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Abstract Based on a proposal by Warren and Schroeder (2015), we provide a simple script in
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Introduction
Bollt and Jones (2000) proposed an information-theoretic

Topological Entropy (TE) as a measure of the complexity of

artificial grammars (AGs). Schiff and Katan (2014) demon-

strated that the TE of an AG was highly correlated with

mean percent correct grammaticality judgements over 56

different experiments in the literature involving 10 differ-

ent AGs, despite wide variation in the training and testing

techniques and materials used. The higher the TE or the

complexity of the AG, the lower the percent correct, falling

to chance (50%) with the most complex AG (cf. Van den Bos

& Poletiek, 2008; Van den Bos & Poletiek, 2015). More com-

plex AGs appear to be more difficult to learn, in line with

common intuition. Thus, TE appears to be a robust mea-

sure of the complexity of AGs, and, as such, a potentially

useful tool for exploring the role of complexity in artificial

grammar learning (AGL).

According to Bollt and Jones (2000), the TE, h, of an AG,
g, for which wn is the number of unique strings of length

n, is defined as (cf. Robinson, 1998)

h(g) = lim
n→∞

logewn

n
(1)

Generally, wn increases exponentially as the string length,

n, increases. TE can be interpreted as ameasure of the rate
of that increase (Warren & Schroeder, 2015). It is premised

on the notion that an AG that can produce more unique

items than another AG is thereby in that sense more com-

plex than that other AG. It is computed as (cf. Robinson,

1998)

h(g) = loge(λ1) (2)

for which λ1 is the largest eigenvalue of the smallest, mem-
oryless, N × N topological transition matrix, A (a matrix
consisting of entries of 0 and 1), from the directed graph

of the AG that encodes all of the unique transitions possi-

ble for that AG (larger transition matrices provide no new

information and, thus, will return the same largest eigen-

value).

In its definitional form, TE is difficult to compute (Bollt

& Jones, 2000; Schiff & Katan, 2014; Van den Bos & Poletiek,

2008; Van den Bos & Poletiek, 2015; Warren & Schroeder,

2015). Bollt and Jones (2000) proposed their “lifted ma-

trix” procedure to ease the construction of the transition

matrix somewhat, and Schiff and Katan (2014) provided a

script in Matlab that, along with the AGL StimSelect Matlab

toolbox from Bailey and Pothos (2008), simplifies the pro-

cedure even more. Unfortunately, as discussed by Warren

and Schroeder (2015), and documented in more detail sub-

sequently, the process is still error-prone, resulting in in-

consistent published TE values for the same nominal AGs.

Two problems

The problems appear to be two-fold, although both are re-

lated to the construction of the transition matrix for the
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Figure 1 The directed graph of the artificial grammar from Reber and Allen (1978). The numbered nodes (or states)

bracket transitions to other nodes generating letters or elements of a string. For example, transitioning from node 1 to

node 2, node 2 to node 4, and node 4 to node 6, generates the string “MVT”. Any such string that can be generated in this

way is referred to as a grammatical string; any string that can’t be generated in this way (e.g., “MRXVT”) is referred to as

a nongrammatical string.

grammar. First, there is the difficulty of translating the

grammar directed graph, such as the one depicted in Fig-
ure 1 from Reber and Allen (1978) into the set of transi-

tions fromwhich the transition matrix will be constructed.

As we will demonstrate, this problem appears to be more

one of agreeing and adhering to a consistent set of conven-

tions than any intrinsic set of difficulties. The second prob-

lem concerns the translation of the table of transitions into

a transition matrix proper. For a grammar with k letters
or elements, the “lifted matrix” method suggested by Bollt

and Jones (2000) begins by populating a first-order k × k
single-letter transition matrix (e.g., whether the letter ‘X’ is

followed directly by the letter ‘R’, and so on). If that matrix

does not encode all of the possible transitions of the AG, a

second-order k2 bigram × k2 bigram transition matrix is
populated, and so on until a transition matrix is obtained

that captures every transition of the AG. The matrices be-

come very large and sparse very quickly (with k letters,
the first transition matrix is of order k × k, for k2 cells,
the second k2 × k2, for k4 cells, and so on; fortunately, the

matched rows and columns of the resulting matrix with all

zero entries may be removed having no effect on the com-

putation of the subsequent largest eigenvalue). The prin-

cipal problem here is how one ascertains whether all and

only all of the appropriate transitions have been captured

in the transition matrix for the AG. The Matlab script of

Schiff and Katan (2014) helpfully mechanises much of that

process, but does not, unfortunately, guarantee that either

of the two-fold issues raised here are resolved.

Warren and Schroeder (2015) solved the second prob-

lem in a simple way. They demonstrated that if every tran-

sition of the directed graph of an AG is labelled uniquely

(rather than by the letter or element it generates, as in Bollt

& Jones, 2000), then the natural logarithm of the maximum

eigenvalue of the resulting transition matrix formed from

that coding of the directed graph of the AG is in fact the TE

of the AG as proposed by Bollt and Jones (2000). Warren

and Schroeder (2015) refer to this method of construction

of the transition matrix as the “subscripted element tech-

nique”. Transition matrices formed in this way are typi-
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cally much smaller than those following the lifted matrix

approach of Bollt and Jones (2000). Shown in Listing 1 is

the Warren and Schroeder (2015) technique to compute

the TE of any AG from a set of such unique transitions,

coded as the simple function computeTE in the R pro-
gramming language. Accepting the approach of Warren

and Schroeder (2015) and our simple functional implemen-

tation of the same as a solution to the second problem, we

now focus on the first problem: how to translate a directed

graph of an AG into an agreed-upon list of transitions. In

the process, we present a set of conventions to alleviate the

ambiguity of the transition coding. We assert that the set

of transitions used should be part of the documentation of

any AG in the literature.

We start with the Reber and Allen (1978) AG directed

graph shown in Figure 1. We do so because in part the TE of

this AG is not (much) in dispute, and the AG itself is canon-

ical in the literature. We can use it, however, to exemplify

the common translation problems. According to Warren

and Schroeder (2015), to compute TE of an AGwe need first

to list each of the transitions of the directed graph of the AG

as unique entities. Most of these are simple as they corre-

spond directly to the arcs or arrows through the directed

graph of the AG, and, indeed, correspond to what many re-

fer to as the “rules” of the AG (e.g., Van den Bos & Poletiek,

2008; Van den Bos & Poletiek, 2015). The computation of TE

requires that the transition matrix of the AG be recursive
such that unique strings of any length may be generated.

Most AGs in the psychological literature embody this fea-

ture by virtue of having at least one arc or arrow loop back

to at least one of the earlier nodes. Note, in the directed

graph shown in Figure 1, the transitions node 2 to node 2,

node 3 to node 2, node 4 to node 3, and node 5 to node 5

provide for the needed recursion. However, a few of the

AGs used in the literature do not have any recursive transi-

tions (see, e.g., Kinder & Lotz, 2009, for two examples). To

ensure the required recursion, it has been recommended

as a convention that all transitions that exit the AG be en-

coded as looping back to the start node of the AG (Bollt

& Jones, 2000; Schiff & Katan, 2014; Warren & Schroeder,

2015). For example, for the directed graph shown in Fig-

ure 1, the exit transitions emanating from nodes 4, 5, and

6, would be encoded as transitioning back to node 1.

The computeTE function shown in Listing 1 assumes
that each node is encoded as a 2-digit number (so up to 99

numerical nodes may be encoded), with nodes numbering

less than 10 encoded with a leading “0”.
1
So, the transition

from node 1 to node 2 would be encoded as “0102”. Each

transition code is then followed by a comma and the letter

or element corresponding to that transition, using the un-

derscore character to denote looping back to the first node.

For example, the transition from node 1 to node 2 for the

grammar directed graph AG in Figure 1 would be encoded

as “0102,M”, and the exit transition from the AG of node 4

would be encoded as “0401,_”, capturing the looping back

to the start of the AG. The complete list of of the 13 tran-

sitions that completely encapsulates this AG according to

these conventions may be found in Table 1.

Warren and Schroeder (2015) describe the lifted ma-

trix procedure of Bollt and Jones (2000) to create topolog-

ical transition matrices as both “cumbersome and error

prone” (p. 90), and they provide examples, ironically, of

such errors they found in Bollt and Jones (2000). To take

just one, Bollt and Jones (2000) compute the TE of the Reber

and Allen (1978) AG shown in Figure 1 to be 0.7324, com-

puted as the natural logarithm of the largest eigenvalue

of a 47 × 47 reduced topological transition matrix from
an original 125 × 125 (53) lifted matrix [i.e., in terms of
the Bollt and Jones (2000) procedure, it takes a minimum

of trigram elements to encode every transition of the Re-

ber and Allen (1978) grammar]. According to Warren and

Schroeder (2015), at least four of the transitions included

in the transition matrix of Bollt and Jones (2000) are im-

possible for this AG, and another four legal transitions are

missed entirely. Further details may be found in Appendix

A of Warren and Schroeder (2015). The computed value of

TE for this AG, as derived from the 13×13 topological tran-
sition matrix, obtained with the Warren and Schroeder

(2015) method (and the computeTE function in Listing 1)
is 0.7608.

Although the Matlab script of Schiff and Katan (2014)

appears to reduce errors quite substantially in producing

the topological transitionmatrix from the list of transitions

translated from the directed graph of the AG, it doesn’t cor-

rect for errors in the translation itself. The same is true for

the Warren and Schroeder (2015) procedure. For example,

while commenting on the TE values Van den Bos and Po-

letiek (2008) computed using the lifted matrix procedure

for the Reber (1967), TE = 0.48, and the Reber and Allen

(1978), TE = 1.52, AGs, Warren and Schroeder (2015) noted

that both were in error relative to the values of 0.6931 and

0.7608, respectively, that they had computed using their

procedure. Unfortunately, although our computations us-

ing the computeTE function and those of Schiff and Katan
(2014) agree with TE value for the Reber and Allen (1978)

AG, both groups agree that the TE for the Reber (1967)

AG is 0.602, not the value of 0.6931 reported by Warren
and Schroeder (2015). Given that we used the procedure

1
The codes of the nodes do not need to be numerical; they can be any two-character code of numbers or letters (or any ASCII characters) or any

combination of them (e.g. ‘C7’), increasing the number of nodes substantially. The numerical codes were used here because most AGs in the literature

use numbered nodes.
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Listing 1 The function computeTE in the R programming language to compute the topological entropy (TE) of AGs of
Bollt and Jones (2000). It takes as input a vector of comma-delimited coded transitions of an AG and returns a list of three

objects: the topological entropy (TE) and the transition matrix of that AG (tranMat), and the largest eigenvalue of that

transition matrix (eig1). For example, the function call in R of t <- computeTE(RebAll1978)will return the TE of
the grammar in t$TE and the transition matrix in t$tranMat.

computeTE <- function(grammar){
# computeTE
# Based on the suggestion of Warren & Schroeder (2015)

# John R. Vokey & Randall K. Jamieson, June 27, 2016

# sample coded grammar from Reber & Allen (1978):

# RebAll1978 <- c("0102,M","0103,V","0202,T","0204,V",
# "0305,X","0302,X","0403,R","0406,T",
# "0506,M","0505,R","0401,_","0501,_",
# "0601,_")
#’_’ means return to the start node of the grammar

# computeTE(RebAll1978) should return a TE of .761 for
# the sample grammar

n <- length(grammar) # assumes grammar is n lines of text
tranMat <- matrix(0,n,n) # create the transition matrix
for (theLine in 1:n){
tranMat[theLine,] <- tranMat[theLine,]+

(substr(grammar[theLine],3,4)== substr(grammar,1,2))
}
e <- Re(eigen(tranMat,only.values=TRUE)$values[1])
return(list(TE=log(e),eig1=e,tranMat=tranMat))

}

of Warren and Schroeder (2015) to generate the transition

matrix from the transition table from the translation of the

directed graph of the Reber (1967) AG, the difference must

be in the translation of the AG to the transition table—and

it is. As shown in Table 1 for the Reber (1967) AG, we

translated the directed graph of the AG to have 11 tran-

sitions, including two ways to exit with an “S” (“0406,S”

and “0506,S”). The only way we can compute the value re-

ported by Warren and Schroeder (2015) is to translate the

two paths terminating in an “S” by combining them into

one path that also loops back to the start node (“0501,S”).

Two conventions

To do so is to violate two conventions of the translation that

to this point have been implicit. As our computations of the

TE values for various AGs (mostly) otherwise match those

of both Warren and Schroeder (2015) and Schiff and Katan

(2014), it would appear that all three groups translate the

directed graphs of these AGs to transition tables in much

the sameway, including the use of the two conventions that

we will now make explicit.

1. Any transition from a node that adds a symbol to the

output string must terminate on another node that is

not the initial node. If no such other node exists in the
directed graph of the AG, one must be added.

2. Any transition from a node to the initial node must not
add a functional symbol to the output string (the under-

score used here is simply a flag that no symbol is to be

added to the output string).

Both of these conventions are exemplified in each of the

translations of the AGs shown in Tables 1 and 2. These

conventions are just that, conventions; we could just as

easily agree to hold as conventions their exact opposites,

including the convention to loop back to node 1 as most

AGs in the literature already exhibit some degree of the re-

quired recursion. The point is that we need agreed-upon

conventions to achieve consistent computation of TE val-

ues. Our computations of TE match those of Schiff and
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Katan (2014) for each of the 10 AGs they used, except one.

For the Conway and Christiansen (2006) AG, we compute a

TE of 0.6562, and can match the TE of 0.716 computed by

Schiff and Katan (2014) only by violating both conventions.

Instead of the 12 transitions for this AG shown in Table 1

terminating in the last two as “0407,M” and “0701,_”, we

can get the TE of Schiff and Katan (2014) only by collapsing

these two transitions into one: “0401,M”.

Shown in Table 2 are the transition tables as per the

conventions and our computed TE values for the 10 AGs

used by Van den Bos and Poletiek (2008). We were able

to match only two (AG A and AG E) of the TE values they

reported, and the differences for some of the non-matches

were often substantial: for AG J, for example, Van den Bos

and Poletiek (2008) reported a TE = 2.5761, whereas we

computed it as 0.8587. Warren and Schroeder (2015) com-

puted TEs for both AG A and AG B, and matched neither

of the values computed by either Van den Bos and Poletiek

(2008) or us. We were able to reproduce the two values

computed by Warren and Schroeder (2015) by, again, vi-

olating the two conventions. Van den Bos and Poletiek

(2015) used AG E and AG D as, respectively, their simple

and complex AGs to investigate the role of complexity (TE)

in various AGL tasks. By their calculations, the simple

AG E had a TE of 0.7131, and the complex AG D had a

TE of 2.0496. However, by our transition tables and cal-

culations, although we concur with the TE computed for

AG E, we found a substantially smaller TE of 0.6823 for

the allegedly more complex AG D. That is, by our calcu-

lations, the labels of the two AGs are reversed, and they

differ very little in complexity. However, these differences

are now moot. After contacting Van den Bos to point out

these errors, Van den Bos (personal communication, May

10, 2019) noted that the transition tables used by Van den

Bos and Poletiek (2008) contained unnecessary transitions;

Van den Bos (personal communication, May 10, 2019) elim-

inated these transitions, recomputed the TE values for the

10 grammars of Van den Bos and Poletiek (2008), and now

concurs with the TE values shown in Table 2 (Van den Bos

& Poletiek, 2019).

Conclusion
Topological Entropy of Bollt and Jones (2000) provides for

an overall measure of AG complexity that is substantially

and robustly correlated with AGL performance (Schiff &

Katan, 2014). On that basis, it could prove to be an

important and powerful tool in the study of the role of

complexity in AGL. Unfortunately, its computation to this

point has been “cumbersome and error-prone” (Warren &

Schroeder, 2015). With the development of the much sim-

pler procedure of Warren and Schroeder (2015), our ren-

dering of it as a simple function in R, and the adoption of

a few conventions for the translation of the AG directed

graphs to transition tables (which should make it easier to

catch our errors), these problems should be ameliorated.

We recommend that the conventions used and the transi-

tion tables of the directed graphs of the AGs created to pro-

duce the transition matrices be part of the documentation

of any AG in the literature.
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Table 1 Transition tables for each of the 10 AGs from Schiff and Katan (2014) and their corresponding TE values [in

square brackets] as computed from the computeTE function in Figure 1.

Reber (1969) [0.560] Mathews et al.

(1989) [0.578]

Reber (1967) [0.602] Skosnik et al. (2002)

[0.603]

Brooks and Vokey

(1991) [0.856]

1 0102, W 1 0102, F 1 0102, T 1 0102, P 1 0102, M

2 0105, N 2 0103, D 2 0103, V 2 0104, X 2 0103, V

3 0203, S 3 0302, J 3 0202, P 3 0204, J 3 0205, V

4 0206, S 4 0204, D 4 0303, X 4 0203, H 4 0207, X

5 0306, S 5 0304, H 5 0204, T 5 0405, T 5 0404, T

6 0405, N 6 0405, Q 6 0305, V 6 0406, V 6 0402, M

7 0507, P 7 0505, F 7 0403, X 7 0602, T 7 0403, V

8 0407, P 8 0406, M 8 0406, S 8 0306, P 8 0306, X

9 0510, N 9 0606, Q 9 0504, P 9 0605, H 9 0307, M

10 0208, W 10 0507, H 10 0506, S 10 0503, X 10 0507, X

11 0608, W 11 0608, J 11 0601, _ 11 0307, J 11 0508, R

12 0710, N 12 0706, H 12 0507,V 12 0704, R

13 0809, S 13 0807, M 13 0701,_ 13 0708, R

14 0811, P 14 0709, F 14 0607, V

15 0904, P 15 0809, J 15 0609, T

16 0907, P 16 0901, _ 16 0709, T

17 0910, N 17 0808, V

18 1011, P 18 0801, _

19 1109, S 19 0810, M

20 1012, Z 20 0909, R

21 1112, Z 21 0901, _

22 1201, _ 22 0910, X

23 1001,_

Meulemans and Van

der Linden (1997)

[0.686]

Conway and Chris-

tiansen (2006)

[0.716]

Knowlton and

Squire (1996) [0.740]

Reber and Allen

(1978) [0.761]

Witt and Vinter

(2012) [0.916]

1 0102, F 1 0102, X 1 0101, X 1 0102, M 1 0102, B

2 0103, T 2 0103, V 2 0201, T 2 0103, V 2 0103, R

3 0204, V 3 0202, T 3 0103, V 3 0202, T 3 0204, Y

4 0302, M 4 0303, R 4 0302, J 4 0204, V 4 0404, Y

5 0304, X 5 0203, M 5 0304, X 5 0305, X 5 0405, G

6 0405, F 6 0204, X 6 0305, T 6 0302, X 6 0305, G

7 0406, R 7 0305, V 7 0404, J 7 0403, R 7 0505, G

8 0505, R 8 0502, R 8 0504, V 8 0406, T 8 0504, Y

9 0606, M 9 0306, T 9 0201, _ 9 0506, M 9 0406, B

10 0506, T 10 0604, R 10 0401, _ 10 0505, R 10 0507, R

11 0507, T 11 0407, M 11 0501, _ 11 0401, _ 11 0708, T

12 0608, X 12 0701, _ 12 0501, _ 12 0608, T

13 0706, R 13 0601, _ 13 0401, _

14 0807, V 14 0501, _

15 0701, _ 15 0601, _

16 0801, _ 16 0701, _

17 0801, _
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Table 2 Transition tables for each of the 10 AGs from Van den Bos and Poletiek (2008) and their corresponding TE values

[in square brackets] as computed from the computeTE function in Figure 1.

AG A [0.5543] AG B [0.6019] AG C [0.6753] AG D [0.6823] AG E [0.7131]

1 0102, Z 1 0102, Z 1 0102, Z 1 0102, Z 1 0102, Z

2 0103, N 2 0103, N 2 0103, N 2 0103, N 2 0103, N

3 0204, T 3 0204, T 3 0204, T 3 0204, T 3 0204, T

4 0306, R 4 0306, R 4 0306, R 4 0306, R 4 0306, R

5 0205, Q 5 0205, Q 5 0205, Q 5 0205, Q 5 0205, Q

6 0305, M 6 0305, M 6 0305, M 6 0305, M 6 0305, M

7 0407, P 7 0407, P 7 0407, P 7 0402, N 7 0407, P

8 0507, S 8 0507, S 8 0507, S 8 0407, P 8 0507, S

9 0508, W 9 0508, W 9 0508, W 9 0507, S 9 0508, W

10 0608, X 10 0603, J 10 0608, X 10 0508, W 10 0608, X

11 0709, R 11 0608, X 11 0702, W 11 0608, X 11 0709, R

12 0710, Q 12 0709, R 12 0709, R 12 0702, W 12 0710, Q

13 0810, M 13 0710, Q 13 0710, Q 13 0709, R 13 0810, M

14 0811, T 14 0810, M 14 0803, X 14 0710, Q 14 0811, T

15 0904, Z 15 0811, T 15 0810, M 15 0810, M 15 0904, Z

16 1005, J 16 0904, Z 16 0811, T 16 0811, T 16 0907, S

17 0912, J 17 1005, J 17 0904, Z 17 0904, Z 17 1005, J

18 1106, N 18 0912, J 18 1005, J 18 1005, J 18 1008, P

19 1012, N 19 1106, N 19 0912, J 19 0912, J 19 0912, J

20 1112, Z 20 1012, N 20 1106, N 20 1106, N 20 1106, N

21 1201, _ 21 1112, Z 21 1012, N 21 1012, N 21 1108, J

22 1201, _ 22 1112, Z 22 1112, Z 22 1012, N

23 1201, _ 23 1201, _ 23 1112, Z

24 1201,_

AG F [0.7465] AG G [0.7586] AG H [0.8021] AG I [0.8449] AG J [0.8587]

1 0102, Z 1 0102, Z 1 0102, Z 1 0102, Z 1 0102, Z

2 0103, N 2 0103, N 2 0103, N 2 0103, N 2 0103, N

3 0204, T 3 0204, T 3 0204, T 3 0204, T 3 0204, T

4 0306, R 4 0306, R 4 0306, R 4 0306, R 4 0306, R

5 0205, Q 5 0205, Q 5 0205, Q 5 0205, Q 5 0205, Q

6 0305, M 6 0305, M 6 0305, M 6 0305, M 6 0305, M

7 0402, N 7 0407, P 7 0402, N 7 0407, P 7 0402, N

8 0407, P 8 0507, S 8 0407, P 8 0507, S 8 0407, P

9 0507, S 9 0508, W 9 0507, S 9 0508, W 9 0507, S

10 0508, W 10 0603, J 10 0508, W 10 0603, J 10 0508, W

11 0603, J 11 0608, X 11 0603, J 11 0608, X 11 0603, J

12 0608, X 12 0702, W 12 0608, X 12 0702, W 12 0608, X

13 0702, W 13 0709, R 13 0702, W 13 0709, R 13 0702, W

14 0709, R 14 0710, Q 14 0709, R 14 0710, Q 14 0709, R

15 0710, Q 15 0803, X 15 0710, Q 15 0803, X 15 0710, Q

16 0803, X 16 0810, M 16 0803, N 16 0810, M 16 0803, X

17 0810, M 17 0811, T 17 0810, M 17 0811, T 17 0810, M

18 0811, T 18 0904, Z 18 0811, T 18 0904, Z 18 0811, T

19 0904, Z 19 1005, J 19 0904, Z 19 0907, S 19 0904, Z

20 1005, J 20 0912, J 20 1005, J 20 1005, J 20 0907, S

21 0912, J 21 1106, N 21 1008, P 21 1008, P 21 1005, J

22 1106, N 22 1108, J 22 0912, J 22 0912, J 22 1008, P

23 1012, N 23 1012, N 23 1106, N 23 1106, N 23 0912, J

24 1112, Z 24 1112, Z 24 1012, N 24 1108, J 24 1106, N

25 1201, _ 25 1201, _ 25 1112, Z 25 1012, N 25 1108, J

26 1201, _ 26 1112, Z 26 1012, N

27 1201, _ 27 1112, Z

28 1201, _
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