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Abstract The purpose of this article is to demonstrate how to use diagnostic classification models

(DCMs) in psychological rating scales and reflect on howDCMs differ from classical test theory (CTT)

and item response theory (IRT) scoring approaches in terms of assumptions and results. DCMs, a

viral topic in today’s psychometric world, has thrived in educational assessment. However, many

researchers and practitioners are uncertain how DCMs could be used in psychological rating scales

andwhat information they could provide. This article presents an example of applying CTT, IRT, and

DCM scoring approaches with data from 10,000 respondents on an operational personality rating

scale.
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Introduction

In the 1980s, Haertel introduced a restricted latent class

model to classify individuals with respect to their posses-

sion of a set of skills or attributes (Haertel, 1989). The ma-

jor assumption behind that model is that the latent traits

are treated as categorical rather than continuous vari-

ables. Similar model developments can be found in even

earlier literature such as Dayton and Macready (1976) and

Macready and Dayton (1977). However, Haertel’s model is

commonly recognized as the first model of its kind, which

was later referred to as the family of cognitive diagnosis

models (e.g. Templin & Henson, 2006) or diagnostic clas-

sification models (DCMs; e.g. Rupp, Templin, & Henson,

2010). Later, Haertel’s model was named the “determin-

istic inputs, noisy, and gate” (DINA) model in Junker and

Sijtsma (2001) and remained one of the most widely dis-

cussed models in the family of DCMs. Since then, more

than 30 DCMs have been introduced, most of which were

built to analyze data in educational assessment. However,

DCMs, aiming to classify individuals into latent classes,

are also apparent candidates for many psychological rat-

ing scales that aim to assign individuals with attributes.

For example, the arguably most famous personality rating

scale: Myers-Briggs Type Indicator (MBTI; Myers, McCaul-

ley, Quenk, & Hammer, 2003) aims to classify each indi-

vidual with one of 16 possible personality types. Those 16

personality types are all possible combinations of four bi-

nary latent traits: introversion/extroversion, sensing/intu-

ition, feeling/thinking, perceiving/judging. However, little

is known regarding how to use DCMs in such tests and how

DCM results are different from results of traditional scor-

ing approaches such as classical test theory (CTT) and item

response theory (IRT).

This article discusses how to use DCMs in psycholog-

ical rating scales and provides an empirical example of

using DCM, CTT, and IRT to score the same dataset. We

first review the fundamental characteristics of DCMs, and

DCMs that are possible for scoring item data from psycho-

logical rating scales. Next, we describe an operational test

data and discuss the results from three psychometric ap-

proaches. Finally, we point out some caveats of using DCMs

in psychological rating scales. Note that the purpose of this

article is not to compare the mathematical differences be-

tween psychometric approaches. Instead, the focus is on

how to use DCMs in psychological assessment empirically

and discuss what information they can provide. Previously

in this journal, George and Robitzsch (2015) provided a tu-
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torial on how to use a R package to fit DCMs to correct/in-

correct responses in educational settings. Different from

that tutorial, the current article focuses on DCMs for psy-

chological rating scales and comparing between informa-

tion that different scoring approaches provide.

Latent Variables in DCMs

DCMs refer to a class of multidimensional models express-

ing the relationship between item responses and multi-

ple categorical latent traits. One of the most commonly

used examples in DCM introductory materials is an ele-

mentary math test where the goal is to decide whether

students have mastered four skills: addition, subtraction,

multiplication, and division (e.g. Rupp et al., 2010). If the

test is scored with the CTT approach, each student gets a

total summated score (e.g., an 85 out of 100) and an ob-

served score for each of the four skills. If the test is scored

with a multidimensional IRT model, each student gets an

estimated latent score (e.g., -0.36) for each skill. Using a

DCM, the “score” for each student is an estimated profile

of mastery/non-mastery status of each skill. This poses a

very first question of the legitimacy of using DCMs in ed-

ucational and psychological tests: are latent traits binary/-

categorical? Since the concept of “latent traits” is an im-

material construct, a more accurate question might be: is

that a good idea we consider latent traits as binary/categor-

ical variables? A major advantage of doing so is that one

could trade the accuracy of locating examinees on a single

trait continuum with that of roughly grouping them based

on their mastery status of multiple latent traits. Obtaining

the probability that an individual masters multiple latent

traits is intuitively more informative than obtaining infor-

mation on only one trait. In addition, since the reliability

is conceptualized as the accuracy of group classifications,

DCMs were demonstrated to have higher reliability than

IRT models with similar test lengths (e.g. Templin & Brad-

shaw, 2013).

Despite its clear advantages in providing multidimen-

sional classifications, using DCMs tomodel the relationship

between item responses and categorical traits could pose

potential problems. When multiple latent traits are speci-

fied in one test, it is not uncommon to see that those traits

are highly correlated. As a result, it may be hard to extract

multidimensional information from a possibly unidimen-

sional dataset. For example, Liu, Huggins-Manley, and Bu-

lut (2018) fit a general DCM to three datasets where the cor-

relation between traits were around .80-.90. The bar chart

of examinees’ latent trait profiles in each dataset display

a “U-shape” curve where most examinees were classified

as none-masters or all-masters at the two ends while few

examinees were classified into those partial mastery pro-

files. In such cases, even if the model fits the data well,

most examinees are essentially categorized into one of the

two groups (i.e., none-masters and all-masters), providing

little useful information. Besides the collinearity issue, an-

other potential problem of DCMs is the large number of pa-

rameters when there is a complex item-trait loading struc-

ture. A simple loading structure means that an item only

measures one latent trait, whereas a complex structure

means that an item measures more than one trait. For

a test measuring four latent traits, an item can be associ-

ated with as little as two parameters and as much as 16

parameters. Such a large number of parameters could in-

duce problems of model under-identification (e.g. Gu & Xu,

2018; Xu & Zhang, 2016) and overfitting (e.g. von Davier,

2018). For example, Templin and Bradshaw (2014) showed

that a two-parameter IRT model fit a dataset better with

a smaller number of parameters comparing to a general

DCM with much more parameters.

The discussion of whether latent traits should be mod-

eled under DCMs as categorical variables could continue,

but there is probably not a definite answer. Although

DCMs are going viral these days, it is necessary to see the

fact that DCMs can fulfill certain scoring purposes as an al-

ternative psychometric approach, but they are not “better”

comparing to IRT or CTT approaches. Now let us introduce

DCMs that are theoretically available for scoring psycho-

logical rating scales.

DCMs for Psychological Rating Scales

Before implementing a DCM, we need to (1) specify latent

traits, and (2) specify which items measure which traits.

For k = 1, 2, . . . ,K latent traits (also known as attributes),
there are 2K possible attribute possession patterns (also

called attribute profiles), where each attribute profile can
be represented by a vector ααα = (α1, α2, . . . , αK). For
example, there are four attributes in the MBTI (i.e., K =
4): (1) extroversion/introversion, (2) sensing/intuition, (3)
thinking/feeling, and (4) judging/perceiving. These four at-

tributes form the 16 personality types (24 = 16). Each at-
tribute takes on a value of 0 or 1 representing the two op-

posite conditions of that attribute. For example, α1 = 0
for extroversion and α1 = 1 for introversion, following
the presentation sequence in the previous sentence. With

such specification, an examinee with ααα = (1, 0, 0, 1) is as-
signed with the “ISTP” type. The 0s and 1s can be arbi-

trarily assigned to either condition since the possession of

one condition is the non-possession of the other. The infor-

mation of which items measure which attributes are con-

tained in an item-by-attribute incidence matrix called a Q-

matrix (Tatsuoka, 1983, 4). In a Q-matrix, an entry qi,k = 1
when item i measures attribute k, and qi,k = 0 otherwise.
To model the relationship between examinees’ at-

tribute possession and their item responses, DCMs for both
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dichotomous and polytomous items have been developed

in the literature. Both item types are common in psycho-

logical assessments. For example, an item could ask exam-

inees to choose whether they prefer to work (1) in a private

setting or (2) in a group setting. Examinees select option 1

and 2, assigned with a score of 0 and 1 on this item, respec-

tively. On the other hand, an item could also ask whether

examinees strongly disagree, disagree, agree, or strongly

agree with a statement: “I prefer working in a group set-

ting”. Such items are commonly scored in a polytomous

fashion.

For dichotomous items, the log-linear cognitive diagno-

sis model (LCDM; Henson, Templin, & Willse, 2009) has be-

come the boilerplate model over the years because it is the

most general form of DCMs, accommodating many earlier

DCMs. The LCDM defines the probability of individuals in

attribute profile c scoring a “1” on item i as

P (Xi = 1|αααc) =
exp

[
λ0,i + λTi h (αααc,qi)

]
1 + exp

[
λ0,i + λTi h (αααc,qi)

] , (1)

where λ0,i is the intercept associated with item i, and

λTi h (αααc,qi) index all the main effects and higher-order
interaction effects of the k = 1, . . .K attributes associated
with item i, which can be expressed as

K∑
k=1

λ1,i,k (αc,kqi,k)+

K−1∑
k=1

K∑
k′=k+1

λ2,i,k,k′ (αc,kαc,k′qi,kqi,k′)+

. . .

For polytomous items, the nominal response diagnostic

model (NRDM; Templin, Henson, Rupp, Jang, & Ahmed,

2008) is themost general model. Letm = 0, 1, 2, . . . ,M−1
index response options. The NRDM defines the probability

of individuals in attribute profile c selecting response op-

tion m on item i as

P (Xi = m|αααc) =
exp

[
λ0,i,m + λTi,mh (αααc,qi)

]∑M−1
m=0 exp

[
λ0,i,m + λTi,mh (αααc,qi)

] ,
(2)

where λ0,i,m is the intercept parameter associatedwith op-
tion m on item i, and λTi,mh (αααc,qi) index all the main ef-
fects and higher-order interaction effects of the k attributes

associated with optionm on item i, which can be expressed

as

K∑
k=1

λ1,i,k,m (αc,kqi,k)+

K−1∑
k=1

K∑
k′=k+1

λ2,i,k,k′,m (αc,kαc,k′qi,kqi,k′)+

. . .

Equations 1 and 2 demonstrate the same approach of

splitting the effects of attributes on items into three parts:

the intercept, main effects and interaction effects. The

main difference is that a subscript m is added to all the ef-

fects in Equation 2. In other words, instead of splitting the

effects of attributes at the item level, Equation 2models the

effects of attributes for each response option on each item.

When there are only two response options (i.e.,m = 0, 1),
Equation 2 becomes Equation 1.

In many current psychological tests, each item only

measures one attribute (i.e., items have a simple loading

structure). This means that each item in the LCDM and

each response option in the NRDM has only two parame-

ters: an intercept parameter and a main effect parameter

associated with the related attribute. All the higher-order

interactions in both models are fixed to 0. Without interac-

tions, most dichotomous DCMs are mathematically equiva-

lent to the LCDM. We can rewrite the LCDM in Equation 1

for simple-structure items as

P (Xi = 1|αααc) =
exp [λ0,i + λ1,i,k (αc,kqi,k)]

1 + exp [λ0,i + λ1,i,k (αc,kqi,k)]
, (3)

where λ1,i,k is the main effect associated with attribute
k on item i, and αc,k is a binary indicator representing

whether examinees in attribute profile c possess attribute

k (i.e., αc,k = 0 or 1). Similarly, we can rewrite the NRDM
in Equation 2 for simple-structure items as

P (Xi = m|αααc) =
exp [λ0,i,m + λ1,i,k,m (αc,kqi,k)]∑M−1

m=0 exp [λ0,i,m + λ1,i,k,m (αc,kqi,k)]
,

(4)

where λ1,i,k,m is themain effect associatedwith attribute k
on response option m of item i. Using the taxonomy of IRT

polytomous models, the NRDM adopts a “divide-by-total”

approach (Thissen & Steinberg, 1986) where the probabil-

ity of selecting a particular response option is modeled as

the effect of a particular response option divided by the

sum of such effects of each response option. For instruc-

tional purposes, let us break down the summation symbol

on the denominator of Equation 4. On item i with five re-

sponse options (M = 5): 0, 1, 2, 3, and 4, the probability of
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selecting response option 3 is expressed as

P (Xi = 3|αααc) =
exp[λ0,i,3 + λ1,i,k,3(αc,kqi,k)]

exp[λ0,i,0 + λ1,i,k,0(αc,kqi,k)]+
exp[λ0,i,1 + λ1,i,k,1(αc,kqi,k)]+
exp[λ0,i,2 + λ1,i,k,2(αc,kqi,k)]+
exp[λ0,i,3 + λ1,i,k,3(αc,kqi,k)]+
exp[λ0,i,4 + λ1,i,k,4(αc,kqi,k)]

. (5)

If a test has 40 such items, we need to estimate 40

(items) × 5 (response options) × 2 (intercept and main ef-
fect) = 400 parameters under the NRDM, which is a lot. To

address that problem, (Liu & Jiang, 2018, 2019) proposed

three smaller DCMs for ordinal item responses: the rating

scale diagnostic model (RSDM), the ordinal response diag-

nostic model (ORDM), and the modified ordinal response

diagnostic model (MORDM). These three models are con-

strained versions of the NRDMwith fewer parameters that

need to be freely estimated.

The RSDM reduces the number of parameters through

constraining the parameters of the same response option

across items measuring the same attribute to be the same.

The relationship between the NRDM and the RSDM in the

DCM context is analogous to that between the nominal

response model (NRM; Bock, 1972) and the rating scale

model (RSM; Andrich, 1978) in the IRT context. For simple-

structure items, the original RSDM can be simplified as:

P (Xi = m|αααc) =
exp [λ0,i + λ0,m,kqi,k + (λ1,i + λ1,m,kqi,k)αc,kqi,k]∑M−1

m=0 exp [λ0,i + λ0,m,kqi,k + (λ1,i + λ1,m,kqi,k)αc,kqi,k]
. (6)

Comparing Equation 6 to Equation 4 shows that the in-

tercept parameter for response optionm on item i: λ0,i,m is
broken down into a parameter shared across all response

options of item i: λ0,i and a parameter for response option
m shared across all items measuring attribute k: λ0,m,k.

The same breakdown also applies to the main effect pa-

rameters. As we did with the NRDM in Equation 5, we

rewrite the RSDM in Equation 6 with respect to the prob-

ability of selecting response option 3 on an item with five

response options as:

P (Xi = 3|αααc) =
exp [λ0,i + λ0,3,kqi,k + (λ1,i + λ1,3,kqi,k)αc,kqi,k]

exp [λ0,i + λ0,0,kqi,k + (λ1,i + λ1,0,kqi,k)αc,kqi,k] +
exp [λ0,i + λ0,1,kqi,k + (λ1,i + λ1,1,kqi,k)αc,kqi,k] +
exp [λ0,i + λ0,2,kqi,k + (λ1,i + λ1,2,kqi,k)αc,kqi,k] +
exp [λ0,i + λ0,3,kqi,k + (λ1,i + λ1,3,kqi,k)αc,kqi,k] +
exp [λ0,i + λ0,4,kqi,k + (λ1,i + λ1,4,kqi,k)αc,kqi,k]

. (7)

If the above 40-item example is about measuring four

attributes, we only need to estimate [40 (item-level param-

eters) + 4 (attributes)× 5(response options)]× 2 (intercept
and main effect) =120 parameters under the RSDM, a sig-

nificant reduction from 400.

Different from the RSDM, the ORDM constrains only the

main effect parameters in the NRDM, through an approach

analogous to constraining the NRM to arrive at the gener-

alized partial credit model (GPCM; Muraki, 1992) in the IRT

context. For simple-structure items, the original ORDM can

be simplified as:

P (Xi = m|αααc) =
exp

∑m
m=0 [λ0,i,m + λ1,i,k (αc,kqi,k)]∑M−1

s exp
∑s

m=0 [λ0,i,m + λ1,i,k (αc,kqi,k)]
, (8)
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Comparing Equation 8 to the simplified NRDM in Equa-

tion 4 shows that the main effect parameter for response

option m on item i: λ1,i,k,m loses subscript m and it is re-
placed by (m + 1) × λ1,i,k. As we did with the NRDM and

the RSDM, we rewrite the ORDM in Equation 8 with respect

to the probability of selecting response option 3 on an item

with five response options as:

P (Xi = 3|αc) =
exp [λ0,i,0 + λ0,i,1 + λ0,i,2 + λ0,i,3 + 4× λ1,i,k(αc,kqi,k)]

exp [λ0,i,0 + λ1,i,k(αc,kqi,k)] +
exp [λ0,i,0 + λ0,i,1 + 2× λ1,i,k(αc,kqi,k)] +

exp [λ0,i,0 + λ0,i,1 + λ0,i,2 + 3× λ1,i,k(αc,kqi,k)] +
exp [λ0,i,0 + λ0,i,1 + λ0,i,2 + λ0,i,3 + 4× λ1,i,k(αc,kqi,k)] +

exp [λ0,i,0 + λ0,i,1 + λ0,i,2 + λ0,i,3 + λ0,i,4 + 5× λ1,i,k(αc,kqi,k)]

. (9)

For the 40-item example discussed above, we only need

to estimate [40 (items/intercept) × 5 (response options/in-
tercept)] + 40 (main effect) = 240 parameters under the

ORDM.

The MORDM is a combination of the RSDM and the

ORDM, requiring the smallest number of parameters

among all current polytomous DCMs. For simple-structure

items, the original MORDM can be simplified as:

P (Xi = m|αααc) =
exp

∑m
m=0 [λ0,i + λ0,m,kqi,k + λ1,i,k (αc,kqi,k)]∑M−1

s exp
∑s

m=0 [λ0,i + λ0,m,kqi,k + λ1,i,k (αc,kqi,k)]
. (10)

Comparing Equation 10 to the simplified ORDM in

Equation 8 shows that the intercept parameter for re-

sponse option m on item i: λ0,i,m is broken down to λ0,i
and λ0,m,k , just as what we did in Equation 6 with the

RSDM. As we did with the NRDM, RSDM and the ORDM,

we rewrite the MORDM in Equation 10 with respect to the

probability of selecting response option 3 on an item with

five response options as:

P (Xi = 3|αααc) =
exp{λ0,0,kqi,k + λ0,1,kqi,k + λ0,2,kqi,k + λ0,3,kqi,k + 4× [λ0,i + λ1,i,k(αc,kqi,k)]}

exp [λ0,0,kqi,k + λ0,i + λ1,i,k(αc,kqi,k)] +
exp{λ0,0,kqi,k + λ0,1,kqi,k + 2× [λ0,i + λ1,i,k(αc,kqi,k)]}+

exp{λ0,0,kqi,k + λ0,1,kqi,k + λ0,2,kqi,k + 3× [λ0,i + λ1,i,k(αc,kqi,k)]}+
exp{λ0,0,kqi,k + λ0,1,kqi,k + λ0,2,kqi,k + λ0,3,kqi,k + 4× [λ0,i + λ1,i,k(αc,kqi,k)]}+

exp{λ0,0,kqi,k + λ0,1,kqi,k + λ0,2,kqi,k + λ0,3,kqi,k + λ0,4,kqi,k + 5× [λ0,i + λ1,i,k(αc,kqi,k)]}

. (11)

For the 40-item example discussed above, we only need

to estimate 40 (items) × 2 (item-level intercept and main
effect) + 4 (attributes/intercept) × 5 (response options/in-
tercept) = 100 parameters under the MORDM.

To sum up, the RSDM, the ORDM, and the MORDM are

constrained versions of the NRDM. Although it is tempting

to figure out which model is better, it would be reckless to

provide a blanket statement. Instead, one could compare

model fit indices for a particular dataset and choose a par-

simonious model that fits adequately. In addition to the

four polytomous DCMs, other polytomous DCMs have been

proposed in the literature. A brief review of those models
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Table 1 The Q-matrix for the 16Personalities Test

α1 α2 α3 α4 α5

Item (Mind) (Energy) (Nature) (Tactics) (Identity)

1 1 0 0 0 0

2 1 0 0 0 0

. . .

12 1 0 0 0 0

13 0 1 0 0 0

14 0 1 0 0 0

. . .

24 0 1 0 0 0

25 0 0 1 0 0

26 0 0 1 0 0

. . .

36 0 0 1 0 0

37 0 0 0 1 0

38 0 0 0 1 0

. . .

48 0 0 0 1 0

49 0 0 0 0 1

50 0 0 0 0 1

. . .

60 0 0 0 0 1

can be found in Liu and Jiang (2018, 2019).

To implement DCMs, one could use Bayesian software

programs such as JAGS (Plummer, 2003) or Stan (Carpen-

ter et al., 2017) and program from scratch. One could also

use non-Bayesian-specific programs such as the “CDM” R

package (Robitzsch, Kiefer, George, & Uenlue, 2019), the

“GDINA” R package (Ma & de la Torre, 2019), FlexMIRT (Cai,

2017), Latent Gold (Vermunt & Magidson, 2016), and Mplus

(Muthén & Muthén, 2019). Among the five, the first two R

packages are free, require light programming, and provide

informative outputs in an easy way. A review of those two

packages can be found in Rupp and van Rijn (2018).

Scoring an Operational Psychological Test: CTT, IRT,
and DCM

In this section, we examine how DCM results are different

from results of CTT and IRT scoring approaches. To do that,

we apply the three approaches to an operational personal-

ity test dataset.

The data used in this study is provided by

NERIS Analytics Limited in London, United King-

dom. It contains N = 10, 000 examinees’ item re-

sponses on a personality test called “16Personalities”

(https://www.16personalities.com/). The theoretical frame-

work behind this test is the “Big five factor model” (also

known as the “OCEAN” model; Rothmann & Coetzer, 2003)

where individuals are characterized according to five fac-

tors: openness to experience, conscientiousness, extraver-

sion, agreeableness, and neuroticism (Goldberg, 1993).

Those five factors are described as five binary attributes

in 16Personalities: mind (extroverted/introverted), en-

ergy (observant/intuitive), nature (thinking/feeling), tac-

tics (judging/prospecting) and identity (assertive/turbu-

lent). Details about the five attributes can be found at

https://www.16personalities.com/articles/our-theory.

In order to measure those five attributes, the test con-

sists of 60 items where each attribute is measured inde-

pendently by 12 items. The item-attribute relationship is

specified in a 60-by-5 Q-matrix displayed in Table 1. The

1s and 0s in Table 1 are assigned following the sequence of

the two conditions of each attribute mentioned in the para-

graph above. For example, α1 = 1 and 0 represent “ex-
troverted” and “introverted”, respectively. Each item has

seven response options ranging from “disagree” to “agree”

which represent the degree that the respondent endorses

the item stem.

Since model comparison with DCMs is not the inter-

est of this study, we only fit one model: the NRDM - the

most general polytomous DCM to the dataset. In practice,

one could fit more than one model (e.g., the RSDM and the

ORDM) and select a final candidate based on model fit in-

dices and the principle of parsimony. For CTT, we com-

puted the summated scores for each attribute and classi-

fied examinees based on the original test design. For IRT,
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Figure 1 Distributions of examinee scores and classifications under the CTT framework.

we fit a monotonic polynomial generalized partial credit

model with the Q-matrix specification (Falk & Cai, 2016; da

Silva, Liu, Huggins-Manley, & Bazán, 2018; Reckase, 2009)

and obtained five latent scores for each examinee, one for

each attribute.

CTT: The Original Scoring Framework

Originally, the test was developed and scored under the

CTT framework where each item is scored between -3 and

3 for the seven response options. As a result, the raw score

range for each attribute is ±3 × 12 = [-36, 36]. In the orig-
inal scoring framework, examinees’ raw scores are multi-

plied by 2.78 to create a score range between -100 and 100.

An examinee with a subscore greater than 0 is categorized

to the α = 1 category on each attribute. For example, an
examinee with a raw score of 20 on α1: “mind” has a re-

ported score of 53.4 and is classified into the “extroverted”

category.

Examinees’ scores and attribute profiles under the CTT

framework are displayed in Figure 1. Five by-attribute his-

tograms are on the left-hand side, examinee scores are on

the x-axis and the examinee proportions are on the y-axis.

The attribute profile bar chart is on the right-hand side.

Overall, the scores for each attribute seem normally dis-

tributed. Themean/median values for “mind” and “tactics”

were close to 0, while those for “energy”, “nature”, and

“identity” were slightly below 0. This echoes with the bar

chart which shows that “INFP-T”, “ENFP-T”, “INFJ-T” were

the most frequent attribute profiles in this dataset.

MIRT-Q: Leaping into the Latent World

Shifting gears from CTT to IRT or DCM acknowledges

that attributes are latent and can only be approximated

through observable indicators. We fit a multidimensional

generalized partial credit model with the Q-matrix speci-

fication using the “mirt” R package (Chalmers, 2012). The

model was able to converge at the threshold of 10−6
for

maximum parameter change and showed marginal fit to

the data according to absolute fit indices. For example,

the root mean square error of approximation (RMSEA)

value was 0.063 and the standardized root mean squared

residual (SRMSR) value was 0.098. However, the estimates

of examinees’ latent traits had large standard errors. As

shown in Figure 2, most standard errors were between 0.3

and 0.6, despite the large sample size of the dataset (i.e.,

N = 10, 000). Among the five attributes, “energy” and “na-
ture” seem to have larger standard errors for their param-

eter estimates than the other three attributes.
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Figure 2 The estimates and standard errors of examinee scores under the MIRT framework.

DCM: Categorical Latent Traits

One of the main differences between MIRT and DCM is

that the latent traits are assumed to be continuous for the

former and categorical for the latter. We fit the NRDM

to the dataset using the “GDINA” R package. Whenever

a DCM is fit to a dataset, one could either put a mono-

tonicity constraint on the model or not. Under a simple-

structure NRDM, a monotonicity constraint means that:

1) when examinees possess an attribute associated with

a certain item, the probability of them selecting a higher

response category on that item should be greater than

or at least be equal to the probability of selecting its ad-

jacent lower response category; and 2) when examinees

don’t possess an attribute associated with a certain item,

the probability of them selecting a higher response cate-

gory on that item should be smaller than the probability

of selecting its adjacent lower response category. de la

Torre and Sorrel (2017) demonstrated that imposingmono-

tonicity constraints improves classification accuracy. Re-

cent DCM studies (e.g. Ma, 2019a, 2019b) also impose the

monotonicity constraints in model-fitting. In this study, we

fit models both with and without the monotonicity con-

straints. Results showed that the NRDM with the mono-

tonicity constraints produced better fit and higher classi-

fication accuracy. Therefore, the analysis continued with

results from the NRDM with the monotonicity constraints.

The NRDM showed marginal fit to the dataset with RM-

SEA = 0.060 and SRMSR = 0.085. A comparison of the re-

sults between the NRDM and the MIRT model is discussed

in the next section. For now, let us look at two pieces of in-

formation from the DCM scores displayed in Figure 3: 1)

proportions of examinees that were classified with each

attribute profile, and 2) classification accuracy associated

with each attribute profile. For the first piece of infor-

mation, “11111”, “01111”, and “00000” were the most fre-

quently occuring profiles. Specifically, 30% of examinees

were classifiedwith one of those three profiles. This echoes

with the “U-shape” curve problem mentioned in a previ-

ous section, meaning that most people were classified into

none-possession (“00000”) or all-possession (“11111”) cate-

gories. Intuitively, some examinees may be misclassified.

However, we don’t know examinees’ “true” attribute pro-

files. We can only evaluate whether the classifications are

reliable. In DCM, we may conceptualize reliability as clas-

sification accuracy (Wang, Song, Chen, Meng, & Ding, 2015;
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Figure 3 Proportions and classification accuracy of examinee attribute profiles under the DCM framework.

Iaconangelo, 2017). Wang et al. (2015) computed the classi-

fication accuracy as the agreement between the observed

examinee classifications (using estimation methods such

as the maximum or expected a posterior) and the expected

examinee classifications (using their individual likelihood

functions). The general trend in Figure 3 shows that at-

tribute profiles with more examinees were associated with

higher classification accuracy. The profile “11111”, con-

taining 14.46% of the examinees, was associated with the

highest classification accuracy (i.e., 0.875) among all at-

tribute profiles. At the attribute-level, the classification ac-

curacy was high: 0.960, 0.949, 0.924, 0.942, and 0.954, for

each attribute respectively. The test-level classification ac-

curacy was 0.763.

Examining the Results Together

The three measurement frameworks that can be utilized

in psychological tests are simply different. One is not bet-

ter than the other. Theoretically, the major difference be-

tween CTT and MIRT-Q/DCM is whether we consider the

measured traits as observed or latent variables. The major

difference between MIRT-Q and DCM is whether we con-

ceptualize the measured traits as continuous or categori-

cal variables. The purpose of examining the results from

CTT, MIRT-Q and DCM together is to better understand the

differences between them that are manifested empirically.

Figure 4 displays the relationship between CTT and

DCM scores. The five by-attribute scatter plots on the left-

hand side describes the relationship between an exami-

nee’s summated subscore under the CTT framework (on

the x-axis) and the marginal probability of possessing an

attribute under the DCM framework (on the y-axis). A high

probability (close to 1) on the y-axis represents that we are

more certain that an examinee is in the α = 1 category,
while a low probability (close to 0) represents that we are

more certain that an examinee is in the α = 0 category.
Probabilities close to 0.5, meaning that we have less cer-

tainty, are not ideal. The general trend in the scatter plots

shows an S-shaped curve where examinees who had lower

summated scores were more likely to be classified into the

α = 0 category and examinees who had higher summated
scores were more likely to be classified into the α = 1 cate-
gory. However, the S-shapes were not perfect in those five

scatter plots. In a perfect relationship between CTT and

DCM scores, the S-shape is a thin curved line. The five scat-

ter plots all had wide body part in the center of the S-shape

(i.e., scores that are close to 0 on the x-axis). Among the

five, the first attribute: “mind” had the thinnest body, while

“energy” and “nature” had the widest body. In addition,

the centers of the body for “energy”, “nature”, and “iden-
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Figure 4 Relationship between scores under CTT and DCM frameworks.

Table 2 Model fit Information for the MIRT Model and the DCM

Item RMSEA SRMSR AIC BIC

MIRT 0.063 0.098 2080529 2083629

DCM 0.060 0.085 2117940 2123355

tity” were around x = −20, while those of the other two
scatter plots were around x = 0. This matches the location
of the peak of the raw score distribution of each attribute

displayed in Figure 1.

In order to quantify such relationship at the contin-

uous level, we computed: 1) Pearson’s correlation coeffi-

cient (r) which assumes a linear relationship between two

variables; and 2) the coefficient for a simple logistic regres-

sion between CTT scores andDCM classifications. Although

the latter seemed to be a more appropriate way to model

the S-shaped relationship, it missed the purpose of exam-

ining the relationship between two continuous variables.

Moreover, the marginal probabilities may seem close to

0 in the graphs, but they were still continuous variables

that took on a particular non-zero value. Therefore, we

present the r at the bottom-right corner of each scatter
plot. As expected, the correlation was highest for “mind”

(r = 0.865) and lowest for “energy” (r = 0.755) and

“nature” (r = 0.689). In addition to quantifying the re-
lationship at the continuous level, we computed the at-

tribute classification agreement (ACA) and profile classifi-

cation agreement (PCA) rates between CTT and DCM clas-

sifications. “Mind” had the largest ACA where 94.6% of ex-

aminees were classified into the same category. “Energy”

and “nature” had lower ACA where around 71% of exam-

inees were classified into the same category. On the right-

hand side of Figure 4, attribute profile proportions are dis-

played for DCM and CTT in the same order as that in Fig-

ure 1. If we use the CTT classifications as a benchmark,

DCM “over-classified” examinees into mostly four profiles:

“11111”, “01111”, “01110”, “11101”. In addition to the “U-

shape” issue mentioned previously, it seems that more ex-

aminees are classified into the “1” category on “energy”,

“nature”, and “identity” under the DCM. Overall, 41.8% of

examinees were classified into the same attribute profiles.

Table 2 compares the absolute and relative model fit
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Figure 5 Relationship between scores under MIRT and DCM frameworks.

information between MIRT and DCM. DCM fit the data

slightly better in terms of absolute model fit (i.e., RMSEA

and SRMSR) andMIRT fit the data slightly better in terms of

relative model fit (i.e., AIC and BIC). However, those differ-

ences were small. Another thing to consider is that, DCM

estimated 751 parameters (including 720 item parameters

and 31 structural parameters), almost twice as the number

of parameters associated with the MIRT estimation: 420.

Figure 5 displays the relationship between MIRT and

DCM scores. Comparing to Figure 4, we can see that the

body part of the scatter plots is thinner in each graph.

Moreover, the center of the dots is around x = 0 for each
attribute, regardless of the raw score distribution. Pear-

son’s r was calculated between the MIRT and DCM scores

for each attribute. This information is listed at the bottom-

right corner of each by-attribute graph. Surprisingly, on

three attributes: “mind”, “tactics”, and “identity”, the cor-

relations between MIRT and DCM scores were lower than

those between CTT and DCM scores.

As a final set of comparisons, Figure 6 displays the ACA

rates between the DCM and different score cutoffs on the

CTT and MIRT score scales. The peak of each curve repre-

sents the maximum ACA and its associated CTT or MIRT

scores. Overall, the ACA between MIRT and DCM could

be higher than that between CTT and DCM when appro-

priate cutoffs were chosen. The possible maximum ACA

rates between CTT and DCM were between 0.80 and 0.95

across the five attributes, while those numbers were be-

tween 0.86 and 0.98 for the relationship betweenMIRT and

DCM. The cutoffs associated with the maximum ACAs on

the MIRT scales were close to 0. In CTT, the cutoffs associ-

ated with the maximum ACAs were closer to 0 for “mind”

and “tactics” and further from 0 for the other three at-

tributes. In addition, the MIRT curves were more peaked

than CTT curves because individuals were more clustered

around the peak under the MIRT.

Score Reporting

Reporting scores to end users may be one of the most im-

portant outcomes of psychometric practices. Let us use
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Figure 6 Classification agreement rates between DCM classifications and different levels of CTT/MIRT score cutoffs.

scores from examinees A and B as an example to illustrate

the different scores that examinees may obtain under dif-

ferent scoring frameworks. Both examinees A and B were

classified into the “ESTJA” group (i.e., profile “11111”) un-

der the DCM framework. However, under the CTT frame-

work, examinee A was classified into the “ENFJT” group

(i.e., profile “10010”) due to scores of 11, -5, -4, 7, and -2,

while examinee Bwas still classified into the “ESTJA” group

(i.e., profile “11111”) due to scores of 83, 70, 67, 74, and

79. We can see that examinees’ classifications between the

CTT and DCM frameworks were more likely to agree with

each other when their scores were further away from the

CTT cut-offs (i.e., more extreme on the latent traits). Pro-

viding examinee B with classifications from both frame-

works may be fine, but examinee A would be confused if

they were provided with different classifications from the

two frameworks, with one mainly based on content ex-

perts’ judgment (under CTT) and the othermainly based on

statistical probabilities (under DCM). Although one could

use approaches such as the relative diagnostic profile (Liu,

Qian, Luo, & Woo, 2018) to reconcile both scores, it would

be important to use a principled assessment design frame-

work during test development and be consistent with one

scoring model that best meets the purpose of the test.

Discussion

All models are wrong, and the value of any
model is only to the extent to which it supports
the purpose for which it was built.
—George E. P. Box (Box, 1979)

Models should not be true, but it is important
that they are applicable, and whether they are
applicable for any given purpose must of course
be investigated. This also means that a model is
never accepted finally, only on trial.
—George Rasch (Rasch, 1960)

These two quotes from decades ago still shed light on

today’s psychometrics. They remind us, that the models

we develop to fit the data represent our limited and simpli-

fied theory of the construct. The development of IRT mod-

els and DCMs in recent years offers a rich pool of tools to

analyze examinees’ item responses. Comparing to tools in

the world (of CTT) without latent construct, the tools in the

IRT/DCM world offer unparallel vantages such as bringing
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more information about items and examinees and easier

equating of scores between test forms. However, IRT/DCM

are not approaches that are superior than CTT. They are

mathematically comparable, as demonstrated in Kohli, Ko-

ran, and Henn (2015), Raykov and Marcoulides (2016), and

Takane and De Leeuw (1987). The fundamental difference

between the three frameworks are different theories of the

existence/non-existence of latent variables and whether

the underlying variable is assumed to be normal or cate-

gorical. As such, the choice of the scoring approach proba-

bly should hinge on the intended use of the test.

For psychological tests that bear the purpose of diag-

nosing or classifying individuals with certain behaviors,

DCMs are promising candidates for scoring because they

are created for classifying examinees into groups. How-

ever, it is necessary to point out two caveats here when ap-

plying DCMs in practice. First, for the dataset used in this

paper, a MIRT model with half the number of parameters

of a DCM fit the dataset similar to the DCM. This issue may

be partially alleviated through using smaller models such

as the RSDM introduced above. But as multidimensional

models, DCMs will have many parameters which require a

relatively large sample size to estimate. Second, standard-

setting results by expert panel may or may not agree with

the classification decisions made by DCMs. If we arbitrar-

ily set a cut-off other than 0.5 for the marginal probability

of possession and use the new cut-off to reclassify individu-

als, the meaning of the latent classes is altered. As a result,

the concept of the criterion-referenced tests may be not ap-

plicable if the test data is scored under DCMs. This could

raise issues of how to interpret and use the DCM classifi-

cations. For example, an individual in the dataset with an

observed score of -51 on “energy” was classified as “intu-

itive” (because the score is less than 0) under CTT, but as

“observant” (α = 1) under a DCM. Although it is under-
standable that the scores are under different frameworks,

one may find it difficult to justify why an individual who

consistently endorses the more “intuitive” side of the “en-

ergy” items ends up being an “observant”. In this dataset,

the DCM classification cut-off (i.e., themarginal probability

of 0.5) for each attribute closely aligns with the center of

the raw score distribution of each attribute. Therefore, for

a sample of scores where themean is not around the center

of the observed scale (e.g., examinee scores on “energy”,

“nature” and “identity”), the interpretation of DCM classi-

fications may be difficult when comparing to the observed

score scale. Despite the caveats, DCMs provide exciting al-

ternatives to traditional psychometrics which mostly aim

to order examinees on a continuum. Nowadays, as re-

searchers and practitioners are becoming more interested

in obtaining actionable feedback on multiple characteris-

tics of people from rating scales, DCMs are expected to play

a greater role in psychological measurement.
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