Since

poor preparation can adversely affect the validity of de-

rived factor solutions, researchers should devote a signifi-

cant amount of time to item development and make use of

best practices during pre-data collection (e.g., using clear

and specific terminology, limiting number of concepts, in-

cluding exhaustive response categories, and avoiding bias

in your questions). Minimizing and measuring error (e.g.,

sampling or systematic) from data collected are the ulti-

mate goals in survey development and validation (Fowler,

2014).

Collection and preparation of data for analysis. While
it may seem trivial, every effort must be made to ensure

that data are a representative random sample of the target

population for minimizing sampling error (Fowler, 2014).

It is worth mentioning that reduced sampling error lessens

the influence of sample size on achieving simple structure

(MacCallum, Widaman, Zhang, & Hong, 1999). Before any

analysis can be performed, data preparation must include

procedures for dealing with issues of missing data and ad-

dressing assumptions in EFA.

Missing data. There are three types of missing data. The
probability of data missing completely at random (MCAR)

is independent of both the observed and latent variables,

while the probability of data missing at random (MAR) de-

pends only on the observed variables, and the probability

of data missing not at random (MNAR) depends strictly on

the latent variables (Ferrando & Lorenzo-Seva, 2018). The

preferred methods for handling missing data are multiple

imputation (MI) and maximum likelihood estimation (ML;

Enders, 2010). ML estimation uses all available informa-

tion, complete and incomplete, to identify parameter esti-

mates that have the highest probability of producing the

sample data. MI is a stochastic regression method that can

be used in conjunction with almost any statistical analy-

sis (Zygmont & Smith, 2014). Imputing data is a process

of filling in missing data values with plausible values, pre-

dicted by using an appropriate model that allows for ran-

dom variation. This process is repeated a certain number

of times (multiple imputations) specified by the researcher

(i.e., typically at least 20 or as many as 100) after which the

EFA is performed on each imputed data set and parameter

estimates are pooled across each imputation. MI and ML

are better at reducing bias in the data and produce unbi-

ased estimates when data are MAR (Enders, 2010). Both

procedures can be implemented to address missing data

in EFA (see Lorenzo-Seva & Van Ginkel, 2016; Weaver &

Maxwell, 2014). Zygmont and Smith (2014) discussed in

more detail an approach for assessing the missingness of

data and techniques that can be used in the presence of

missing data.

Measurement level. Data collected from survey ques-

tionnaires are predominately formatted with a Likert scale

where participants respond to an item by indicating a level

of measurement, commonly defined as a fixed 5-point Lik-

ert scale (e.g., a level of agreement from 1=strongly dis-

agree to 3=neutral to 5=strongly agree). Generally, re-

sponse scales are ordinal and collected datawill most likely

be skewed in one direction (Basto & Pereira, 2012). Partici-

pants may provide responses to items in which they have a

high level of agreement or disagreement potentially lead-

ing to extreme skewness in a direction. Extreme skewness

can lead to violations of assumptions critical in EFA (e.g.,

univariate and multivariate normality and linearity) with

certain extraction methods (e.g., ML extraction). How-

ever, ordinal or Likert scale data are also problematic for

other extraction methods that do not make distributional

assumptions (e.g., Principle Axis Factoring [PAF] and Un-

weight Least Squares [ULS]) since these methods also as-

sume that data are continuous. An alternative to address-

ing issues of measurement level, and violation of normal-

ity, linearity, and the continuous data assumptions, is to use

Polychoric correlations (Basto & Pereira, 2012), which will

be discussed further in the section on choosing the appro-

priate correlation matrix to factor analyze the data.

Assumptions. Violation of assumptions in EFA is nearly
inevitable when it involves the analysis of ordinal data. In-

struments using response scales are predominately used

in the social and behavior sciences to assess unobserved

latent traits (Furr & Bacharach, 2014). Table 1 lists recom-

mended procedures for addressing assumptions in EFA.

Choosing the appropriate correlation matrix. In the
social and behavior sciences, measurement instruments

are predominately developed with Likert-type response

scales. These scales produce data that are measured at

the ordinal level of measurement. Performing EFA us-

ing Pearson’s correlation matrix has been the predominate

method for factor analyzing data given its availability in
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Table 1 Recommended Procedures for Addressing Assumptions in EFA

Procedures Supporting Information

1) Check pairwise correlations of all mea-

sured variables

There must be some degree of correlation between variables in order

to detect the existence of any factors. Pairwise correlations should be

non-zero with sizable correlations greater than |.3| (Tabachnick & Fidell,

2013).

2) Check for the presence of multi-

collinearity and singularity

Data that are too highly correlated can distort the nature of the factor so-

lutions. Correlations should be < .90 and the variance inflation factors

should be < 5 (Tabachnick & Fidell, 2013).

3) Check Bartlett’s Test of Sphericity The test is a measure of factorability and tests whether the bivariate cor-

relations of all variables, as a whole, differ significantly from zero (i.e.,

the correlation matrix differ from the identity matrix). The test should be

significant given that the null assumes that correlations are equal to zero

(Beavers et al., 2013; Tabachnick & Fidell, 2013).

4) Check Kaiser-Meyer-Olkin (KMO) test The KMO is a test that measures how well data are suited for EFA by mea-

suring the proportion of common variance among the variables. A suit-

able measure of sampling adequacy is a KMO of at least .80 (Beavers et al.,

2013).

5) Assess multivariate normality and lin-

earity

Since multivariate normality implies linearity, violation of linearity is

more likely to occur, but not necessarily the reverse. Normality and lin-

earity can be assessed through standardized residual graphics (i.e., his-

tograms and the Normal P-P plot). When the univariate distributions of

the variables are asymmetric with excess of kurtosis, Polychoric correla-

tions are preferred, which will eliminate assessing for these assumptions

specifically for EFA (Baglin, 2014) or use PAF or ULS.

commonly used commercial statistical software (e.g., SPSS

and SAS). Conceptually speaking, Pearson’s correlationma-

trix should not be used to factor analyze ordinal data due

to the fact that, to use Pearson’s correlation matrix, the

data must satisfy the continuous data assumption, which

the data must be measured at either the interval or ratio

levels of measurement.

An alternative approach, as mentioned previously, is

to use the Polychoric correlation matrix; a result of the

Underlying Variables Approach (UVA) in ordinal factor

analysis (see Ferrando & Lorenzo-Seva, 2013; Moustaki,

Joreskog, & Mavridi, 2004). Furthermore, Polychoric cor-

relations are preferred over Pearson’s for several reasons:

1) Polychoric correlations take into account the fact that

response scale items are ordinal given that the distribu-

tion of data will most likely be asymmetric and violate the

multivariate normality assumption (Zumbo et al., 2007). 2)

Polychoric correlations control for “grouping and transfor-

mation error” prevalent under Pearson’s correlations pro-

vided that latent variables have bivariate normal distribu-

tion (Morata-Ramirez & Holgado-Tello, 2013). 3) Polychoric

correlations are better at producing optimal fit to the the-

oretical model than Pearson’s, especially when data are in

excess of skewness and kurtosis (Gaskin & Happell, 2014).

And, 4) Pearson’s correlations usually underestimate pa-

rameter estimates (Ferrando & Lorenzo-Seva, 2013).

Notably, in Common Factor Model (CFM) theory (i.e.,

the traditional EFA approach), observed variables are a lin-

ear combination of the unobserved latent variables that

are assumed to be continuous (MacCallum et al., 1999).

On the other hand, this is not the case for ordinal data.

The theory supporting the use of Polychoric correlations

employs a two-step process for justifying the existence

of the observed response variable scores of participants

(Lorenzo-Seva & Van Ginkel, 2016). For example, we de-

note these observed response variable scores as yij , where
i is the case number of cases (participants) and j is the item

number of items (observed variables). At the first level,

yij is realized through a “categorization” process of the un-
derlying response variables, which is known as the Under-

lying Variables Approach (UVA; Ferrando & Lorenzo-Seva,

2013). We denote these variables as yj
∗
. The assumption is

that yj
∗
is continuous and is unobserved and latent in the

UVA factor analysis model for ordinal data (Moustaki et al.,

2004).

At the second level, yj
∗
satisfies assumptions posed by

classical CFM theory regarding normality and linearity of

continuous data. In the categorization process, yij can be
thought of as a function of piece-wise defined constant val-

ues that are representative of the response categories in

The Quantitative Methods for Psychology 2972

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p295


¦ 2020 Vol. 16 no. 4

the scale, which relates yij to yj
∗
by threshold parameters

(Moustaki et al., 2004). For a 4-point response scale, the

following holds:

yij =


1⇔ yj

∗ < τj1
2⇔ τj1 ≤ yj∗ < τj2
3⇔ τj2 ≤ yj∗ < τj3
4⇔ τj3 ≤ yj∗

where τj are threshold parameters associated with the ob-
served variable j. It is this “step process” that defines the

relationship between yij and yj
∗
, for there is always one

less threshold parameter than response categories. Inter-

estingly, the Polychoric correlations are estimated from the

bivariate correlations between yj
∗
(i.e., the latent unob-

served variables in the UVA model; Basto & Pereira, 2012).

Ferrando and Lorenzo-Seva (2013) provide more detail on

the “reparameterization” of the parameters of the non-

linear UVA model that transforms to the two-parameter

normal ogive item characteristic curve in Item Response

Theory (IRT); an approach used to justify the non-linear

UVA model for ordinal data. Noteworthy, when there is

clear violation of skewness and kurtosis, Polychoric corre-

lations are recommended (Basto & Pereira, 2012; Ferrando

& Lorenzo-Seva, 2018). However, when observed variables

are clearly symmetric with skewness and kurtosis values

less than one in absolute value, only then are Pearson’s cor-

relations suitable (Ferrando & Lorenzo-Seva, 2013; Muthen

& Kaplan, 1992). A detailed discussion of the UVA approach

for ordinal factor analysis can be found in Choi, Peters, and

Mueller (2010) or Ferrando and Lorenzo-Seva (2013).

Determining the number of factors to retain. Factor re-
tention has long been a controversial issue (Courtney, 2013;

Osborne, 2014). Nevertheless, many researchers currently

use the more traditional methods (e.g., Kaiser’s eigenvalue

greater than one criterion or Cattell’s Scree test) rather

than one of the more modern methods (e.g., Parallel Anal-

ysis[PA], Velicer’s Minimum Average Partial[MAP], or Next

Eigenvalue Sufficiency Test[NEST]) given the lack of ac-

cess to the more modern retention methods in popular

software packages such as SPSS and SAS. However, one

method in particular has been shown to be theoretically

suitable for retaining factors derived from ordinal data

when using Polychoric correlations (Neath & Cavanaugh,

2012). The method is Schwarz Bayesian Information Crite-

rion (BIC) dimensionality test.

BIC is the more viable option considering it is a more

robust simplistic model selection technique. BIC produces

more reliable results for smaller sample sizes and is a the-

oretically justifiable option given that Polychoric correla-

tions can be computed using Bayes method of model selec-

tion (Choi et al., 2010). Determining the number of factors

remains an unresolved issue in psychometrics given that

no onemethod is flawless in use (Osborne, 2014). Nonethe-

less, other methods for determining the number of factors

to retain can be used in the event that retained factors ad-

vised by BIC does not reflect research or theory. BIC is

a feature of FACTOR and will be used to recommend the

number of factors to retain.

Choosing appropriate methods of extraction and ro-
tation. Unique to EFA are the extraction and rotation
methods. Conceptually, the selection of a rotation method

should depend on the type of extraction method used to

factor analyze the data. Literature on best practices in EFA

encourages researchers to use appropriate extraction and

rotation methods in analysis (Beavers et al., 2013; Gaskin &

Happell, 2014; Osborne, 2014; Costello & Osborne, 2005).

Methods of extraction. Theoretically, EFA seeks to ex-
tract only items with shared variance to generate unique

factor solutions (Costello & Osborne, 2005). The most com-

monly used extraction methods in EFA are principal axis

factoring (PAF), unweighted least squares (ULS), and max-

imum likelihood (ML; Osborne, 2014). When data satisfies

multivariate normality, ML tends to produce better fac-

tor recovery (Lorenzo-Seva & Ferrando, 2013; deWinter,

Dodou, & Wieringa, 2009), while data that violates multi-

variate normality produces better factor recovery under

PAF (Fabrigar et al., 1999) and ULS (Gaskin &Happell, 2014;

Lorenzo-Seva & Ferrando, 2013) since these methods make

no distributional assumptions regarding the data.

Methods of rotation. Rotational methods (whether or-
thogonal or oblique) are implemented to aid in the in-

terpretation of factor solutions and retention of factors.

Without rotation, it would be difficult to see the underly-

ing pattern in the solution. Orthogonal rotations are vari-

max, quartimax, and exquimax, while the commonly used

oblique rotations are direct oblimin and promax (Beavers

et al., 2013). Although these methods were designed for

specific types of extractions, resulting factor solutions tend

to be similarwhen there is clear simple structure (Osborne,

2015). While there are other types of rotation methods, the

ones listed here are the most commonly used in EFA and

are available in popular software packages like SPSS, SAS,

and the newly developed FACTOR. Both Osborne (2015)

and Basto and Pereira (2012) provide more detail regard-

ing the purpose and mechanics of these methods. Notably,

in EFA, no one method of rotation is preferred given that

oblique methods tend to produce similar results (Costello

& Osborne, 2005). On the other hand, when factors are in-

deed uncorrelated, which is a rare occurrence in the social

and behavior sciences, both orthogonal and oblique meth-

ods tend to produce nearly equivalent results (Osborne,

2014).

Interpret resulting factors. Interpretation follows par-
simonious solutions by assigning a name to each factor
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based on grouped items. When researchers have utilized

best practices to derive parsimonious solutions, factors can

be interpreted using sound judgement supported by re-

search or from any pre-conceived notions regarding the

theoretical relationship between factors (Beavers et al.,

2013; Floyd & Widaman, 1995). The pattern matrix is used

to interpret the results of factor solutions. Interpretation

of these solutions are more understandable because they

have been rotated and variable loadings are standardized

regression weights; implying that the standard deviation

of the common variance is 1 with mean 0 (Fabrigar & We-

gener, 2012; Yong & Pearce, 2013). The higher the vari-

able loadings, the stronger the factor solution of a particu-

lar common factor. The recommended threshold is >|.32|

(Tabachnick & Fidell, 2013).

Choosing a method for computing factor score esti-
mates. Factor scores are computed following EFA analy-
sis. There are several methods for computing factor scores

that are both refined and non-refined (Grice, 2001). Dis-

tefano, Zhu, and Mindrila (2009) indicate that non-refined

scores are simple to compute and involve either summing

raw scores or computing averages of item scores for a spe-

cific factor, which makes interpretation straight forward.

In contrast, the computation of refined scores is more intri-

cate and involves procedures where the scores are usually

standardized and generally range from -3 to 3. The more

commonly usedmethods for computing refined scores are:

Regression, Bartlett, and Anderson-Rubin (see Distefano et

al., 2009). Regardless of the method used, scores are gener-

ally used to explore differences among groups.

One caution to researchers is that factor scores are in-

determinant (i.e., there are infinite possible solutions, such

that factor scores are only estimates and not exact – Dis-

tefano et al., 2009). The validity of interpretation using

these scores depends on the strength of the model. Assess-

ing indeterminacy should accompany factor score compu-

tation. Ferrando and Lorenzo-Seva (2018) recommend re-

searchers use an improved version of Bayes expected a

posteriori (EAP) estimate to compute factor scores for or-

dinal factor analysis because these scores are considered

more theoretically justifiable than any other method avail-

able. The EAP approach includes the inter-correlations

of the factors in the development of the prior distribu-

tion necessary to generate the posterior probability dis-

tribution so that EAP scores can be computed (i.e., Full-

Informative Prior Ordinal EAP scores). The latest ver-

sion of FACTOR allows researchers to compute the Full-

Informative Prior Ordinal EAP scores and run bootstrap

analysis to assess the generalizability of factor solutions

for robustness and reliability and determinacy indices to

assess indeterminacy of factor score estimates (Ferrando &

Lorenzo-Seva, 2017b).

Interpretation of EAP score estimates are not as easy

as those produced from the non-refined methods that does

not use standardized estimates (e.g., summed or averaged

scores). The EAP estimate is a standardized estimate that is

interpreted in terms of the average deviation that a partic-

ipants’ response score is from the mean with respect to the

common factor. For example, a factor score estimate of -

1.5 on factor one cannot be interpreted in the same context

as a factor score estimate of -1.5 on factor two. A partici-

pants’ response score of -1.5 on factor one could be relative

to an average of low response category scores on the group

of observed variables (items) common to factor one, while

the participants’ response score of -1.5 on factor two could

be relative to an average of high response category scores

on the group of observed variables common to factor two.

This independence of factor score estimate interpretation

makes non-refined score estimates (i.e., non-standardized)

more appealing. Nonetheless, the purpose of refinedmeth-

ods are to “maximize validity” using predictive techniques

that increases the chance of estimates being more accurate

and reliable representation of the “true” factor score (Dis-

tefano et al., 2009; Grice, 2001).

The relevance of sample size. Recommendations of min-
imum sample sizes are incompatible and erroneous at

best (Preacher & MacCallum, 2002). According to Hog-

arty, Hines, Kromrey, Ferron, and Mumford (2005), the

relevance of sample size is reduced when certain condi-

tions regarding commonality and overdetermination are

met. Commonality is the proportion of variance accounted

for by the common factor and overdetermination refers

to the number of observed variables needed to define a

common factor (typically at least three with factor load-

ings > |.32|; Tabachnick & Fidell, 2013). When commonal-
ities and factor loadings are moderate to high (at least .60;

Zhao, 2009), common factors are relatively strong thereby

reducing the influence of sample size (Fabrigar &Wegener,

2012). Therefore, inquires of minimum sample sizes a pri-

ori are not necessary given care has been taken in the de-

velopment of the item set. Otherwise, larger sample sizes

will be necessary to produce more stable results (Beavers

et al., 2013; MacCallum et al., 1999; Osborne & Costello,

2004).

Application in FACTOR

The Data

The Motivation Assessment Scale (MAS-12) is a scale de-

veloped by the first author and used as part of a pro-

gram evaluation project designed to measure the extent to

which a student-centered learning environment was effec-

tive. MAS-12 is a 3-Factor questionnaire that measures the

extent to which students’ basic psychological needs (BPN)
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Table 2 Bivariate Polychoric Correlations

1 2 3 4 5 6 7 8 9 10 11 12

AUTO1 1.00

AUTO2 0.77 1.00

AUTO3 0.77 0.77 1.00

AUTO4 0.77 0.81 0.73 1.00

AUTO5 0.76 0.75 0.75 0.84 1.00

AUTO6 0.75 0.71 0.65 0.71 0.73 1.00

EXTR1 0.18 0.06 0.00 0.12 0.14 0.26 1.00

EXTR2 0.26 0.21 0.15 0.31 0.28 0.41 0.55 1.00

EXTR3 0.41 0.32 0.26 0.39 0.36 0.51 0.72 0.54 1.00

PERS2 0.52 0.38 0.39 0.47 0.49 0.49 0.40 0.39 0.46 1.00

PERS1 0.64 0.55 0.47 0.58 0.56 0.57 0.24 0.26 0.44 0.71 1.00

PERS3 0.44 0.34 0.30 0.40 0.41 0.40 0.36 0.30 0.41 0.77 0.64 1.00

were satisfied over the course of the learning experience

rooted in Self-Determination Theory (SDT; Ryan & Deci,

2017). The data consist of 228 learning support math stu-

dents at a community college in the southeastern United

States.

The first two factors measured participants’ agreement

with the items on a 5-point Likert response scale (e.g.,

1=strongly disagree to 3=neither agree nor disagree to

5=strongly agree). The first factor consisted of six items

designed to measure high quality autonomous motivation

labeled AUTO. A sample item states: “The program helped

me increase my problem-solving abilities.” The second fac-

tor consisted of three items designed to measure extrinsic

regulatory motivation. These items were considered to be

the least form of autonomous motivation and were labeled

EXTR. A sample item states: “When I was in the program,

mymain concern was getting a good grade.” And, the third

factor consisted of three items designed to measure partic-

ipants’ motivation to persist labeled PERS. A sample item

states: “Rate your motivation to complete your individu-

alized curriculum?” These items were measured on a 6-

point response scale with categories ranging from 1=none

to 3=moderate to 6=very high.

The latest release of FACTOR is capable of reporting

reliability indices (e.g., Greatest Lower Bound [GLB], Mc-

Donald’s ordinal Omega, and Cronbach’s alpha). For the

current paper, only the ordinal Omega coefficients are re-

ported for each factor. Following EFA, researchers can sep-

arate derived factor variables bymoving other variables to

the “Excluded” column in the “Configure Analysis” step of

the process. Within that display, click on “Other specifica-

tions of factor model” to compute the Omega coefficients

(Figure 2). Notably, all Omega coefficients exceeded the

recommended threshold (> .70; Tabachnick & Fidell, 2013).

These were: AUTO [0.948], EXTR [0.828], and PERS [0.880].

Data used in the current paper are available on the jour-

nal’s web site for testing the analyses.

Prior to Analysis. Little’s MCAR test for missingness was
significant, χ2(85) = 111.6, p = 0.028. Results indicated
that the data were either MAR or MNAR. Nonetheless, the

chosen method for handling missing data in FACTOR is MI.

An advantage to using MI is that it makes no assumptions

about the missingness of data (Tabachnick & Fidell, 2013).

Furthermore, less than 5% of data is missing, the distribu-

tion is asymmetric, and the sample size is modest. These

are conditions favorable to the use ofMI (Zygmont & Smith,

2014). The bivariate Polychoric correlations between the

observed variables shown in Table 2 did not show signs of

multicollinearity and singularity. While not all bivariate

correlations were greater than |.3|, many were sizable cor-
relations and less than .90. Bartlett’s test of sphericity was

significant, χ2(66) = 1639.2, and p = .0001. The propor-
tion of common variance among the variables were suit-

able for EFA with a KMO test value = 0.90 (very good). A

measure of the robustness of this value to generalize across

samples resulted in a 95% precise Bias-corrected (BC) Boot-

strap CI of the KMO [0.894, 0.921].

For the MAS-12 data, not all skewness and kurtosis

values were less than one in absolute value (i.e., EXTR1,

EXTR2, PERS2, and PERS3 – See Table 3). These univariate

results uniquely suggested the use of Polychoric correla-

tions. Furthermore, FACTOR produced Mardia’s multivari-

ate test of skewness and kurtosis to determine multivari-

ate normality. The test results showed that kurtosis was

significant, p < 0.01, while skewness was not, p = 1. Again,

a significant kurtosis finding further supported the use of

Polychoric correlations to factor analyze the data.

Analyzing data in FACTOR. FACTOR is a “user-

friendly” downloadable software program available from

http://psico.fcep.urv.es/utilitats/factor/index.html. FACTOR

was designed specifically to run both traditional and mod-

ern procedures of EFA (Ferrando & Lorenzo-Seva, 2017b;
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Table 3 Univariate Descriptive Statistics

Variable Mean (95%) CI
a

Variance Skewness Kurtosis

AUTO1 3.61 [3.42, 3.79] 1.14 -0.69 -0.15

AUTO2 3.28 [3.06, 3.49] 1.51 -0.31 -0.84

AUTO3 3.32 [3.12, 3.53] 1.42 -0.35 -0.73

AUTO4 3.55 [3.35, 3.75] 1.32 -0.59 -0.38

AUTO5 3.47 [3.26, 3.68] 1.43 -0.53 -0.62

AUTO6 3.71 [3.52, 3.90] 1.18 -0.79 0.21

EXTR1 4.21 [4.08, 4.35] 0.64 -0.99 1.04
EXTR2 3.78 [3.61, 3.96] 1.02 -0.65 0.11

EXTR3 4.10 [3.93, 4.27] 0.95 -1.28 1.48
PERS2 5.05 [4.86, 5.24] 1.17 -1.52 2.77
PERS1 4.51 [4.26, 4.76] 2.07 -0.94 0.16

PERS3 5.14 [4.94, 5.33] 1.25 -1.72 3.23
Note. a

: CI=Confidence Interval, AUTO = Autonomous Motivation, EXTR = Extrinsic Regulatory Motivation, PERS =

Motivation to Persist

Lorenzo-Seva & Ferrando, 2006). Baglin (2014) provided

steps for performing EFA in FACTOR with emphasis on or-

dinal data as well as provided information on download-

ing FACTOR. However, there have been several releases of

the FACTOR software since Baglin (2014). The latest ver-

sion (10.10.01) was released October 2019 and used in this

paper. The site provides more information on the latest

statistical techniques that can be performed in FACTOR.

The current paper will discuss using FACTOR to explore

the general factorability of the scale MAS-12 using modern

methods of EFA.

FACTOR involves a three-step process. These are: Read

Data, Configure Analysis, and Compute; accessible from

the main menu of FACTOR (Figure 1). For specifics re-

garding the three-step process, readers are referred to

the Baglin (2014) article on getting started with FACTOR.

The latest version of FACTOR includes options for estimat-

ing robust factor analysis using bootstrap resamples, han-

dling missing data, and assessing factor score estimates

and replicability of factor solutions. The maximum num-

ber of bootstrap resamples were generated in FACTOR (n

= 3000) for MAS-12. The missing value code used in FAC-

TOR was 99, which was previously set during the data-

cleaning phase. The configuration of analysis included the

following selections: 1) the Polychoric correlation matrix

to factor analyze the data, 2) the BIC dimensionality test

to determine the number of factors to retain, 3) the fac-

tor model (i.e., the selection of three factors, robust factor

analysis, ULS extraction method), and 4) Promax rotation.

It is worth noting that FACTOR can take a long time to pro-

duce results. The amount of time it takes will depend on

the configuration of specific analyses and active applica-

tions on the electronic device for which FACTORwas down-

loaded.

The number of factors to retain was hypothesized a pri-

ori (i.e., three factors) and were based on theoretical un-

derpinnings that were the foundation of initial item de-

velopment. Table 4 displays the results from the BIC di-

mensionality test, which supported a 3-Factor solution. Re-

tained factors were determined by the smallest BIC factor

(269.87). The numerical value is a criterion used to penal-

ize the number of parameters in the statistical model that

was derived, in part, from the likelihood function – such

that, the smaller the BIC value the more probable the sta-

tistical model is an accurate fit for the given data (Neath

& Cavanaugh, 2012). The consistency of the method to ac-

curately choose the correct model is a strength of the test

(Neath & Cavanaugh, 2012).

To aid in the assessment of optimal factor solutions and

replicability of results, the Bias-corrected and Accelerated

(BCa) bootstrap approach proposed by (Lambert, Wildt, &

Durand, 1991) was used to generate CIs for goodness of

fit indices, factor loadings and inter-factor correlations be-

tween variables. The BCa method corrected for bias and

adjusted for skewness. To support the accuracy and com-

putation of factor score estimates, the necessary minimal

selections are: EAP factor scores, assess construct replica-

bility, and assess quality of factor scores (Figure 2). Ad-

ditionally, to generate factor score estimates, a file name

must be entered. FACTOR will output a .dat file.

Interpretation of results. For comparison purposes, both
Pearson’s and Polychoric correlations were used to factor

analyze the data. EFA results of MAS-12 achieved parsimo-

nious solutions when using both Pearson’s and Polychoric

correlations. It is clear from Table 5 that using Pearson’s

correlations for this set of data underestimated the factor

solutions of MAS-12. While parsimonious, factor loadings

derived using Polychoric correlations are stronger and
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Figure 1 The Main Window of FACTOR

Table 4 Schwarz’s BIC Dimensionality Test

Factors BIC

0 4338.97

1 508.86

2 335.07

3 269.87*

4 330.88

5 398.63

Note. *Advised number of factors is 3

more likely to be an accurate representation of the factor

structure given the apparent asymmetry of the observed

variables and kurtosis issues (Ferrando & Lorenzo-Seva,

2017a). The positive factor loading differences (FLD) illus-

trate the strength of loadings produced using Polychoric

correlations. All factor loadings from the Polychoric cor-

relations are at least 0.6 and indicate well-defined factor

solutions that are more likely to produce replicable results.

Indeterminacy. One major benefit of FACTOR is the ca-
pability to determine whether factor score estimates are

accurate. The Factor Determinacy Index (FDI) is a mea-

sure of the accuracy of the factor score estimates given

that these estimates in EFA are not unique (Ferrando &

Lorenzo-Seva, 2017a). The development of the FDI is based

on indeterminacy assessment criteria proposed by Grice

(2001). FDI values > 0.90 are an indication of estimates

that are an accurate measure of individuals’ “true” score

response. The Overall Reliability of fully-Informative prior

Oblique N-EAP scores (ORION) is an assessment of the reli-

ability of the factor score estimates. ORION (also known as

marginal reliabilities) values > 0.80 indicate precise mea-

sures of reliability of the factor score estimates (Ferrando

& Lorenzo-Seva, 2018).

Construct replicability. As a measure of multidimension-
ality, Ferrando and Lorenzo-Seva (2017a) proposed the G-

H index, where G stands for generalized and H refers to

both H-latent and H-observed (i.e., H is a measure of the

multiple correlations between a factor and the respective

items common to the factor). H-latent is a measure of how

well the factor can be measured by the unobserved (la-

tent) variables that underlie the observed response vari-

able scores, while H-observed is a measure of how well the
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Figure 2 Indices for the Assessment of the Factor Model

factor can be measured by the observed variables. High

G-H values >.80 indicate well-defined factor solutions with

stable replicable results. Table 6 consist of a list of the as-

sessment indices for factor score determinacy and reliabil-

ity and construct replicability for MAS-12.

The FDI for each factor is at least 0.94, which is a strong

indication that the factor score estimates are excellent rep-

resentations of the latent factor and will be highly corre-

lated to each other with respect to the factor that each are

related. Table 7 is a list of the first four participants (cases)

and their predicted factor score estimates per factor.

In terms of replicability of factor solutions, the G-H in-

dices in Table 6 are at least marginally acceptable results.

The H-latent values for each factor (0.977, 0.941, and 0.952

respectively) are an indication that the unobserved latent

variables that underlie the observed variables in the UVA

model for ordinal factor analysis are strong representa-

tions of the respective factors (AUTO, EXTR, and PERS).

However, only the H-observed value for AUTO (0.897) is

evidence that the observed variables are a strong repre-

sentation of the intrinsic motivation factor, while the H-

observed variables for both EXTR and PERS were the same

(0.789) and were marginally acceptable values for extrin-

sic motivation and motivation to persist. Overall, the ac-

company BC 95% CI supports the stability of the MAS-12

3-Factor solution to be replicable and potentially general-

izable across samples.

Conclusion

The purpose of this paper was to provide novice re-

searchers with an introduction tomodern EFA approaches.

The following are seven recommendations for implement-

ing a modern heuristic approach to EFA.

1. Consider designing a study exploring fewer factors. De-
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Table 5 MAS-12 Comparison between the Pearson and Polychoric Correlations in FACTOR

Pearson (n = 228) Polychoric (n = 228)

Factor Loadings Factor Loadings

Items Communality F1 F2 F3 Communality F1 F2 F3 FLD*

AUTO1 0.729 0.808 0.790 0.823 0.015

AUTO2 0.742 0.910 0.789 0.939 0.029

AUTO3 0.669 0.877 0.737 0.919 0.042

AUTO4 0.749 0.851 0.808 0.892 0.041

AUTO5 0.741 0.852 0.780 0.864 0.012

AUTO6 0.658 0.714 0.709 0.743 0.029

EXTR1 0.679 0.853 0.791 0.924 0.071

EXTR2 0.356 0.567 0.435 0.631 0.064

EXTR3 0.639 0.760 0.724 0.790 0.030

PERS2 0.731 0.838 0.830 0.896 0.058

PERS1 0.592 0.576 0.673 0.649 0.073

PERS3 0.615 0.832 0.707 0.884 0.053

Eigen. 5.921 1.886 1.135 6.455 2.048 1.079

Max. 0.749 0.830

Min. 0.356 0.435

Note. *FLD=Factor Loading Differences (positive values favor Polychoric correlations). Both Pearson and Polychoric
correlations were run using ULS extraction with Promax rotation. F1=AUTO, F2=EXTR, F3=PERS

Table 6 Construct Replicability of Factor Solutions and Accuracy of Factor Score Estimates MAS-12

Index AUTO EXTR PERS

a
FDI 0.977 0.941 0.952

b
MR 0.955 0.885 0.906

Latent Latent Latent

c
G-H 0.955 [0.935 0.963] 0.885 [0.823 0.928] 0.906 [0.847 0.948]

Observed Observed Observed

0.897 [0.864 0.916] 0.786 [0.722 0.817] 0.786 [0.726 0.819]

Note. a: FDI = Factor Determinacy Index, b: MR = Marginal Reliability, c: G-H = Construct Replicability

signing a study with fewer factors is the only way to

“manipulate” the number of factors to retain given that

exploring fewer factors contributes to parsimonious

solutions (Preacher & MacCallum, 2002).

2. Focus on developing well-defined items and utilizing

techniques for achieving optimal response rates. Use

best practices regarding survey design and construc-

tion to avoid introducing bias into the development of

items (Colton & Covert, 2007; Fowler, 2014). Bias in-

creases sources of measurement error that can con-

tribute to low commonality coefficients (Fabrigar &We-

gener, 2012). This can lead to unwanted issues (Hay-

wood cases, cross-loadings, and variables loading on

the wrong factors). Otherwise, larger sample sizes will

be necessary to obtain simple structure (Fabrigar et al.,

1999; Osborne & Costello, 2004; Tabachnick & Fidell,

2013).

3. Plan to develop 7 to 10 items per factor. There is a pos-

sibility that some itemsmay not be a good fit for the fac-

tor and must be deleted during the pilot testing phase

of extracting factors. When recommendations #1 and

#2 are considered, parsimonious solutions are achiev-

able with a moderate to high degree of overdetermina-

tion andmoderate to high variable loadings (>.60) even

with less than recommended sample sizes.

4. Acquire basic knowledge of CFM theory. CFM aids in

informed decision-making in EFA and provides con-

ceptual understanding of the relationship between the

common and unique factors to the observed variables

as well as allow one to understand why error is a major
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Table 7 First Four Participants and Respective Factor Score Estimates per Factor

Participants AUTOa EXTRa PERSa

Case1 1.411 -0.012 0.910

Case2 0.090 0.039 0.606

Case3 -1.241 -0.377 -1.351

Case4 -0.175 -0.538 -0.154

Note. a: Standardized estimates computed using the Fully-Informative Prior Oblique EAP scores

influence of sample size. Readers interested in learning

more about CFM can find a mathematical, conceptual,

or geometrical interpretation of EFA and CFM in sug-

gested resources (e.g., Fabrigar & Wegener, 2012; Mac-

Callum et al., 1999; Yong & Pearce, 2013).

5. Ignore sample size recommendations “a priori”. Sim-

ulation studies, supported by empirical evidence, sug-

gest that minimum sample size recommendations are

useless and should be ignored given that other indica-

tors could reduce the relevance of sample size (Mac-

Callum et al., 1999; MacCallum, Widaman, Preacher, &

Hong, 2001). Some indicators are high commonalities

and variable factor loadings (at least .6; Zhao, 2009) and

overdetermination (i.e., at least three but four aremore

variables with high factor loadings, which diminishes

the relevance of sample size recommendations in gen-

eral; Fabrigar et al., 1999; Hogarty et al., 2005), which is

why the next recommendation is critical.

6. Choose exploratory methods appropriate for the given

data. Given the asymmetric nature of ordinal data and

the fact that data in the social and behavior sciences

will most likely be correlated, the recommended meth-

ods for exploring the factorability of data in EFA should

be carried out using oblique methods and the appro-

priate correlation matrix (e.g., Polychoric). Orthogonal

methods are suggested only when item distributions of

ordinal data are symmetric and not in excess of skew-

ness and kurtosis (Lorenzo-Seva & Ferrando, 2013).

7. Include means for assessing factor score indetermi-

nacy and factor stability. Given the infinite number

of possible solutions of factor score estimates, there

must be means for assessing the reliability and deter-

minacy of estimates. Bootstrap resampling is an effec-

tive way to assess whether the factor structure is repli-

cable across other samples or populations (Thompson,

2004) especially when it is not feasible to collect new

data to assess the stability of factor solutions due to

specific constraints faced by researchers (Bamberger,

Rugh, & Mabry, 2012).
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