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Introduction
Usually, regression coefficients in structural equationmod-

els (SEMs) are compared in multiple group settings. In

these cases, it is of interest whether the effects of two or

more explanatory variables on a dependent variable are

the same or different in two or more populations. Besides

such a setting, researchers may want to compare regres-

sion coefficients in a single group setting. In these cases,

the researcher wants to compare the effects of two ormore

explanatory variables on a dependent variable. Drawing

on the LISREL all-y notation (see Newsom, 2015, pp. 383-

386) and theMathematical Appendix for a description), the

effect of an explanatory variable ηi on a dependent vari-
able ηk , 1 ≤ i < k ≤ p, where p is the number of vari-
ables, is represented by the regression coefficient βki. To
compare these effects, the researcher is interested in test-

ing the following hypothesis:

H0 : βk1 = βk2 = . . . = βki. (1)

In this tutorial, we always consider a null hypotheses

of this form and related two-sided tests. This hypothesis

aims at comparing the effects of the explanatory variables

on the dependent variable. To explore the meaning of this

hypothesis, we take the interpretation of the unstandard-

ized regression coefficient βki into account. This interpre-
tation is: If the explanatory variable changes one unit, then

the dependent variable changes βki units. A possibility to
test this hypothesis is by means of a likelihood ratio test

(LR test). To conduct a LR test, an unrestricted model is

estimated at first. Afterwards, equality constraints are im-

posed on the regression parameters of interest and this

second model is also estimated. For each model, its χ2
-

test statistic is determined and a LR test is calculated in

form of a χ2
-difference test. Besides the LR test, there is

also the Wald test which can be used to test a hypothe-

sis of this kind. To conduct the Wald Test, an unrestricted

model is estimated and afterwards it is tested if the restric-

tions corresponding to the hypothesis are valid by means

of a χ2
-distributed test statistic. According to Greene (2012,

1
A further test is the score test, in which first a restricted model is estimated and afterwards it is investigated how much the model fit changes when
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p. 484), the LR andWald test are asymptotically equivalent

under the null hypothesis.
1

However, the comparison of regression coefficients in

SEMs is hampered when the explanatory variables have

different metrics. Moreover, it is common in social sci-

ences that most measurements have arbitrary metrics. By

metric, we “refer to the numbers that the observed mea-

sures take on when describing individuals’ standings on

the construct of interest” (Blanton & Jaccard, 2006, p. 27).

A consequence of these arbitrary metrics is that a vari-

able can be rescaled. For example, any random variable

X with an arbitrary metric can be rescaled by means of

the linear transformation Y = a · X + B, where a and
b are real numbers. The variance of Y is then given by
var(a · X + b) = a2 · var(X). Accordingly, for the co-
variance between X and any other random variable Z ,
after the linear transformation the covariance becomes

cov(Y,Z) = cov(a · X + b, Z) = a · cov(X,Z). If such
a transformation is applied to an explanatory variable in a

SEM, the consequence is that the size of the regression co-

efficients changes. This is because in a regression setting,

the dependent variable itself is a linear transformation of

the explanatory variables. Rescaling an explanatory vari-

able alters its variance which in turn is compensated by al-

tering the regression coefficients such that the variance of

the dependent variable remains equal. Analogous consid-

erations can be made if the dependent variable is rescaled.

Thus, under “the proposition that if the units of measure-

ment ... are arbitrary then there can be no scientific inter-

est in any aspect of the model which depends on the choice

of units” (Bartholomew, Knott, & Moustaki, 2011, p. 65).

As a possible way to circumvent the problem of arbi-

trary metrics is to use standardized regression coefficients

(e.g., Kwan & Chan, 2011). Standardized regression coef-

ficients are calculated by multiplying the unstandardized

regression coefficients with the standard deviation of the

explanatory variable and by dividing this product with the

standard deviation of the dependent variable, or in short

βSki =

√
var(ηi)√
var(ηk)

· βki. (2)

Standardizing makes the regression coefficients com-

parable by “norming” the regression coefficients with the

variables’ empirical standard deviations. This also alters

the interpretation of the regression coefficients which is

for standardized regression coefficients as follows: If the

explanatory variable changes one standard deviation, then

the dependent variable changes βSki standard deviations.
It is easy to see how standardization compensates in the

case of different metrics. The denominator refers to the

standard deviation of the dependent variable, so constant

for all regression coefficients referring to the same depen-

dent variable. Multiplying the numerator with the stan-

dard deviation thus levels out effects of different metrics.

But, as mentioned by Kwan and Chan (2011), it follows that

when the equality of standardized regression coefficients

is tested, then in contrast to hypothesis (1) the actual hy-

pothesis is

H0 :

√
var(η1)√
var(ηk)

βk1 =

√
var(η2)√
var(ηk)

βk2

= . . . =

√
var(ηi)√
var(ηk)

βki.

(3)

Using Equation (2), the hypothesis has themore convenient

expression

H0 : βSk1 = βSk2 = . . . = βSki. (4)

Thus, hypotheses (1) and (4) have a fundamentally differ-

ent interpretation and they are only equivalent if√
var(η1)√
var(ηk)

= · · · =
√

var(ηi)√
var(ηk)

. (5)

Kwan and Chan (2011) exemplify this issue using a data set

of N = 200 participants randomly selected from the PISA
2006 study (OECD, 2009). For their example, these authors

use three out of five variables, a description of the selected

and the other variables and the covariance matrix can be

found in Appendix B.1. We use the same numbering of

the variables as in Kwan and Chan so that the regression

coefficients will have the same indices as in their paper.

In their example, Kwan and Chan regress educational re-

sources (η4) at home on parental education level (η2) and
home possessions (η3). This model is depicted in Figure 1.
To exemplify an arbitrary metric, we rescaled the vari-

able η3 by multiplying it by an arbitrarily chosen factor 10,
i.e., η̃3 = 10 · η3. Estimating this model using lavaan
(Rosseel, 2012, version 6.5) with the ML estimator gives the

results shown in Table 1. We also used lavaan’s option
to mimic the EQS software to ensure the comparability of

our results with those in Kwan and Chan (2011). The op-

tion mimic = "EQS" of the sem() function was used.
The ML estimator with this option will be used in all exam-

ples in this tutorial. The table shows that within the origi-

nal metric, the estimated unstandardized regression coef-

ficients β̂42 and β̂43 differ considerably (0.081 vs. 0.257).
Within the rescaled metric, the difference between both

regression coefficients is smaller (0.081 vs. 0.026) than in
the original metric. But for both the model in the origi-

nal metric and the model in the rescaled metric, the differ-

ence of the estimated standardized regression coefficients

β̂S42 and β̂
S
43 is the same (0.292 vs. 0.280). The example

the restrictions are set free yielding a χ2
-distributed test statistic. We do not consider the score test in this tutorial.
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Figure 1 Model for the first example, the variances are indicated at the upper right of the variable symbols.
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demonstrates that the standardized regression coefficients

are invariant towards the metric of the variables. This is

because the variance of η2 is about ten times larger than
the variance of η3 (Kwan & Chan, 2011, p. 732). For the
regression with the rescaled η3, the difference of the un-
standardized regression coefficients is not as large as the

difference in the original scale. The regression coefficient

β̂43 for the model with the rescaled η̃3 is (up to rounding)
1
10 of the regression coefficient for the model in the origi-

nal metric. The reason therefore is that the portion of the

variance that is explained by η̃3, or respectively η3, must
be the same regardless of the metric. Because var(η̃3) =
102 ·var(η3), we have for the portion of explained variance
( 1
10 ·β43)2 ·var(η̃3) = 1

100 ·β
2
43 ·100 ·var(η3) = β2

43 ·var(η3).
This result shows the ML estimation is scale free, i.e. if

a model is rescaled and a parameter is estimated for this

model, then this parameter can be algebraically converted

back to the original metric (Kline, 2016, p. 238). More-

over, the table demonstrates that for the rescaled model,

the standardized regression coefficients are equal to those

of the original model, which is easily verified by applying

Equation (2).

As the example shows, the comparison of standardized

regression coefficients is a possibility to examine the ef-

fects of explanatory variables. These remain the same in

terms of their portion of explained variance, regardless of

the metric of the explanatory variables. But the researcher

should be aware that the tested hypothesis differs from the

one when unstandardized regression coefficients are com-

pared.

Although the comparison of standardized regression

coefficients is a possibility to compare the effects of the

explanatory variables on a dependent variable, the imple-

mentation is not straightforward because standardized co-

efficients are calculated after the estimation process (see

the Mathematical Appendix for the standardization for-

mulas). Directly calculating standardized coefficients re-

quires a model reparameterization (McDonald, Parker, &

Ishizuka, 1993). Thus, to apply a LR test, the model must

firstly be reparameterized and secondly, a restricted repa-

rameterized model must be estimated which, thirdly, are

compared. Therefore, Kwan and Chan developed amethod

to reparameterize a model by means of phantom and

imaginary latent variables (Rindskopf, 1984). The orig-

inal model and the reparameterized model are equiva-

lent and the regression coefficients in the reparameterized

model represent the standardized parameters in the orig-

inal model. Thus, the – now standardized – regression co-

efficients in the reparameterized model can be tested by

means of the LR test. Although this is a general approach,

the model reparameterization is not a trivial task and is

currently not implemented in standard structural equation

software (Kwan & Chan, 2011). An alternative way to com-

pare standardized regression coefficients is the Wald test.

As the LR and the Wald test are asymptotically equivalent

under the null hypothesis, they should provide the same

results in the long run.

In this tutorial paper, we will demonstrate a method

to test the equality of standardized regression parameters

drawing on the Wald test for linear restrictions and the

asymptotic covariance matrix of the standardized param-

eter estimates using the open source R package lavaan.
The goal of this paper is educational: Firstly, we want to
demonstrate how a typical textbook display of the Wald

test can be used for comparing standardized parameters

and secondly, we want to demonstrate how the Wald test

can be programmed in the R language. The tutorial re-

quires some knowledge of matrix algebra and statistical

concepts like the asymptotic covariance matrix of the es-

timated parameters and the delta method to understand

the calculations involved in the Wald tests (e.g., Casella &

Berger, 2002; Greene, 2012; Fox, 2016). Additionally, the

reader requires some knowledge of R and the lavaan
package. In the following section, we recapitulate the ba-
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Table 1 Unstandardized and standardized estimates for Example 1.

Original metric Rescaled metric

Unstandardized Standardized Unstandardized Standardized

Parameter Est. SE Est. SE Est. SE Est. SE

β̂42 0.081 0.019 0.292 0.065 0.081 0.019 0.292 0.065

β̂43 0.257 0.062 0.280 0.065 0.026 0.006 0.280 0.065

ψ̂23 1.031 0.209 0.374 0.061 10.312 2.086 0.374 0.061

ψ̂22 9.069 0.909 1.000 0.000 9.069 0.909 1.000 0.000

ψ̂33 0.837 0.084 1.000 0.000 83.710 8.392 1.000 0.000

ψ̂44 0.550 0.055 0.776 0.052 0.550 0.055 0.776 0.052

sics of the Wald test, and show how the Wald test can be

used to compare standardized regression coefficients. In

the third section, we use the example from the introduc-

tion to develop R code to calculate the actual Wald test

statistic given a fitted model. We apply the Wald test to

an example with two restrictions in the fourth section and

in the fifth section, we show how to apply the Wald test

for standardized regression coefficients in a SEM involving

latent variables. In the sixth section, we provide a conve-

nience function that handles theWald test for equality con-

straints of standardized regression coefficients with only

requiring the constraints in the usual lavaan syntax and
a fitted lavaan object. The last section discusses and con-
cludes. Throughout the paper, we draw on the examples

provided in Kwan and Chan (2011) and compare the results

obtained from the Wald test to results from the LR test in

Kwan and Chan (2011). In order to ensure the comparabil-

ity with the examples in Kwan and Chan (2011), we use the

same numbering of the variables in this tutorial as in the

Kwan and Chan paper. Thus, the regression coefficients

in this tutorial will have the same indices as in Kwan and

Chan. A description of the variables used in the examples

is provided in Appendix B. All R scripts for the examples in

this tutorial are provided as supplementary material.

Wald test for standardized parameters
The method to compare standardized regression parame-

ters shown in this section draws on the Wald test Wald,

1939 and its description provided in Greene (2012, p. 527-

529). In this section, we firstly describe the Wald test and

how it is applied to a set of linear restrictions. Because

the Wald test is a general method to compare some model

parameters, we describe the Wald test with regards to

unstandardized parameters. Afterwards, we explain how
standardized parameters are obtained from unstandard-

ized parameters and then, thirdly, we show of theWald test

is adapted to compare the standardized parameters. The
focus in this section is on an explication of the hypothesis

behind and of the principles of the Wald test. Mathemati-

cal formulas are only provided as they are required for the

later implementation in R and lavaan. In order to keep
the tutorial self-contained, details of parameter standard-

ization and of the Wald test are provided in the Mathemat-

ical Appendix.

In the example from the introduction, it was of substan-

tial interest to statistically compare the two regression co-

efficients β42 and β43. Stated otherwise the following hy-
pothesis is to be tested:

H0 : β42 = β43. (6)

Formally, the equation in the hypothesis can be rewritten

in the form β42 − β43 = 0. This equation represents a
restriction on the parameters. Using matrix algebra and

introducing a number c, the equation becomes

(
1 −1

)
·
(
β42
β43

)
= c. (7)

The two parameters β42 and β43 represent two parameters
from the model. In this example, we have gathered these

two parameters in a row vector. The restrictions are gath-

ered in the column vector and it is easy to see thatmultiply-

ing both vector yield the restriction β42−β43. The number
c represents the restricted parameter values.The Hypothe-
sis 6 is valid, when the restriction parameters values c only
randomly deviates from zero.

In general, all parameters from a model are gathered

in a vector which is the parameter vector θ. When there
are p parameters in the model, the length of the parame-
ter vector θ consequently is p. Now, we consider the gen-
eral case in which we have a set of J linear restrictions.
These can be written in form of a restrictionmatrixR. The
number of rows of the restriction matrix R corresponds

to the number of restrictions and the number of columns

corresponds to the length of the parameter vector θ. Con-
sequently, the dimension of R is J × p and the equation
R · θ = c yields the vector of restricted parameters values
with length J .
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In the general case, the hypothesis for a set of J linear
restrictions becomes

H0 : R · θ = 0. (8)

The statisticW of the Wald test for this hypothesis is given

by Greene (2012, p. 528) as

W =
[
R · θ̂

]>
·
[
R ·ACOV(θ̂) ·R>

]−1
·
[
R · θ̂

]
(9)

with ACOV(θ̂) being the asymptotic covariance matrix of
the estimated parameters. Under H0,W is asymptotically

χ2
-distributed with J degrees of freedom. Stated other-

wise, the number of df equals the number of rows in the
restriction matrix.

The idea behind the Wald is that when the restrictions

are valid, then the vector of restricted parameters values c
only marginally deviates from the zero vector due to ran-

dom sampling error. If the restriction are not valid, then

the deviation of c from the zero vector is systematic which
is reflected in a significant χ2

-test statistic. This also entails

that the Wald always refer to the total set of restrictions.

Up to now, we considered unstandardized parameters

only. However, we want to test standardized parameters.

The standardized parameters are easily obtained after the

model has been estimated by means of the formulas pro-

vided, e.g., in Hayduk (1988, p. 181-183). These formulas

transform the vector of estimated unstandardized parame-
ters θ̂ in the vector of estimated standardized parameters
θ̂S . From Equation (9), we see that the asymptotic covari-
ance matrix for the estimated standardized parameters is

also needed to calculate a Wald Test. The asymptotic co-

variance matrix of the standardized estimated parameters

ACOV(θ̂S) can be obtained from the asymptotic covari-

ance matrix of the estimated parameters ACOV(θ̂) by us-
ing the delta method (Muthén, 2007; see also Greene, 2012,

pp. 1083-1084). In lavaan there are functions that pro-
vide easy access to the required θ̂S andACOV(θ̂S) so that
no calculations by the user are needed.

Now, we adapt Equation (9) for the comparison of stan-

dardized regression coefficients. For the sake of conve-

nience and to later ease the programming, we define the

matrix

M :=
[
R ·ACOV(θ̂S) ·R>

]
. (10)

Using theM matrix, the expression for Wald test for stan-

dardized parameters becomes

W =
[
R · θ̂S

]>
·M−1 ·

[
R · θ̂S

]
. (11)

In the following, we use Equation (11) to implement

the Wald test for standardized regression parameters in

lavaan. The idea behind the implementation is sim-

ple: Firstly, the restriction matrix R is determined by the
hypothesis to be tested. Secondly, lavaan provides ac-
cess to the estimated standardized parameters θ̂S and the
asymptotic covariance matrix of the estimated parame-

ters ACOV(θ̂S) so that W calculates according to Equa-

tion (11). Finally, the p-value of the Wald statistic is calcu-
lated using the build in R function for the χ2

-distribution.

First example with one restriction
In this section, we use the PISA example from Kwan and

Chan (2011) that was already given in the introduction. As

a quick reminder, the substantial hypothesis in this regres-

sion model is whether the effects of parental educational

level and childrens’ home possession on childrens’ educa-

tional resources at home are the same. The statistical null

hypothesis is

H0 : βS42 = βS43 ⇔ βS42 − βS43 = 0. (12)

In this model, there are six parameters in total: two re-

gression coefficients, the covariance between the exoge-

nous variables, the two variances of the exogenous vari-

ables, and the error variance of the endogenous variable.

The parameter vector of the standardized parameters with

length k = 6 is

θS = (βS42, β
S
43, ψ

S
23, ψ

S
22, ψ

S
33, ψ

S
44). (13)

The number of rows of the restriction matrix results from

Hypothesis (12), in particular from the expression βS42 −
βS43 = 0 . Because there is one restriction, the restriction
matrix has one row. When constructing a restriction ma-

trix, it must be taken care that the sequence of the columns

equals the sequence of the elements in the parameter vec-

tor. In particular, the entries representing the restrictions

have to be placed in the correct columns. In the current ex-

ample, 1 and −1 have to be placed in the first and second
column. The restriction matrix for the example is

R =
( [βS42 βS43 ψS23 ψS22 ψS33 ψS44]

[βS42 − βS43 = 0] 1 −1 0 0 0 0
)
.

(14)

For educational purposes, we print the restriction before

the row and the elements of the parameters above the re-

striction matrix in square brackets, so it is easy to see how

to set up the restriction matrix. It is easy to check that

R · θS represents the parameter restrictions. Addition-
ally, the example shows that to construct the restriction

matrix, the sequence of the parameters in the parameter

vector matters. If the sequence of the parameters in the

column of the restriction matrix does not match the se-

quence in the parameter vector θS , the restrictions are
not correctly implemented. In the example at hand, the
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restriction matrix is already matched with the sequence

of the parameters in θS but in practical applications, it is
necessary to determine the sequence of parameters. One

way to get the sequence of the parameters in lavaan is
to use the parTable() function. This function return
lavaan’s parameter table, which is a data frame repre-
senting tomodel. In the rows the parameter table indicates

the parameters and the sequence of parameters is the same

for all lavaan objects. With this information at hand, we
can compute the Wald test. The calculation proceeds in

pseudocode as described in Algorithm 1.

The first two requirements concern the asymptotic

covariance matrix of the standardized parameters and

the parameter vector of standardized parameters, which

are provided by lavaan after a model has been fitted,
whereas the third requirement concerns the restrictions

matrix which is provided by the researcher. In the first

step, the vector c with the restricted parameters is calcu-
lated. As mentioned in the section on the Wald test, when

the restricted parameters deviate stronger from zero than

explained by sampling variation, then the restriction is not

valid. Although the calculation of the restricted parame-

ters is not necessary, their calculation is informative from

a didactic point of view. In the second step, we calculate a

matrixM from Equation (10) and in the third step, we de-

termine the inverse ofM , which is needed in the next step

for the calculation of the Wald test. The fourth step finally

calculates the Wald statistic according to Equation (11). As

the degrees of freedom of the Wald statistic are given by

the number of rows of the restriction matrixR, this num-
ber is determined in step five by counting the number of

rows. Finally, in the sixth and last step, the p-value for the
Wald statisticW is calculated.

To conduct the Wald test, a fitted lavaan object con-
taining the results for the unrestricted model is required.

For the following R code, we assume that the object fit
contains the fitted model (see the supplementary material

for the model syntax). As mentioned above, the sequence

of parameters in the restriction matrix must match the se-

quence of parameters represented in lavaan. Therefore,
we print the parameter table with the following command

shown in Listing 1.

The parameters are encoded in the second, third, and

fourth column of the parameter table. The columns indi-

cate the left hand side, the operator, and the right hand

side of a parameter specification lavaan. For instance,
the regression coefficient β42 is in the first row indicated
by its lavaan syntax eta4~eta2. Thus, the sequence
of parameters in lavaan is the same as shown in Equa-
tion 13. Now, we can set up the R code for the Wald test as

given in Listing 2.

In the first line of the code the covariance matrix of

the standardized estimated parameters is extracted us-

ing the inspect() function from the lavaan package.
With the argument "vcov.std.all", the covariance
matrix of the standardized estimated parameters is re-

quested. The requested covariance matrix is formatted as

a lavaan.matrix.symmetric object, R’s unclass()
function converts this into a R table. In the second line, the

vector of standardized estimated parameters is extracted

by means of lavaan’s standardizedSolution()
function. This function returns a data frame from which

we only need the column containing the standardized pa-

rameters. Therefore, we add [,"est.std"] behind the
call standardizedSolution() function. Afterwards,
we also use the matrix() function from R to convert

the extracted parameter vector to a matrix, which is later

needed for the upcoming matrix multiplications. The re-

striction matrix is set up in the third line. In lines four to

nine, the Wald statistic W and its p-value are calculated
with df = 1. In the forth line, the value of the restricted
parameters is calculated. Note, that %*% indicates matrix
multiplication. In the fifth line, thematrixM is calculated.

As in the Equation (11) the inverse matrixM−1
is needed,

the inverse matrix is calculated in the sixth line with the

solve() function; providing a matrix to the solve()
function provides the inverse of this matrix. In line seven,

the Wald statistic is calculated, the function t() indicates
the transpose of a matrix. The degrees of freedom are de-

termined in line eight by counting the rows of the restric-

tionmatrix with the nrow() function. Finally, in the ninth
line, the p-value is calculated with the pchisq() func-
tion. Running the code yields the following results for the

constraint parameter:

> c
[,1]

[1,] 0.01207366

The value of the restricted parameters deviates only

marginally from zero as revealed by the non-significant

Wald test statistic:

> W
[,1]

[1,] 0.0113777
> p

[,1]
[1,] 0.9150537

Thus, the restriction is not detrimental and the result is al-

most identical to the results presented in Kwan and Chan

(2011, p. 732, Table 2). Their χ2
-difference test, which cor-

responds to the LR test using the reparameterization ap-

proach, is∆χ2 = 0.011 with∆df = 1 and p = .916.
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Algorithm 1 Calculate Wald test
Require: ACOV(θ̂S)
Require: θS
Require: R
1: c← R · θ
2: M ← R ·ACOV(θ̂S) · transpose(R)
3: M−1 ← determine-inverse(M)
4: W ← transpose(R · θS) ·M−1 ·R · θS
5: df ← count-rows(R)
6: p← 1− Pχ2(W,df)

Listing 1 Command to obtain the parameter table.

> parTable(fit)
id lhs op rhs user block group free ustart exo label plabel start est se

1 1 eta4 ~ eta2 1 1 1 1 NA 0 b42 .p1. 0.000 0.081 0.019
2 2 eta4 ~ eta3 1 1 1 2 NA 0 b43 .p2. 0.000 0.257 0.062
3 3 eta2 ~~ eta3 1 1 1 3 NA 0 cov23 .p3. 0.000 1.031 0.209
4 4 eta2 ~~ eta2 1 1 1 4 NA 0 var2 .p4. 4.535 9.069 0.909
5 5 eta3 ~~ eta3 1 1 1 5 NA 0 var3 .p5. 0.419 0.837 0.084
6 6 eta4 ~~ eta4 1 1 1 6 NA 0 resvar4 .p6. 0.354 0.550 0.055

Second example with two restrictions
The next example, for which we want to compare stan-

dardized regression coefficients, is Example 1 from Kwan

and Chan (2011, p. 736). In this example, we use four out

of the five variables found in the covariance matrix in Ap-

pendix B.1. We use the same numbering of the variables as

in Kwan and Chan so that the regression coefficients will

have the same indices as in their paper. In this second

example, we again consider a regression model but with

three exogenous variables, it is depicted in Figure 2. The

example draws on the same data set and covariance ma-

trix as the previous example.

In this example, the three explanatory variables are

parental occupational status (η1), parental educational
level (η2), and home possessions (η3). The dependent vari-
able is reading ability (η5). The results for the estimated
model are shown in Table 2.

It is of substantial interest, if the effects of the explana-

tory variables on the dependent variable are equal. Thus,

we have the following hypothesis concerning the equality

of the standardized regression coefficients βS51, β
S
52, and

βS53:

H0 :=

{
βS51 = βS52
βS52 = βS53

}
⇔
{
βS51 − βS52 = 0
βS52 − βS53 = 0

}
. (15)

In this model, we have ten parameters and the parameter

vector of the standardized parameters with length k = 10
is

θS = (βS51, β
S
52, β

S
53, ψ

S
12, ψ

S
13, ψ

S
23, ψ

S
11, ψ

S
22, ψ

S
33, ψ

S
55).
(16)

As we have two restrictions, the restriction matrix has

two rows and ten columns, it is

R =

( [βS51 βS52 βS53 ψS12 ψS13 ψS23 ψS11 ψS22 ψS33 ψS55]

[βS51 − βS52 = 0] 1 −1 0 0 0 0 0 0 0 0
[βS52 − βS53 = 0] 0 1 −1 0 0 0 0 0 0 0

)
. (17)
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Listing 2 Code for the Wald test.

1 SVCOV <- unclass(inspect(fit, "vcov.std.all"))
2 theta <- matrix(standardizedSolution(fit)[,"est.std"], 6, 1)
3 R <- matrix(c(1,-1,0,0,0,0), 1,6)
4 c <- R %*% theta
5 M <- R %*% SVCOV %*% t(R)
6 M.inv <- solve(M)
7 W <- t(R %*% theta) %*% M.inv %*% R %*% theta
8 df <- nrow(r)
9 p <- 1-pchisq(W, df)

Figure 2 Model for the second example, the variances are indicated at the upper right of the variable symbols.

η1

η2 η5 ζ5

ψ12

β51

β52 1

η3

ψ23

ψ13

β53

ψ55
φ22

φ11

φ33

As in the first example, we put the restriction before

and the elements of the parameter vector above the restric-

tionmatrix because in this example, attentionmust be paid

to the construction of the restriction matrix. The first hy-

pothesis about the equality of βS51 and β
S
52 refers to the first

and second element of the parameter vector θS and there-
fore, the equality constraints are encoded in the first and

second column of the first row of the restriction matrix.

The second hypothesis about the equality of βS52 and β
S
53

refers to the second and third parameter in the parameter

vector θS . Therefore, the equality constraints are encoded
in the second and third column of the second row of the

restriction matrix. As the restriction matrix has two rows,

there are two degrees of freedom for the Wald test.

Now, to perform the Wald test, the sequence of the

parameters in lavaan has to be determined using the
parTable() function as shown in the first example. Af-
terwards, the Wald test can be calculated with the same

R code as in the previous example. This yields for the re-

stricted parameters:

> c
[,1]

[1,] 0.07158408
[2,] -0.17025339

This example shows that there are two restricted pa-

rameters yielding a restricted parameter vector of length

2 and also demonstrates that the Wald test always refers

to the entire set of restrictions. The results for the Wald

statistic and its p-value are:

> W
[,1]

[1,] 2.098924
> p

[,1]
[1,] 0.3501261
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Table 2 Unstandardized and standardized estimates for Example 2.

Unstandardized Standardized

Parameter Est. SE Est. SE

β̂51 0.626 0.470 0.121 0.090

β̂52 1.273 2.369 0.049 0.091

β̂53 18.712 6.261 0.219 0.072

ψ̂12 29.923 3.848 0.661 0.040

ψ̂13 4.881 1.035 0.355 0.062

ψ̂23 1.031 0.209 0.374 0.061

ψ̂11 226.258 22.683 1.000 0.000

ψ̂22 9.069 0.909 1.000 0.000

ψ̂33 0.837 0.084 1.000 0.000

ψ̂55 5481.009 549.476 0.900 0.040

The results are close to the results of the LR test using

the reparameterization approach in Kwan and Chan (2011,

p. 738, Table 4). Their χ2
-difference test is ∆χ2 = 2.070

with∆df = 2 and p = .355.

Third example involving latent variables
Our third example involves latent variables and corre-

sponds to Example 3 in Kwan and Chan (2011, p. 738).

The example draws on a data set with N = 6407 partic-
ipants provided in Schoon and Parsons (2002). The model

involves three latent variables η1, η2, and η3 with each la-
tent variable being measured by two manifest variables. It

is depicted in Figure 3 and the covariance matrix is given

in Appendix B.2.

The latent variable η1, educational achievement, is
measured by examination score (y1) and highest qualifi-
cation (y2), the latent variable η2, teenage aspiration, is
measured by job aspiration (y3) and educational aspira-
tion (y4), and the latent variable η3, occupational attain-
ment, is measured by Goldthorpe (y5) and RGSC (y6) (see
Appendix B for explanations of the manifest variables).

As this example involves latent variables, the latent

variables have to be scaled so that the model parameters

can be estimated (Kline, 2016, p. 199). In this section, we

use Fixed Marker scaling, which restricts one loading to

1. The de facto standard is to use the first indicator of a

latent variable as marker. Thus, for models involving la-

tent variables, there are two scaling issues. Firstly, there is

the arbitrary scaling of the manifest variables in the sense

of a possible linear transformation as described in the in-

troduction. Secondly, there is the issue of scaling the la-

tent variable. Both scaling issues cause the estimated re-

gression coefficients to depend on the given metric of the

manifest variables and the scalingmethod used to scale the

latent variable. Fortunately, the standardized regression

coefficients are also invariant towards the particular ap-

plied scaling method for the latent variables (see Klößner

& Klopp, 2019; Klopp & Klößner, 2020).

Estimating the model applying the Fixed Marker scal-

ing with the first indicator as marker yields a well-fitting

model, χ2(df = 6) = 1.199, p = .977, CFI = 1.000,
RMSEA = 0.000, pclose = 1.000, and SRMR = 0.002.
The estimated parameters are shown in Table 3.

The substantial hypothesis of interest is if the effects of

the latent variables η1 and η2 on the latent variable η3 are
equal. In this case, the hypothesis is analogous to the hy-

pothesis in the first example. The actual hypothesis is

H0 : βS31 = βS32 ⇔ βS31 − βS32 = 0. (18)

The parameter vector of the standardized parameters with

length k = 18 is

θS = (λS11, λ
S
21, λ

S
32, λ

S
42, λ

S
53, λ

S
63, β

S
31, β

S
32, ψ

S
11, ψ

S
22, ψ

S
33, ψ

S
12, θ

S
11, θ

S
22, θ

S
33, θ

S
44, θ

S
55, θ

S
66). (19)
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Figure 3 Model for the third example, the variances are indicated at the upper right of the variable symbols.
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In this parameter vector, we have to be aware that the

estimated parameters λ̂11, λ̂32, and λ̂53 are restricted to
1 so that they are not freely estimated, although these re-

stricted parameters can be standardized. This can be seen

in Table 3. Because these parameters are not freely esti-

mated, they are not contained in the asymptotic covariance

matrix. Thus, the dimension of ACOV(θ̂S) is 15× 15.

Using the standardizedSolution() function,

however, returns a vector with length 18. Thus, to be con-
formable for matrix multiplication, we have to remove the

fixed parameters from this vector. The sequence of the pa-

rameters is as displayed in Equation (19), so that the first,

third and fourth element of the vector must be removed.

This “reduced” vector is

θSred = (λS21, λ
S
42, λ

S
63, β

S
31, β

S
32, ψ

S
11, ψ

S
22, ψ

S
33, ψ

S
12, θ

S
11, θ

S
22, θ

S
33, θ

S
44, θ

S
55, θ

S
66). (20)

Thus, as in the previous examples, we need to determine

the sequence of parameters in lavaan and additionally
determine which parameter is fixed and which is free.

Again, this can be done by using the parTable() func-
tion. Calling the function yield the (truncated) Listing 3.

The parameter table contains the column free which
indicates if a parameter is fixed or free. For a fixed param-

eter, the value in the free column equals zero, whereas
for a free parameter the value in the free column is dif-
ferent from zero. As can be seen in the parameter table,

the parameters for each first loading of the manifest vari-

able on each latent is fixed, which is straightforward as the

FixedMarker scaling with the first indicator asmarker was

used. Thus, to get this reduced parameter we have deter-

mine which parameters are free. To achieve this, we have

to alter the R code that provides the parameter vector:

1 theta <- matrix(standardizedSolution
2 (fit)[,"est.std"], 18, 1)
3 fixed <- which(unclass(parTable
4 (fit))$free %in% c(0))
5 theta <- theta[-fixed]

In the first and second lines, the parameter vector of

the standardized parameters is extracted as above. The

third and fourth lines determine which parameters in the

parameter table are fixed and which parameters are free
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Table 3 Unstandardized and standardized estimates for Example 3.

Unstandardized Standardized

Parameter Est. SE Est. SE

λ̂11 1.000 0.000 0.898 0.010

λ̂21 0.028 0.001 0.623 0.010

λ̂32 1.000 0.000 0.488 0.012

λ̂42 3.250 0.113 0.859 0.013

λ̂53 1.000 0.000 0.843 0.009

λ̂63 0.084 0.002 0.925 0.010

β̂31 0.192 0.024 0.212 0.025

β̂32 16.333 1.570 0.278 0.026

ψ̂11 212.209 6.427 1.000 0.000

ψ̂22 0.050 0.003 1.000 0.000

ψ̂33 138.165 4.302 0.793 0.011

ψ̂12 2.332 0.095 0.713 0.014

θ̂11 51.204 4.613 0.194 0.018

θ̂22 0.267 0.006 0.611 0.013

θ̂33 0.162 0.003 0.762 0.012

θ̂44 0.189 0.016 0.262 0.022

θ̂55 70.797 3.798 0.289 0.016

θ̂66 0.208 0.026 0.144 0.018

using the parTable() function. The unclass() func-
tion converts the data frame to a list of vectors from which

thefree vector is selected bymeans of the$ operator. The
%in% operator determines the position of the fixed param-
eters by determining the position of the zeros in the vector.

Finally, in the fifth line, the fixed parameters are removed

from the vector of standardized parameters extracted in

the first line.

Now the restriction matrix must be set up. As is the

previous examples, the use of the parTable() function
gives the sequence parameters but in this example only for

the free parameters. As there is one restriction, it has one

row. The restrictions for the equality of the standardized

regression coefficients must be in the fourth and fifth col-

umn according to their position in the reduced parameter

vector. The restriction matrix is

R =
(
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

)
(21)

Running the R code yields for the restricted parameter:

> c
[,1]

[1,] -0.06577379

Again, the restricted parameter deviates only

marginally from zero. The Wald statistic and its p-value
are:

> W
[,1]

[1,] 1.756541
> p

[,1]
[1,] 0.1850566

This result is also in line with the LR test in Kwan and

Chan (2011, p. 743, Table 8). Their χ2
-difference test is

∆χ2 = 1.782 with∆df = 1 and p = .182.

A convenience function
As the third example shows, it may be necessary to man-

ually alter the R code to calculate the Wald statistic and

moreover, it may be clumsy to set up the restriction ma-

trix by hand. Therefore, we adapted thelavTestWald()
function from the lavaan package. The supplementary
material (found on the journal’s web site) contains the R

code of this function, which is of course in large parts

identical to the code found in the lavaan package2. All
changes made to the original function are marked in the R

2
The lavaan source code is on github, https://github.com/yrosseel/lavaan/, and the original lavTestWald function is in the file

“lav_test_Wald.R”.
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Listing 3 Output to determine fixed and free parameters.

> parTable(fit)
id lhs op rhs user block group free ustart exo label plabel start est se

1 1 eta1 =~ y1 1 1 1 0 1 0 .p1. 1.000 1.000 0.000
2 2 eta1 =~ y2 1 1 1 1 NA 0 .p2. 0.045 0.028 0.001
3 3 eta2 =~ y3 1 1 1 0 1 0 .p3. 1.000 1.000 0.000
4 4 eta2 =~ y4 1 1 1 2 NA 0 .p4. 0.351 3.250 0.113
5 5 eta3 =~ y5 1 1 1 0 1 0 .p5. 1.000 1.000 0.000
6 6 eta3 =~ y6 1 1 1 3 NA 0 .p6. 0.119 0.084 0.002
7 7 eta3 ~ eta1 1 1 1 4 NA 0 b31 .p7. 0.000 0.192 0.024
8 8 eta3 ~ eta2 1 1 1 5 NA 0 b32 .p8. 0.000 16.333 1.570
...

code and draw on the programming presented so far. The

R code for the adapted function is in the supplemental ma-

terial. The adapted function is called lwt() and the syn-
tax for the function call is

lwt(fit, constraints = NULL, verbose =
FALSE, std = FALSE)

where fit indicates a fitted lavaan object and

contraints contains a string with the restrictions. The
logical argument verbose indicates if the restriction ma-
trix and the estimated restricted values are printed. Be-

sides the arguments of lavTestWald(), the lwt()
function adds the additional logical argument std. When
std = TRUE, the Wald test will be calculated for the
standardized parameters. The standard setting is std =
FALSE.
The key of using the lwt() function (and also the

lavTestWald function) is the use of parameter la-

bels. Parameter labels allow to reference parameters in

lavaan directly (see Rosseel, 2020, p. 13). We will now
explain the use of the lwt() function with the second ex-
ample. In this example, we use the parameter label b51
for the regression coefficient β51 and the label b52 for the
regression coefficient β51. Now, the restrictions have to be
set up in the way as described in the lavaan documen-
tation. For this example, the restrictions are implemented

by

constr <- ’b51 == b52
b52 == b53’

and lavaan will automatically convert these restrictions
to a restriction matrix. Each restriction must be in a sepa-

rate line (but see the lavaan documentation for an alter-
native way). Now, the call of the lwt() function is

lwt(fit, constraints = constr, std =
TRUE, verbose = TRUE)

where verbose = TRUE indicates to print the restric-

tion matrix and the restricted theta values should be

printed. Calling the function gives the following results:

Restriction matrix (jacobian):
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

1 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0

Restricted theta values:
[1] 0.07158408 -0.17025339

$stat
[1] 2.098924

$df
[1] 2

$p.value
[1] 0.3501261

As can be seen, the result of the lwt() functions equals
the results of the manual calculation above. In addition,

the lwt() as well as the lavTestWald() function print
the information regarding which kind of standard error

was calculated during the estimation of the model. As this

information is not of relevance here, it was omitted from

the output, but running the code in the supplementary ma-

terial will print this, too.

Discussion
Up to here, we demonstrated how the Wald test is applied

to compare standardized regression coefficients and how

this is programmed in R. The method based on the Wald

test is simple to implement and does not require estimat-

ing an unrestricted and restricted model to conduct a LR

test. The developed convenience function also enables ap-

plied researchers to quickly conduct a Wald test to test hy-

potheses about parameter restrictions. Moreover, the re-

sults of the Wald test introduced here and the results of

the LR test procedure in Kwan and Chan (2011) are very

close or yield the same conclusion about the hypothesis,

which is expected when sample size is large, because both
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tests are asymptotically equivalent under the null hypoth-

esis (Greene, 2012, p. 526).

Before discussing some limitations of the Wald test ap-

proach, we we want to mention some issues regarding the

use of standardized data. In structural equation modeling,

the use of standardized data would consist in using a cor-

relation matrix instead a covariance matrix to estimate a

model. However, using a correlation matrix to estimate a

model may work in some circumstances but is not without

problems in general when the ML estimator. Using a cor-

relation matrix may yield the lose of the scale freeness and

scale invariance of the ML estimator (Kline, 2016, p. 238).

Moreover, using a correlation matrix is also problematic

when latent variables are involved. Latent variable need

to be scaled so that the model is identified. For a particular

scaling method, the estimates may differ if either a corre-

lation or a covariance matrix is analyzed or the estimates

may differ depending on the scaling method when corre-

lation matrices are analyzed. However, standardizing esti-

mates is invariant towards the choice of a particular scal-

ing method (see Klopp & Klößner, 2020). In order to cor-

rectly fit a model using a correlation matrix, the constraint

optimization method can be used. Constraint optimization

consists in imposing non-linear constraints on somemodel

parameters (Kline, 2016, p. 254). Another possibility to di-

rectly estimate standardizied parameters is model repa-

rameterization, an instance of which is the method using

phantom and imaginary latent variables develop by Kwan

and Chan (2011). However, as mentioned in the introduc-

tion such a reparameterization is tedious and therefore,

the approach using Wald tests was demonstrated.

Regarding the limitations, we only considered one type

of standardization, inwhich both – explanatory and depen-

dent – variables where standardized. There may be situ-

ations in which this may be inappropriate, e.g., when an

explanatory variable is a dummy-coded variable (see Fox,

2016, pp. 149-150; and Newman & Browner, 1991, pp. 383-

384). For a dummy-coded variable, the regression coef-

ficients indicates the difference between a certain group

and the reference group. According to Fox, this interpreta-

tion is lost when a regression coefficient for a dummy ex-

planatory variable is standardized and moreover, as a 0/1

coded dummy variable cannot increase one standard de-

viation, the usual interpretation of a standardized regres-

sion coefficient does also not apply. Similar objections ap-

ply to regression coefficients of the interaction of dummy

and continuous explanatory variable. These also should

not be standardized, because they cannot change indepen-

dently of the main effect regression coefficients. The Wald

test has also the drawback that its results are not invariant

towards non-linear reparameterizations of the restrictions

(see Greene, 2012, p. 529). However, this is not relevant in

the context of this tutorial and we only want to mention

this issue for the sake of completeness.

We also restricted our considerations to hypotheses of

the formR · θ = 0, but an extension to hypotheses in the
formR ·θ = q is possible (see the Mathematical Appendix
for details). We also want to mention that although we

only used the ML estimator in all examples, the applica-

tion of the Wald test is not limited to the ML estimator. As

the Wald test is a general type of statistical test, it can be

applied to test restrictions of parameters estimated under

any estimator (see Greene, 2012, chapter 5.6) for an appli-

cation with linear models and the least squares estimator).

Moreover, all examples were variations of multiple regres-

sion models, but the Wald test approach certainly applies

to more complex models.

Although the use of standardized regression coeffi-

cients was featured in this tutorial, there are several argu-

ments against the use of standardized coefficients. Green-

land, Schlesselman, and Criqui (1986) as well as Greenland,

Maclure, Schlesselman, Poole, and Morgenstern (1991) ar-

gue that comparing standardized coefficients confounds

effects with the explanatory and dependent variables’

standard deviation. As already mentioned in the introduc-

tion, the interpretation of the hypothesis when comparing

unstandardized regression coefficients in Equation (1) is

fundamentally different from the hypothesis when com-

paring standardized regression coefficients in Equation (4),

and the condition from Equation (5) when they are equiv-

alent is hardly ever met. The interpretation of an unstan-

dardized regression coefficient is that when the explana-

tory variable changes one unit, then the dependent vari-

able changes βki units (at least in models without latent
variables, in models with latent variables this interpreta-

tion is more complicated, see Klopp & Klößner, 2020). In

contrast, the interpretation of a standardized regression

coefficient is that when the explanatory variable changes

one standard deviation, the dependent variables changes

βSki standard deviations. Thus, the interpretation of hy-
potheses about standardized regression coefficients de-

pends on the variables’ standard deviations. Greenland

et al. (1991) argue that the standard deviations of the in-

volved variables depend on the study design. For instance,

the application of criteria determining which cases are in-

cluded in a study and which are excluded, may alter a vari-

able’s standard deviation. Another example for a potential

factor influencing the standard deviation of a variable is

the measurement design, e.g., how many categories in a

rating scale are provided to the respondents. In such cases,

the effect would be confounded with features of the study

design and as a consequence, the size of the standard coef-

ficients may depend on such features. Additionally, inter-

preting standard deviations may be problematic when the
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involved variables are non-normally distributed.

Fox (2016, pp. 100-102) hints that standardized regres-

sion coefficients are of limited use when comparing the rel-

ative impact of incommensurable explanatory variables.

Variables are incommensurable when they are measured

in different units. For example, income is regressed on ed-

ucation and occupational experience (Fox, 2016, p. 101).

When both explanatory variables are measured in years,

they are commensurable. But when points are assigned

to measure both variables they are incommensurable and

their regression coefficients are in turn standardized to

allow comparison. But the standardization by means of

the variables’ standard deviations itself is arbitrary. Fox

(2016, p. 102) concludes that “standardized regression coef-

ficients permit a limited comparison of the relative impact

of incommensurable explanatory variables.” Thus, care

should be taken if reporting or comparing standardized re-

gression coefficients is adequate (see also Baguley, 2009,

for a general discussion regarding simple or standardized

effect sizes).

Furthermore, drawing on the standard deviation to

interpret the standardized regression coefficient has the

drawback that it provides no information about the

strength of an effect. In consequence, we want to argue

that the comparison of standardized coefficients should re-

fer to the portions of variance explained that two or more

explanatory variables transfer to the dependent variable.

This is because in general, the explanatory variables co-

vary (see also Kim & Ferree, 1981). For instance, in the first

example, the variables η2 and η3 covary with cov(η2, η3).
Using unstandardized model parameters, according to the

formula for the variance of linear transformations of ran-

dom variables, the total variance of the dependent variable

therefore is var(η44) = β2
42ψ22 + β2

43ψ33 + 2β42β43ψ23 +
ψ44. The effects of η2 and η3 on η4 cannot be told apart
because of the covariation between η2 and η3. Conse-
quently, the interpretation of the equality of two standard-

ized regression coefficients has to refer to the portion of

variance each explanatory variable contributes to the to-

tal variance of η4. Because using totally standardized pa-
rameters is tantamount to use standardized variables for

estimation (see Kim & Ferree, 1981), i.e., ψS22 = ψS33 =
1, the expression for the total variance of η4 becomes

var(η44) =
(
βS42
)2

+
(
βS43
)2

+ 2βS42β
S
43ψ

S
23 + ψS44 = 1. In

the first example, the Wald test indicates that the hypoth-

esis of the equality of the standardized regression coeffi-

cients holds, and the interpretation is: Both explanatory

variables contribute equally to the total variance of the de-

pendent variable. This interpretation also applies in cases

in which there is no covariation between explanatory vari-

ables, even though there is no covariance term in such a

situation. Additionally, the expression for the total vari-

ance also shows that for the portion of variance interpre-

tation the sign of the relation vanishes because the stan-

dardized regression coefficients are squared. Thus, in this

kind of interpretation, information about the direction of

the relation is seemingly lost. But the direction of a rela-

tion is a substantial and not a statistical issue. For exam-

ple, when the ML estimator is used, due to being scale free,

the sign of the relation between η2 and η4 can be reversed
by applying the linear transformation η̃2 = −1 · η2 with-
out changing the absolute value of the (un-)standardized

regression coefficient. Thus, the interpretation in terms of

portion of variance explained is in accordance with sub-

stantial interests.

In this tutorial, we provided an approach to test the

equality of standardized regression coefficients in SEMs

using the Wald test for standardized parameters and

demonstrated how to implement this approach using R

and lavaan. Although the implementation is easy with
some background knowledge, applied researchers should

be aware of the different interpretation of unstandardized

and standardized coefficients and the possibility, that the

size of the standard deviations depends on design features

of the study and other factors.

Author’s note
The author is grateful for valuable remarks from San-

dra Baar, Katharina Scholtes and Sina Wilhelm. The au-

thor thanks Stefan Klößner for valuable discussions on the

topic.
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A Mathematical Appendix
A.1 The LISREL all-Y notation
In the following, we introduce the LISREL all-Y notation. An advantage of this notation is that it corresponds to the

way in which lavaan represents the parameter matrices of structural equation models. For p latent variables η, r
endogenous residual errors ζ, m manifest variables y measuring the latent variables, and m manifest residual errors

ε, the LISREL all-y notation uses the following model matrices: Λ, B, Ψ, Θε (see Newsom, 2015, pp. 383-386). The

parameter vectors and matrices are described in the tables below. A peculiarity of the LISREL all-y notation is that

exo- and endogenous variables are not explicitly distinguished. Thus, for the vector of latent variables η, there are q
exogenous and r endogenous variables with p = q + r. The measurement model is given by

y = Λ · η + Θε (22)

and the structural model is given by

η = B · η + ζ. (23)

Under the usual assumptions (e.g., Bollen, 1989), the covariance matrix for the manifest variables y is

Σ = Λ · (I −B)−1 ·Ψ · [(I −B)−1]> ·Λ> + Θε (24)

The Quantitative Methods for Psychology 3292

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p315
https://dx.doi.org/10.1097/00001648-199109000-00015
https://dx.doi.org/10.1097/00001648-199109000-00015
https://dx.doi.org/10.1093/oxfordjournals.aje.a114229
https://dx.doi.org/10.1093/oxfordjournals.aje.a114229
https://dx.doi.org/10.1177/004912418101000203
https://dx.doi.org/10.1080/10705511.2020.1796673
https://dx.doi.org/10.1080/10705511.2020.1796673
https://dx.doi.org/10.1080/10705511.2018.1517356
https://dx.doi.org/10.3758/s13428-011-0088-6
https://dx.doi.org/10.3758/s13428-011-0088-6
https://dx.doi.org/10.1007/bf02294650
http://www.statmodel.com/download/StandardizedCoefficients.pdf
http://www.statmodel.com/download/StandardizedCoefficients.pdf
https://dx.doi.org/10.1097/00001648-199109000-00014
https://dx.doi.org/10.4324/9781315871318
https://dx.doi.org/10.1787/9789264056275-en
https://dx.doi.org/10.1787/9789264056275-en
https://dx.doi.org/10.1007/BF02294204
https://dx.doi.org/10.1007/BF02294204
https://dx.doi.org/10.18637/jss.v048.i02
https://dx.doi.org/10.1006/jvbe.2001.1867
https://dx.doi.org/10.1006/jvbe.2001.1867
https://dx.doi.org/10.1214/aoms/1177732144
https://dx.doi.org/10.1214/aoms/1177732144


¦ 2020 Vol. 16 no. 4

Table 4 Parameter vectors in the LISREL all-y notation.

Vector Length Description

y m Manifest variables measuring the latent variables

ε m Manifest residual errors

η p Latent variables

ζ p Latent residual errors for q endogenous latent variables, the elements for the r exogenous vari-
ables are zero

Table 5 Parameter matrices in the LISREL all-y notation.

Matrix Dimension Description

Λ m× p Loadings of the manifest variables on the latent variables

B p× p Path coefficients

Ψ p× p Variances of the exogenous variables, or residual variances of the endogenous variables, or

covariances for the exogenous variables, or covariance of the residual variances for the en-

dogenous variables

Θε m×m Variances of the measurement error oft he manifest variables

and the covariance matrix of the latent variables η is

cov(η) = (I −B)−1 ·Ψ · [(I −B)−1]>. (25)

If there are no latent variables, then the Λ and Θε matrices are omitted and Σ = cov(η), or equivalently, the Λ is set
to the identity matrix and the Θε to the zero matrix. A peculiarity of the LISREL all-y notation is that for exogenous

variables, the model parameter ψii refers to the variance, i.e., var(ηi) = ψii, whereas for endogenous variables, the
model parameter ψii refers to the residual error variance.

A.2 Standardization formulas
Standardization is done after a model is estimated. The standardized estimated parameters θ̂S are easily obtained by
using the formulas provided in Hayduk (1988, p. 181-183). Standardization requires a diagonal p × p matrix Sη which
draws the covariance matrix of the (latent) variables (see Equation (25)) in a SEM:

Sη :=


var(η1)1/2 0 . . . 0

0 var(η2)1/2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 . . . 0 var(ηp)
1/2

 := dg(cov(η))
1/2
, (26)

(see Magnus & Neudecker, 2007, p. 6) for the dg notation. The standardized loadings are:

ΛS = Λ · Sη (27)

The standardized regression coefficients are:

BS = S−1η ·B · Sη (28)

The standardized latent (residual) covariance matrix is:

ΨS = S−1η ·Ψ · S−1η (29)

The correlation matrix of η is:
cor(η) = S−1η · cov(η) ·S−1η (30)
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A.3 The Wald test
The method to compare standardized regression in his tutorial is the Wald test. In this section, following the reasoning

provided in Greene (2012, p. 527-529), we firstly describe the Wald test and how it is applied to a set of linear restric-

tions and secondly, show how the Wald test for a set of linear restrictions is applied to compare standardized regression

parameters.

The Wald test handles specific constraints on some parameters in a model. In the following, θ denotes the parameter
vector of a SEM with length k and θ̂ denotes the estimated parameters. Then, the hypothesis of the equality of some
parameters can be written as a set of J restrictions:

H0 : c(θ) = q ⇔ c(θ)− q = 0. (31)

The idea behind the Wald test is that if the restrictions hold true, then θ̂ should satisfy them. In this case, the vector
with the restricted parameters c(θ̂)− q should be approximately zero. In case the restrictions do not hold true, then the
deviation of c(θ̂)− q from zero should be more than explained by sampling variance.
According to Greene (2012, p. 528, Theorem 14.6), the limiting distribution of the Wald test is

W =
[
c(θ̂)− q

]>
·ACOV

(
c(θ̂)− q

)−1
·
[
c(θ̂)− q

]
(32)

whereACOV(c(θ̂)−q) denotes the asymptotic covariance of the estimated parameters given the restrictions. Under the
H0, W is asymptotically χ2

-distributed with degrees of freedom equal to the number of restrictions. Stated otherwise,

the number of df equals the number of equations in c(θ̂)− q = 0.

In Equation (32), the asymptotic covariance of the estimated parameters given the restrictions ACOV(c(θ̂)− q) can

be obtained from the asymptotic covariance matrix of the estimated parametersACOV(θ̂) by means of the delta method
as

ACOV(c(θ̂)− q) = J [c(θ̂)] ·ACOV(θ̂) · J [c(θ̂)]> (33)

with J [c(θ̂)] being the Jacobian of the restriction function c(θ).
A set of J linear restrictions can be written in form of a restriction matrix R. The number of rows of the restric-

tion matrix R corresponds to the number of restrictions and the number of columns corresponds to the length of the
parameter vector θ. In this case, the hypothesis (31) becomes

H0 : R · θ = q. (34)

Because J [R · θ̂] = R, following from Equation (33), the asymptotic covariance matrix of the estimated parameters given

by the linear restrictions isR ·ACOV(θ̂) ·R> and the equation for the Wald statistic becomes

W =
[
R · θ̂ − q

]>
·
[
R ·ACOV(θ̂) ·R>

]−1
·
[
R · θ̂ − q

]
, (35)

see Greene (2012, p. 528). The number of df corresponds to the number of restrictions, i.e., the number of rows of R.
Moreover, if q = 0, then the equation for the Wald test given the restrictionsR further simplifies to

W =
[
R · θ̂

]>
·
[
R ·ACOV(θ̂) ·R>

]−1
·
[
R · θ̂

]
. (36)

In the rest of this tutorial, we restrict our consideration only to cases in which q = 0.
Up to now, the considerations referred to the Wald test in general. In the following, we apply the Wald test for linear

restriction to the comparison of standardized regression coefficients. To test the hypothesis about standardized regres-

sion coefficients, we need the restriction matrixR, which is set up by the researcher, the vector of standardized param-
eters θ̂S and the asymptotic covariance matrix of the estimated standardized parameters ACOV(θ̂S). The asymptotic

covariance matrix of the standardized estimated parameters ACOV(θ̂S) can be obtained from the asymptotic covari-

ance matrix of the estimated parameters ACOV(θ̂) by using the delta method (Muthén, 2007; see also Greene, 2012,

pp. 1083-1084). For instance, in lavaan there are functions that provide easy access to the required θ̂S andACOV(θ̂S)
so that no calculations by the user are needed.
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In the following, we adopt Equations (38) and (39) for the comparison of standardized regression coefficients. For the

sake of convenience, we define

M :=
[
R ·ACOV(θ̂S) ·R>

]
, (37)

and the expression for Wald test for standardized parameters becomes

W =
[
R · θ̂S − q

]>
·M−1 ·

[
R · θ̂S − q

]
, (38)

or, if q = 0 respectively,

W =
[
R · θ̂S

]>
·M−1 ·

[
R · θ̂S

]
. (39)

B Covariance matrices and variable description
B.1 Covariance matrices for the first and second example
Variable description (OECD, 2009):

η1 Parental occupational status: International socio-economic index of occupational status (HISEI)
η2 Parental education level: Education level of the parents (ISCED)
η3 Home possessions: Summary index of all household items including the number of books at home
η4 Educational resources: Index of items necessary for learning (desk, quiet place, computer, software, calculator, books,
dictionary)

η5 Reading ability: Performance of students in a reading task

η1 η2 η3 η4 η5
η1 226.2577
η2 29.9232 9.0692
η3 4.8812 1.0312 0.8371
η4 1.9878 1.0043 0.2993 0.7084
η5 271.1429 49.5848 20.0337 15.7012 6088.8281

The following covariance matrix contains the rescaled variable Ṽ 3:
η1 η2 η̃3 η4 η5

η1 226.2577
η2 29.9232 9.0692
η̃3 48.8120 10.3120 83.710
η4 1.9878 1.0043 2.993 0.7084
η5 271.1429 49.5848 200.337 15.7012 6088.8281

B.2 Covariance matrix for the third example
Variable description (Schoon & Parsons, 2002, pp. 269-271):

y1 Examination score: Score of the educational achievement at age 16
y2 Highest qualification: Score in the Certificate of Secondary Education at age 16
y3 Job aspiration: Open answer to the question “What do you expect to be your first full-time-job?” answered at age 16
and coded according to a coding scheme

y4 Educational aspiration: Score indicating whether participants want to continue full-time education and obtain a de-
gree

y5 Goldthorpe: Erikson–Goldthorpe Scale, measuring social position based on dimensions of work-setting (being an em-
ployer or employee, performing manual on nonmanual work, the type of relationships between employees and employ-

ers)

y6 RGSC: Standard Occupational Classification of Registrar General’s social class (RGSC)
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y1 y2 y3 y4 y5 y6
y1 263.413
y2 5.996 0.436
y3 2.312 0.067 0.212
y4 7.591 0.213 0.164 0.722
y5 78.740 2.271 1.295 4.125 244.923
y6 6.622 0.190 0.110 0.347 14.648 1.440

Open practices
The Open Material badge was earned because supplementary material(s) are available on the journal’s web site.

Citation
Klopp, E. (2020). A tutorial on testing the equality of standardized regression coefficients in structural equation models

using Wald tests with lavaan. The Quantitative Methods for Psychology, 16(4), 315–333. doi:10.20982/tqmp.16.4.p315
Copyright © 2020, Klopp. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with

these terms.

Received: 19/02/2020∼ Accepted: 08/04/2020

The Quantitative Methods for Psychology 3332

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.16.4.p315
https://osf.io/tvyxz/wiki/
https://www.tqmp.org/RegularArticles/vol16-4/p315/p315.zip
https://dx.doi.org/10.20982/tqmp.16.4.p315

	Mathematical Appendix
	The LISREL all-Y notation
	Standardization formulas
	The Wald test

	Covariance matrices and variable description
	Covariance matrices for the first and second example
	Covariance matrix for the third example


