
¦ 2021 Vol. 17 no. 1

A study of confidence intervals for Cohen’s dp in
within-subject designs with new proposals

Denis Cousineau
aB

and Jean-Christophe Goulet-Pelletier
a

a
Université d’Ottawa

Abstract There exist many variants of confidence intervals for Cohen’s dp in within-subject de-
signs. Herein, we review three past proposals (Morris, 2000; Algina & Keselman, 2003, Goulet-

Pelletier & Cousineau, 2018) and examine five new ones, four of which are based on the recently

discovered distribution of dp in such design. We examine each method according to their accuracy
in coverage rate (desired coverage is 95% in this study), symmetry (i. e., equal rejection rates from

the left and from the right), and width of the interval. It is found that the past three proposals are

pseudo confidence intervals, being too liberal under some circumstances (fortunately uncommon

for the methods of Morris and Algina & Keselman). Additionally, they are not asymptotically accu-

rate. Finally, they do not have symmetrical rejection rates on the left and on the right. Four of the

five new techniques are asymptotically accurate but three of these are liberal for small samples.

Finally, the relation of confidence intervals with inferential statistics testing is considered.
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Introduction
This study examines ways to obtain intervals for Cohen’s

dp in within-subject designs. It is motivated by the numer-
ous personal communications that we received following

the publication of a review paper on the subject (Goulet-

Pelletier & Cousineau, 2018) as well as by a follow-up ar-

ticle (Fitts, 2020). From these, it became apparent that

there was to this day no satisfactory confidence interval

for Cohen’s dp in within-subject designs (see Tothfalusi &
Endrenyi, 2017; and Viechbauer, 2007, for explorations).

We consequently wish to document the strengths and limi-

tations of these past approaches. Following the recent dis-

covery of the distribution of Cohen’s dp in within-subject
designs (Cousineau, 2020b), we also explore new alterna-

tives. We end with a central question: Is it really a con-

fidence interval that we are looking for? There exists an

alternative family of intervals that we call the precision in-
tervals; we will examine these as well.
It needs to be clarified from the onset that in within-

subject designs, a mean difference between two measures

can be standardized in two different ways, resulting in two

distinct Cohen’s d that we call herein dD and dp. The prob-
lem is that these two standardized differences are on dif-

ferent scales. Therefore, they cannot be compared directly.

As will be seen later, it is easy to convert a dD into a dp and
vice-versa. However, their confidence intervals cannot be

converted from one to the other. In dD , the mean differ-
ence is standardized relative to the standard deviation of

the differences between the scores (i.e., from the subtrac-
tion of pairs of scores). In dp, the focus of the present text,
the mean difference is standardized relative to the stan-

dard deviation of the scores. Assuming homogeneity of

variances in the population, dp estimates the standard de-
viation by pooling the standard deviation of the first with

the second set of measurements, noted Sp, hence the name
dp.
An accurate confidence interval, with confidence level

γ, should have a probability of rejecting the true popula-
tion parameter of 1−γ (or at least not below 1−γ). Hence,
from samples to samples, a 95% confidence interval would

have a non-rejection rate of at least 95%. As seen, the logic

of null hypothesis testing is at the core of confidence inter-

vals.
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In what follows, we assess the non-rejection rates of

three confidence interval methods that have been pro-

posed for dp in within-subject designs (Morris, 2000; Al-
gina & Keselman, 2003; following Steiger & Fouladi, 1997;

Goulet-Pelletier & Cousineau, 2018). We also explore one

new proposal, called MAG, which mixes elements of the

previous three methods (the acronym combines the first

letter of each of the three methods). Finally, following the

recent publication of the distribution of the Cohen’s dp in
within-subject designs (Cousineau, 2020b), we explore four

new proposals based on this distribution, called herein the

noncentral t (noted t′), the noncentral lambda (noted Λ′),
the Pivotal of t′ and the Adjusted Λ′ methods.
In a second Result section, we question the core as-

sumption underlying confidence intervals. Indeed, basing

a technique on null hypothesis statistical techniques is du-

bious in these times where estimation is favored over sig-

nificance (e.g., Cumming, 2014; Amrhein, Greenland, &Mc-

Shane, 2019, among numerous others). We will therefore

examine an alternative type of intervals, that we call the

precision intervals. As will be seen, they are nearly iden-
tical to confidence intervals although they aim to fulfill a

different objective.

Attributes of a confidence interval method
Before assessing the confidence interval expressions us-

ing Monte Carlo simulations, we present formally the cri-

teria that will be used to evaluate different methods. A

confidence interval expression can be examined, in our

opinion, from three quantitative attributes: Accuracy, Sym-
metry and Width. The first attribute of accuracy offers a
way to classify the interval expression into three classes or

types that we call Exact, Valid and Pseudo.
Accuracy. Accuracy is the difference between the actual
rejection rate of the true population parameter and the de-

sired rejection rate, noted γ. Exact confidence intervals
are always perfectly accurate. On the other hand, valid
confidence intervals have non-rejection rate that are never

smaller than γ. This is the defining characteristic of a confi-
dence interval (Neyman, 1934). Finally, pseudo confidence
intervals are not truly confidence intervals because they
do not respect this defining characteristic, being liberal in
some circumstances (i. e., having a non-rejection rate of the

true population parameter smaller than γ). Non-exact in-
tervals might approach a non-rejection rate of γ when n
is larger; this is called asymptotic accuracy. Thus, a non-

exact confidence interval could be asymptotically exact. As
will be seen, this is not the case for the existing confidence

intervals that we tested.

Symmetry in rejection rates. Symmetry represents the
balance between rejections from the left of the true pop-

ulation parameter and rejections from the right of the

true population parameter. A rejection from the left oc-

curs when the confidence interval of an observed statistic

is above the true population value (with significant level

α = (1 − γ)/2). We believe it to be advisable that the left
rejection rate of a confidence interval is equal to its right

rejection rate. When illustrated as an error bar, most read-

ers assume that both extremities have an equal chance of

occurrence. What would be their surprise if they were to

discover that the lower limit is set to 0.5% and the upper

limit to 4.5%? Yet, as will be seen in the results later on,

this figure is actually typical of some of the methods exam-

ined.

Width. An attribute of confidence intervals considered
important by Neyman (1934, p. 563) was that if more than

one method exists to generate a valid confidence interval,

the one with the shortest width should be preferred. In the

presence of symmetric rejection rates, this attribute is sen-

sible. However, as illustrated in Figure 1, this attribute is

problematic when the left and right rejection rates are al-

lowed to be different. For a skewed distribution of effect

size (we plotted a noncentral t distribution in Figure 1 but
the argument goes for any skewed distribution), an easy

way to obtain a shorter interval is to have unequal rejec-

tion rates. In the shortest tail (the left tail in Figure 1), a

small decrease in the lower limit of the interval is accom-

panied by a large decrease in the upper limit of the interval

where the tail is "flatter". In Figure 1, the interval width

goes from 1.63 to 1.41 when the lower limit is moved left,

while keeping the exact same non-rejection rate. Thus, this
manipulation leads to an important reduction in the total

width of the interval. In the presence of unequal left and

right rejection rates, it is therefore difficult to weigh inter-

val widths properly.

The confidence interval methods examined
In what follows, we examine eight methods to get a confi-

dence interval. The first three have been published pre-

viously (Morris, 2000; Algina & Keselman, 2003; Goulet-

Pelletier & Cousineau, 2018). The fourth one, introduced

in this manuscript, is a morph between all three previous

methods. The last four methods are all derived from the

newly found distribution of dp in within-subject designs
(Cousineau, 2020b).

In Listings 0 to 8 detailed afterwards, we provide R

scripts (also available on the journal’s web site) which com-

putes the confidence intervals from the methods described

next given the observed statistics dp, r, SX and SY along

with sample size n and confidence level γ (default 95%).
It uses libraries from Genz et al. (2019), Kelley (2019), Pav

(2017) and Revelle (2018).
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Figure 1 Illustration of allowing unequal left and right rejection rates using the quantiles of a noncentral t distribution
on the interval width. Moving the interval to the left allows a considerable reduction of its total width.

Morris (2000)

This method, proposed by Morris (2000), is based on the

fact that the noncentral t distribution tends to a normal
distribution as the sample size tends to infinity (Becker,

1988). To accommodate the (slight) asymmetry in the non-

central t distribution, the standard deviation is artificially
decreased so that shorter tails on the right is reasonably

well approximated by the right tail of a normal distribu-

tion. This is achieved by estimating the variance of the pop-

ulation thenmultiplying it by the correction factor J(n−1)
squared (see Hedges, 1981; Becker, 1988, where this cor-

rection factor is noted c; and Goulet-Pelletier & Cousineau,
2018, for a description of this correction factor). As J is
always below 1, it reduces the estimate of the population

variance. Listings 0 and 1 summarize the steps to get the

confidence limits with this method.

Algina and Keselman (2003)

This and the two subsequent methods are based on the

noncentral t distribution with degree of freedom (n − 1),
noted t′n−1, which is the correct sampling distribution of
dp for single-group design and difference scores (Hedges,
1981; Becker, 1988) but not for within-subject designs

(Cousineau, 2020b; Fitts, 2020).

The method put forth by Algina and Keselman (2003)

uses the pivotal method adopted for between-group design

by Steiger and Fouladi (1997; this method was explored

for the first time in Clopper & Pearson, 1934). In order

to estimate the lower limit up to where a plausible popu-

lation δ may lie, it estimates the noncentrality parameter
of a shifted distribution such that its 97.5% quantile corre-

sponds to the observed dp. The same is done for the upper
limit. The lower and upper noncentrality parameters are

subsequently scaled down to a within-subject dp by a mul-

tiplication with

√
2(S2

X + S2
Y − 2SXSYr)/(n(S2

X + S2
Y))

where S2
X, S

2
Y , SX and SY are variances and standard de-

viations forX (measurements 1) andY (measurements 2)
and r is the Pearson correlation. Note that this formula can
be simplified to√

2(S2
X + S2

Y − 2SXSYr)

n(S2
X + S2

Y)
=

√
2

n
×

√
S2
X + S2

Y − 2SXSYr

S2
X + S2

Y

=

√
2

n
×

√
2S2

p(1− rW )

2S2
p

=

√
2(1− rW )

n
(1)

where S2
p is the pooled variance (equal to the mean vari-

ances in within-subject design so that S2
X + S2

Y = 2S2
p

) and rW is the rectified Pearson correlation (rW = r ×
geometric.mean(SX, SY)/mean(SX, SY); see Appendix A
for details). The method is summarized in Listing 2.
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Listing 0 Estimating Cohen’s dp; X is assumed to be a two-column, n-line array or dataframe

# Needed libraries
library(mvtnorm) # for rmvnorm in generating a random sample
library(MBESS) # for conf.limits.nct
library(psych) # for geometric.mean
library(sadists) # for qlambdap the lambda-prime distribution

# Correction factor
J <- function(df) {

# compute unbiasing factor; works for small or large df;
# thanks to Robert Calin-Jageman
exp ( lgamma(df/2) - log(sqrt(df/2)) - lgamma((df-1)/2) )

}

# Get descriptive statistics
n <- dim(X)[1]
Mx <- mean(X[,1])
My <- mean(X[,2])
sx <- sd(X[,1])
sy <- sd(X[,2])
r <- cor(X[,1], X[,2])

# Get pairwise statistics Delta means and pooled SD
dmn <- Mx-My
sdp <- sqrt((sx^2 + sy^2)/2)

# Compute biased Cohen’s d
dp <- dmn / sdp

Goulet-Pelletier and Cousineau (2018)

This method opted for different degrees of freedom, 2(n−
1), instead of (n − 1). It first estimates the noncentrality
parameter by unbiasing the observed dp into a quantity
called Hedge’s gp with gp = dp × J(2(n − 1)) and scaled

with

√
n/(2(1− r)). Then the 2.5% and 97.5% quantiles

of the noncentral t distribution are computed to obtain the
interval limits. See Listing 3 for the detailed steps.

MAGmethod (this manuscript)

This method is introduced here for the first time. Its algo-

rithm is given in Listing 4. It borrows elements from the

first three methods. First, as with the method of Goulet-

Pelletier and Cousineau (2018) above, it uses quantiles

from the noncentral t distribution but uses (n − 1) de-
grees of freedom. Second, it uses the method of Morris

to decrease the noncentrality parameter by multiplying it

an additional time by J(n − 1). Third, it uses Algina and
Keselman (2003) downscaling method but not the pivotal

method. Because of all these similarities, it was expected to

behave in a similar fashion to these previous methods. In a

sense, it is a morph of all the previous techniques, whence

the nameMAGwhich stands for Morris, Algina and Goulet-

Pelletier.

t′ method based on the true distribution (this
manuscript)

This method and the subsequent ones are all based on the

newly discovered distribution of the Cohen’s dp in within-
subject designs (Cousineau, 2020b) given by√

n

2(1− ρ)
dp ∼ t′2/(1+ρ2)(n−1)

(√
n

2(1− ρ)
δ

)
(2)

where ρ is the population correlation between the pair
of measurements. This distribution is a noncentral t dis-
tribution as in the between-group case (see Fitts, 2020;

Cousineau & Goulet-Pelletier, 2020). However, the degree

of freedom is fractional, based on the correlation. The term√
n/(2(1− ρ)) is used to scale the observed statistic onto

the theoretical distribution.

This technique is called t′ as it uses the t′ distribution
along with fractional degrees of freedom to get confidence

limits. The t′ method first estimates r to estimate the de-
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Listing 1 Morris (2000) function with arguments dp, r, sx, sy and n from Listing 0.

morris2000 <- function(dp, r, sx, sy, n, gamma = .95) {
vd <- (n-1)/(n-3) * 2*(1-r)/n * (1+dp^2 * n/(2*(1-r))) - dp^2/J(n-1)^2
vd <- vd * J(n-1)^2

dlow <- dp + qnorm(1/2-gamma/2) * sqrt(vd)
dhig <- dp + qnorm(1/2+gamma/2) * sqrt(vd)

limits <- c(dlow, dhig)
limits

}

Listing 2 Algina and Keselman (2003) function

alginakeselman2003 <- function(dp, r, sx, sy, n, gamma = .95) {
W <- geometric.mean(c(sx^2, sy^2)) / mean(c(sx^2, sy^2))
rW <- r * W

tCI <- conf.limits.nct(dp * sqrt(n/(2*(1-rW))), n-1, conf.level = gamma)
tCI.low <- tCI$Lower.Limit
tCI.hig <- tCI$Upper.Limit

limits <- c(tCI.low, tCI.hig) / sqrt(n/(2*(1-rW)))
limits

}

gree of freedom as 2/(1 + ρ2)(n− 1). Then, the 1/2− γ/2
and 1/2 + γ/2 quantiles of the t′ distribution are obtained
and used as the confidence limits. See Listing 5.

Λ′ method based on the dual of the true distribution
(this manuscript)

As shown in Lecoutre (1999) the t′ distribution is the dis-
tribution of observed dp when the population parameter is
known. However, with confidence intervals, the problem

is given the otherway around: we are given an observed dp
and we seek the distribution of the population parameters

that could have generated that observation. Thus, what

is truly needed is the dual distribution, sometimes called

the predictive distribution (Poitevineau & Lecoutre, 2010).

This distribution, when the observed statistics follow a t′

distribution, is known and called the noncentral lambda

(Λ′ or Λ-prime) distribution. It requires the same degrees
of freedom 2/(1 + ρ2)(n− 1) where ρ2 is again estimated
with r2.1

The interval limits are then the 1/2−γ/2 and 1/2+γ/2

quantiles of that Λ′ distribution. See Listing 6 for details.

Pivotal of the t′ method based on the true distribution
(this manuscript)

The Λ′ distribution is the distribution of the parameters
compatible with a given observation. When that distri-

bution is not implemented, its quantiles can be estimated

through a search over the t′ distribution in which the non-
centrality parameter λ is varied until one is found that
makes the observation borderline valid. This is called the

pivotal method and is present in the Algina and Keselman

(2003) method where the incorrect degrees of freedom are

used. Here, we implemented the pivotal process using the

correct degrees of freedom 2/(1 + r2)(n − 1). See Listing
7 for details.

Because the Λ′ and the pivotal of the t′ are both esti-
mating the quantiles of the Λ′ distribution, both methods
are expected to behave in an identical fashion.

1
Note that in all these methods, we also tried estimating r2 with Olkin and Pratt (1958) unbiased estimator. However, we found no substantial

improvement. In R, the Olkin-Pratt estimator of r2 is obtained with
library(gls) #Hankin, 2006
r2OP <- 1 -(n-3)/(n-2)*(1-r^2) * hyperg_2F1(1,1,n/2,1-r^2)
We also explored the estimators proposed in Kubokawa, Marchand, and Strawderman (2017).
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Listing 3 Goulet-Pelletier and Cousineau (2018) function. Library psych required.

gouletpelletiercousineau2018 <- function(dp, r, sx, sy, n, gamma = .95) {
gp <- dp * J( 2 * (n-1) )

dlow = qt(1/2-gamma/2, df = 2*(n-1), ncp = gp * sqrt(n/(2*(1-r))) )
dhig = qt(1/2+gamma/2, df = 2*(n-1), ncp = gp * sqrt(n/(2*(1-r))) )

limits <- c(dlow, dhig) / sqrt(n/(2*(1-r)))
limits

}

Listing 4 MAG function (this manuscript). Library psych required

MAG <- function(dp, r, sx, sy, n, gamma = .95) {
W <- geometric.mean(c(sx^2, sy^2)) / mean(c(sx^2, sy^2))
rW <- r * W

#compute unbiased noncentrality parameter
lambda <- dp * J(n-1)^2 * sqrt(n/(2*(1-rW)))

#quantile of the noncentral t distribution
dlow = qt(1/2-gamma/2, df = n-1, ncp = lambda )
dhig = qt(1/2+gamma/2, df = n-1, ncp = lambda )

limits <- c(dlow, dhig) / sqrt(n/(2*(1-rW)))
limits

}

Adjusted Λ′ method based on the converse of the true
distribution (this manuscript)

The two previous methods are exact in between-group de-

signs (where the correlation parameter ρ is non-existent;
Cousineau & Goulet-Pelletier, 2020). However, in within-

subject designs, the ρ parameter needs to be estimated
from the data to get the correct degrees of freedom. Yet,

pivotal techniques require that the distribution’s degree of

freedom be known. As it has to be estimated, the above

two methods are likely to be inexact for small samples (it

remains to be seen whether they are conservative or lib-

eral).

We therefore propose an additional method in which

the noncentrality parameter is adjusted. This parameter

should be an observed dp measure. However, its multipli-
cation with the scaling parameter 1/2(1 − rW ) turns dp
into a dD (see Appendix A). Thus, the noncentrality param-
eter is not from the same distribution and is biased in a

different way. As a solution, we propose to first unbias the

observed dp using the correction factor J(n−1), then can-
cel this correction by dividing the obtained quantiles with

J(2/(1 + r2)(n− 1)). See the last listing, Listing 8.

Simulations
To evaluate the eight methods, we ran extensive Monte

Carlo simulations. To avoid generalizing from a limited

set of simulations, we ran 250 different scenarios by cross-

ing (i) five magnitudes of true effect sizes, ranging from a

null effect size to a huge effect size (δ = 0 to 1.333 by steps
of 0.333); (ii) five sample sizes, from very small samples

to moderate samples in addition to large samples (n =
10, 15, 20, 25 and 100); (iii) ten levels of correlations (ρ
= -0.90 to +0.90 by steps of 0.20). We included negative

correlations and extreme correlations even though these

are probably implausible in the psychological sciences (in

a review, Goulet and Cousineau, 2019, found the correla-

tion of repeated measures in simple cognitive tasks to be

around 0.2). In total, this represents 250 different scenar-

ios (5 × 5 × 10), a much wider array of scenarios than in
some previous studies (Morris, 2000, explored 27 scenar-

ios; Algina & Keselman, 2003, reported 12 scenarios; but

see Viechbauer, 2007, with 595 scenarios). Also, for sta-

ble results, we repeated each simulation 100,000 times, five

times more than in some previous studies (but see Fitts,

2020; Viechbauer, 2007, who used 100, 000 replications per
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Listing 5 t′ function based on the true distribution (this manuscript). Library psych required.

tprime <- function(dp, r, sx, sy, n, gamma = .95) {
W <- geometric.mean(c(sx^2, sy^2)) / mean(c(sx^2, sy^2))
rW <- r * W

#compute unbiased noncentrality parameter
lambda <- dp * J(2/(1+r^2)*(n-1)) * sqrt(n/(2*(1-rW)))

#quantile of the noncentral t distribution
dlow = qt(1/2-gamma/2, df = 2/(1+r^2)*(n-1), ncp = lambda )
dhig = qt(1/2+gamma/2, df = 2/(1+r^2)*(n-1), ncp = lambda )

limits <- c(dlow, dhig) / sqrt(n/(2*(1-rW)))
limits

}

Listing 6 Λ′ function based on the dual of the true distribution (this manuscript). Libraries psych and sadists
required.

lambdaprime <- function(dp, r, sx, sy, n, gamma = .95) {
W <- geometric.mean(c(sx^2, sy^2)) / mean(c(sx^2, sy^2))
rW <- r * W

lambda <- dp * sqrt(n/(2*(1-rW)))

#quantile of the noncentral t distribution
dlow = qlambdap(1/2-gamma/2, df = 2/(1+r^2)*(n-1), t = lambda )
dhig = qlambdap(1/2+gamma/2, df = 2/(1+r^2)*(n-1), t = lambda )

limits <- c(dlow, dhig) / sqrt(n/(2*(1-rW)))
limits

}

scenario as well). With this number of simulations, the

standard error of the estimated rate of rejection was in

some scenarios up to 0.075%, so that the current simula-

tions are considered precise to twice this figure, ± 0.15%.

Thus, the rejection rates are reported as percentage with

one decimal (Cousineau, 2020a).

In a given simulation, we generated a bivariate sample

of size n from a binormal distribution with a mean of µ
(arbitrarily set to 0) increased by∆/2 for the first measure
and decreased by the same quantity for the second mea-

sure. Thus, in the population, the difference in means is∆.
The variance, σ2

, is arbitrarily set to 1 so that the popula-

tion standardized effect size is δ = ∆/σ. Finally, from the
correlation ρ, the population variance-covariance matrix
was

Σ =

[
σ2, ρσ2

ρσ2, σ2

]
(3)

. None of these parameters (µ, δ, σ and ρ) are assumed
known in the subsequent procedures.

For each simulation, we estimated dp as the difference
in means onto the pooled standard deviation and applied

a confidence interval method in order to get the lower and

upper bounds (we report only 95% confidence intervals).

We recorded whether the true δ was included within the
limits (a non-rejection), located below the lower bound (a

left rejection) or located above the upper bound (a right

rejection). The non-rejection, left and right rejection rates

over the 100,000 reproductions are used for plots and anal-

yses. This process was repeated for each method.

The random number generation was per-

formed with Mathematica version 10.0 built-in

MultinormalDistribution function (the default al-
gorithm has a cycle length above 260; Tomassini, Sipper,

& Perrenoud, 2000). Most analyses were performed with
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Listing 7 Pivotal function of the true distribution (this manuscript). Libraries psych and MBESS required.

pivotaltprime <- function(dp, r, sx, sy, n, gamma = .95) {
W <- geometric.mean(c(sx^2, sy^2)) / mean(c(sx^2, sy^2))
rW <- r * W

tCI <- conf.limits.nct(dp * sqrt(n/(2*(1-rW))), 2/(1+r^2)*(n-1),
conf.level = gamma)

tCI.low <- tCI$Lower.Limit
tCI.hig <- tCI$Upper.Limit

limits <- c(tCI.low, tCI.hig) / sqrt(n/(2*(1-rW)))
limits

}

Listing 8 Adjusted Λ′ function (this manuscript). Libraries psych and sadists required.

adjustedlambdaprime <- function(dp, r, sx, sy, n, gamma = .95) {
W <- geometric.mean(c(sx^2, sy^2)) / mean(c(sx^2, sy^2))
rW <- r * W

lambda <- dp * J(n-1) * sqrt(n/(2*(1-rW)))

#quantile of the noncentral t distribution
dlow = qlambdap(1/2-gamma/2, df = 2/(1+r^2)*(n-1), t = lambda )
dhig = qlambdap(1/2+gamma/2, df = 2/(1+r^2)*(n-1), t = lambda )

limits <- c(dlow, dhig) / sqrt(n/(2*(1-rW))) / J( 2/(1+r^2)*(n-1) )
limits

}

Mathematica built-in functions except the following three
for increased computational speed: the noncentral t cumu-
lative distribution function was compiled from C++ source

(algorithm asa243; Lenth, 1989; and its translation in C++

Burkhardt, 2020, this is the code used in R’s equivalent

function pt); two binary searches were programmed in
C++ and compiled to get the noncentral t quantile func-
tion and the noncentral t inversion noncentrality parame-
ter). Finally, the quantiles from the noncentral Λ distribu-
tion were obtained from R’s sadists library (Pav, 2017).
Whenever an estimate of the sample correlation is needed,

we used the Pearson correlation. All code is available on

OSF at osf.io/nwxsb.

Results
In a first subsection, we examine the confidence intervals

estimator from the perspective of accuracy and symmetry

of the rejection rates. In a second subsection, we concen-

trate on the bounds and the width of the methods.

Part I: Rejection rates

The results are displayed in extenso in Figures B.1 to B.8.
The top panels of these figures show the proportion of non-

rejection of the true δ as a function of the population corre-
lation ρ (horizontal axis) separately for each sample size n
(columns) and for each population effect size δ (rows). The
bottom panel report the left (square) and right (triangle)

rejection rates in the same format.

Types of confidence intervals
The most striking result is that the Goulet-Pelletier and

Cousineau (2018) method is far too liberal in almost all sce-

narios examined (there are only four exceptions over the

250 scenarios). Thus, this method is not computing a con-

fidence interval and should not be used as such. We will

later highlight a strong point of this method but will not

mention this method anymore in this Results section. Also,

the Λ′ and the Pivotal of t′ methods are almost identical in
all aspects, as expected, and their results will be presented

jointly.
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Table 1 Statistics with regards to rejection rates across the 250 scenarios

# invalid Non-rejection rates Rejection rates Ratio right:left

Method (out of 250) Average Abs. dev. Asymptotic Left Right Average SD

Morris (2000) 7 95.9% 0.9% 95.6% 1.6% 2.5% 2.47:1 1.56

Algina & Keselman

(2003)

4 95.4% 0.5% 95.5% 1.8% 2.8% 1.81:1 0.44

Goulet-Pelletier &

Cousineau (2018)

246 93.4% 1.6% 94.3% 3.9% 2.7% 0.74:1 0.07

MAG 0 95.9% 0.9% 95.6% 2.0% 2.1% 1.08:1 0.05

t′ 223 94.2% 0.8% 94.9% 3.4% 2.4% 0.72:1 0.07

Λ′ 198 94.6% 0.4% 94.9% 2.5% 2.9% 1.21:1 0.11

Pivotal of t′ 200 94.6% 0.5% 94.9% 2.5% 2.9% 1.21:1 0.11

Adjusted Λ′ 0 95.3% 0.3% 95.0% 2.1% 2.6% 1.37:1 0.19

Note. Note: SD is the standard deviation in the ratios across the 250 scenarios; Abs. dev. is the average absolute devi-
ation to 95%.

Of the 250 scenarios, we located a few scenarios where

the Morris (2000) and the Algina and Keselman (2003)

methods returned a proportion of non-rejection smaller

than the nominally tested 95% (more precisely, smaller

than 94.85%, as we allowed a ± 0.15% random fluctuation

in the simulation results). They are highlighted with a red

arrow in Figures B.1 and B.2. This occurred seven times

for the Morris (2000) method and three times for the Al-

gina and Keselman (2003) method. In all these scenarios,

the correlation was 0.7 or 0.9. We reproduced once more

these 10 scenarios with a million simulations to check the

robustness of these results; all were confirmed. Neyman

(1934, p. 562-563) gave a single defining property for con-

fidence intervals: that the proportion of non-rejection of

the true population parameter be never less than γ (95%
for a 95% confidence interval). Thus, although these oc-

curred in implausible scenarios with regards to human be-

havior (correlation of .7 or above), it means stricto sensus
that these methods are not valid confidence intervals.

The methods t′, Λ′ and Pivotal of t′ were too liberal in
a vast majority of the scenarios considered (more or less

200 times out of 250 scenarios). They are therefore pseudo-

confidence intervals.

Finally, for the MAG method and the Adjusted Λ′

method, we observed no rates below 94.96% in the sce-

narios considered (which is possibly not different from the

nominal γ, owing to sampling error). We also tested these
two methods in an additional, extreme, scenario (ρ = .99,
δ = 1.00 and n = 100) and found non-rejection rates of
95.07% and 95.04% respectively over 100,000 simulation.

Thus, MAG and Adjusted Λ′ might be the only valid confi-
dence intervalmethods for the Cohen’s dp inwithin-subject
design known so far.

Table 1, column 2, provides the number of scenarios

with non-rejection rates below 94.85%.

Accuracy
An examination of the non-rejection rates in Figures B.1,

B.2, and B.4 shows that Morris (2000), Algina and Kesel-

man (2003) and MAG methods all behave similarly: all

three have near exact non-rejection rates when the pop-

ulation δ is null. Further, all three become conservative
when δ is large, this last effect being lightly modulated
by correlation. Looking from left to right in Figures B.1,

B.2 and B.4, we see however that sample size has only a

marginal effect. All three techniques are notmore accurate

as sample sizes increase. When sample size is restricted

to n = 100 to get a glimpse of their asymptotic perfor-
mance (listed in Table 1, fifth column), the non-rejection

rates are 95.6%, 95.5% and 95.6% for Morris (2000), Al-

gina and Keselman (2003), and MAG methods respectively.

These asymptotic non-rejection rates are almost identical

to the non-rejection rates across all sample sizes given in

Table 1, column 3, confirming that they are insensitive to

sample size. Thus, these three methods are not asymptoti-

cally exact.

Regarding the last four methods, they all tend to 95%

when n = 100. Thus, these four techniques seem to be
asymptotically exact. For the t′, Λ′ and Pivotal of t′ meth-
ods, this was expected as all three tend to the same normal

distribution. However, these methods tend towards 95%

from below, making them invalid for smaller samples. By

contrast, the Adjusted Λ′ method tends towards 95% from
above.

Table 2 provides the minimum and maximum non-

rejection rates observed across 50 scenarios broken down

by the sample sizes examined. As seen, the t′ method is
within 1% of the nominal γ when n ≥ 25; the last three
are within 1% of the nominal γ when n ≥ 15.
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Table 2 Minimum and maximum rejection rates for each sample sizes across the 10 correlation scenarios and the 5 effect

size scenarios

n = 10 n = 15 n = 20 n = 25 n = 100
Method Min Max Min Max Min Max Min Max Min Max

Morris (2000) 94.9% 97.9% 94.6% 97.3% 94.6% 97.1% 94.7% 97.1% 94.9% 96.9%

Algina & Keselman

(2003)

94.4% 96.3% 94.6% 96.5% 94.9% 96.6% 94.9% 96.7% 94.9% 96.9%

Goulet-Pelletier &

Cousineau (2018)

87.5% 93.4% 87.7% 94.0% 87.8% 94.3% 87.9% 94.4% 88.3% 94.9%

MAG 95.5% 97.5% 95.3% 97.3% 95.3% 97.2% 95.2% 97.3% 95.0% 97.0%

t′ 92.3% 94.7% 93.3% 94.8% 93.8% 94.9% 93.9% 94.8% 94.7% 95.2%

Λ′ 93.6% 94.8% 94.1% 94.9% 94.3% 95.0% 94.4% 95.0% 94.8% 95.1%

Pivotal of t′ 93.7% 94.9% 94.1% 94.8% 94.3% 94.9% 94.3% 95.0% 94.8% 95.1%

Adjusted Λ′ 95.1% 96.4% 95.0% 95.9% 95.0% 95.7% 95.0% 95.5% 95.0% 95.2%

Note. Note: The t′ method is accurate to within 1% when n ≥ 25; the last three methods are accurate to within 1% when
n ≥ 15. These cases are highlighted in gray in the table.

Symmetry
The lower panels of the Figures B.1 to B.8 show the left

and the right rejection rates. As seen, for most methods,

there are wild differences between the left and the right

rejection rates. This is mostly apparent when the popu-

lation correlation is 0.1 or 0.3. This is particularly criti-

cal as it turns out to be the plausible range of correlations

observed in simple cognitive tasks performed by human

participants (Goulet & Cousineau, 2019). Table 1, sixth and

seventh columns, indicates the observed left and right re-

jection rates averaged across the 250 scenarios.

The eighth column also shows the average ratio of the

left rejection rate onto the right rejection rate. If both rates

were roughly equal all the time, that ratio would be near

1:1. However, this is not the case for Morris (2000) and Al-

gina and Keselman (2003) methods, with averaged ratios

of 2.5 and 1.8 to 1, respectively. These average ratios hide

more extreme differences. For example, for a very large ef-

fect size (δ = 1.333) and a small sample size (n = 15), the
Morris (2000) ratio is about 4 to 1 in the plausible range of

correlations (0.1 and 0.3): The left rejection rate is less than

1% whereas the right rejection rate is above 3.5%. The Al-

gina and Keselman (2003) method is barely less extreme.

As seen, the MAG method shows much smaller differ-

ences between the left and the right rejection rates (with

an average ratio of 1.08:1). Still, the right rejection rates are

influenced by the amount of correlation, showing a depres-

sion for correlations of about 0.5 to 0.9. The last column of

Table 1 indicates the standard deviation in the ratios. It

shows that this 1.08:1 ratio is closer to be a constant (stan-

dard deviation for MAG almost nine times smaller than for

the Algina and Keselman (2003) method and 17 times more

stable than the Morris (2000) method, respectively).

All the other methods had left and right rejection rates

moderately equal with mean ratio ranging between 0.72:1

and 1.37:1 with standard deviations at least 2.5 times

smaller than the Algina and Keselman (2003) method.

Part II: Interval boundaries and interval widths

In this second Results section, we examine the bound posi-

tions. From these, it will be possible to examine the width.

We can also compare the estimated positions with the true

positions. Indeed, in all the scenarios, the true parame-

ters of the simulations are known. Thus, we get access to

two distributions. First, the sampling distribution of dp is
a noncentral t distribution with degree of freedom 2/(1 +
ρ2)(n − 1) and noncentrality parameter δ

√
n/(2(1− ρ))

(Cousineau, 2020b). From it, the 2.5% and 97.5% quantiles

of the observable dp can be determined. Second, follow-
ing Lecoutre (1999, 2007; see also Poitevineau & Lecoutre,

2010), the predictive distribution is known as well. This

distribution describes the parameters that could have gen-

erated a given observation worth dp. It is a Λ′ distribution
with the same degree of freedom as above and with non-

centrality parameter dp
√
n/(2(1− ρ)). Consequently, the

theoretical 2.5% and 97.5% limits of all possible δ, that is,
the 95% confidence interval, can be determined. This dis-

tribution was examined in the context of between-subject

designs dp in Cousineau and Goulet-Pelletier (2020).
In the simulations, the standard error of the average

lower bounds within a scenario was 0.001 on average and

the standard error of the upper bound was likewise 0.001.

The results reported herein are therefore accurate to twice

this figure, ± 0.002 (Cousineau, 2020a). The widths be-

ing the difference between the two bounds are accurate to

± 0.004.
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Table 3 Statistics with regards to bound positions and width across the 250 scenarios

Left bound positions Right bound positions Mean

Method Mean Error w/r to t′ Error w/r to Λ′ Mean Error w/r to t′ Error w/r to Λ′ width

Morris (2000) 0.020 -0.050 (-3.9%) -0.025 (-2.1%) 1.353 -0.023 (-2.0%) 0.075 (6.1%) 1.333

Algina & Keselman

(2003)

0.036 -0.034 (-2.6%) -0.010 (-0.8%) 1.324 -0.052 (-4.2%) 0.046 (3.8%) 1.287

Goulet-Pelletier &

Cousineau (2018)

0.078 0.008 (0.6%) 0.033 (2.6%) 1.351 -0.025 (-2.2%) 0.073 (5.9%) 1.273

MAG 0.017 -0.053 (-4.1%) -0.029 (-2.3%) 1.404 0.028 (1.9%) 0.126 (10.2%) 1.387

t′ 0.067 -0.004 (-0.3%) 0.022 (1.7%) 1.382 0.006 (0.2%) 0.104 (8.5%) 1.315

Λ′ 0.058 -0.013 (-0.9%) 0.013 (1.0 %) 1.306 -0.070 (-5.6%) 0.028 (2.3%) 1.248

Pivotal of t′ 0.058 -0.013 (-0.8%) 0.015 (1.2 %) 1.306 -0.070 (-5.8%) 0.026 (2.1%) 1.244

Adjusted Λ′ 0.029 -0.041 (-3.2%) -0.016 (-1.3 %) 1.313 -0.066 (-5.2%) 0.035 (2.7%) 1.284

Observed

quantiles

0.0706 1.376 1.305

Theoretical t′

quantiles

0.0704 1.3793 1.3089

Theoretical Λ′

quantiles

0.0455 1.2777 1.2322

Note. Note: The percent of errors are relative to the width of the interval. Negative errors denote underestimation. Left
is the 2.5% limit and right is the 97.5% limit. The theoretical t′ quantiles are the bound positions of the 2.5% and 97.5%
sampling distribution of dp based on the true t

′
distribution averaged over the 250 scenarios. The theoretical Λ′ quantiles

are the bound positions of the 2.5% and 97.5% predictive distribution of δ based on the true Λ′ distribution averaged over
the 250 scenarios.

Left and right bounds
Table 3 shows the mean lower and upper bounds of the

intervals obtained from each method, averaged across the

250 scenarios. It also shows, three lines before the end,

the actual limits that contained the most central 95% of the

100,000 simulated dp, again averaged across the 250 sce-
narios.

The actual limits match well the theoretical quantiles

of the sampling distribution given on the line before last,

which is not surprising. The t′method estimated these lim-
its with less than 0.3% of error, even though it estimated

these using an estimated r parameter rather than the true
ρ parameter. Note that t′ underestimated the lower bound
and overestimated the upper bound so that it is a conser-

vative estimate of the sampling distribution’s quantiles.

The second method most apt to estimate the lower

quantiles was the Goulet-Pelletier and Cousineau (2018)

method. It is more than 5 times more precise than the

Algina and Keselman (2003) and Morris (2000) methods.

Regarding the upper quantiles, the Morris (2000), Goulet-

Pelletier and Cousineau (2018), and MAGmethods are sim-

ilarly moderately precise. Thus, we have the paradoxical

situation that the worst technique to determine a confi-

dence interval, Goulet-Pelletier and Cousineau (2018), is

the second best one to determine the range of possible

values that the dp statistic can take. These bounds depict
sample-to-sample variations in the observed dp. When fo-
cusing on estimation rather than significance (Cumming,

2014), what is desired is a range describing the plausi-

ble values of a statistic assuming that the one observed

is representative of the population parameter. It there-

fore affords a measure of precision. Thus, we call intervals
based on the sampling distribution precision intervals, as
opposed to confidence intervals which are focused on sig-

nificance.

Focusing on the theoretical quantiles of the predictive

distribution (last line of Table 3), four techniques are rea-

sonably good at estimating these bounds on average, the

Algina and Keselman (2003; on the left side more than on

the right side), the Λ′ and Pivotal of t′, and the Adjusted Λ′

methods with errors of estimation of about 3.5% (consider-

ing both left and right errors of estimation). These bounds

are the true confidence interval bounds. Thus, depending

on what type of interval is sought, the best methods are not

the same.

Interval width
Table 3 also gives the mean width across the 250 scenarios

for each method. Λ′ and Pivotal of t′ both have the nar-
rowest intervals, quite similar to the theoretical width pre-

dicted from the predictive distribution (last line of Table
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3). Although the width is adequate, these two techniques

have their intervals shifted up, overestimating both lower

and upper bounds by about 1% and 2% respectively. Al-

gina and Keselman (2003), Goulet-Pelletier and Cousineau

(2018), and the Adjusted Λ′ have the second best widths.
Algina and Keselman’s (2003) width is smaller owing to its

right-to-left ratio much different from 1. Thus, its lack of

symmetry benefited this method, as anticipated (see Figure

1). This shows that narrow width is a conflictual attribute

relative to symmetry. Width is a fair attribute to consider

only when comparing methods with similar symmetry.

Summary

First thing to note is that both Λ′ and Pivotal of t′ re-
turned near identical results with all the indicators con-

sidered herein (always within the precision of the results

± 0.15% for the rates and ± 0.001 for the bound positions).

Thus, these techniques are indeed the same, as shown by

Lecoutre (1999). These two techniques return exact con-

fidence intervals in between-subject designs (Cousineau &

Goulet-Pelletier, 2020).

From MAG, the morph technique borrowing elements

from Morris (2000), Algina and Keselman (2003) and

Goulet-Pelletier and Cousineau (2018), we learn that mod-

eling the symmetry in the tails is important to obtain valid

non-rejection rates (i. e., above γ). Morris’s (2000) method,
using a symmetrical distribution is sometimes invalid and

has the most important imbalance regarding left and right

rejection rates. Further, we learn that using 2(n−1) as de-
grees of freedom was a mistake when the purpose is to get

a confidence interval but was a reasonable recommenda-

tion when the purpose is to get a precision interval (Goulet-

Pelletier & Cousineau, 2018).

In this text, we studied eight methods to get intervals.

Only two seemed to be valid methods, MAG and Adjusted

Λ′. We based our assessment on three attributes: Accu-
racy, symmetry in left and right rejection rates, and to a

lesser extent, width. The results are summarized in Table

4. As seen, none of the methods is exact. The four new pro-

posals were asymptotically exact confidence intervals but

three were pseudo for smaller sample sizes, having liberal

non-rejection rates.

The Adjusted Λ′ method showed good properties as a
confidence interval method (asymptotically accurate, sym-

metrical left and right rejection rates). It was valid (lib-

eral or exact) in all the 250 scenarios examined. However,

its two adjustments are weakly justified, so that it is an ad
hoc method (we are still searching for a formally justified
method). On the other hand, the t′ method showed unsur-
passed performance as a precision interval.

We mention before concluding that the expression

"coverage level" often attached to confidence intervals is

ambiguous (and we avoided it in this text, preferring con-

fidence level). It could designate the non-rejection rate of

the true population parameter. However, its meaning is

literally "howwell it covers the possible results". Thus, this

expression is actually referring to boundary positions. It

would actually describe very well the level γ of a precision
interval. As was seen by our results, the two meanings are

not interchangeable. Thus, great care should be exercised

when using this expression.

General Discussion
What should we do with dD?

Herein, we gave no attention to the second version of the

Cohen’s d, the dD. This choice was motivated by two prin-
ciples. (i) Effect size estimates should be universal and, in

particular, independent from the experimental design so

that they can be compared irrespective of how they were

estimated. (ii) Intervals are used to describe the preci-

sion of the study; thus, interval estimation should be cus-

tomized to match the experimental design, not the effect

size estimation. It explains why effect sizes are indepen-

dent from sample size, but intervals are adjusted using

sample size. Likewise, effect sizes should be independent

of the procedure used to get the sample (stratified, clus-

ter, random, etc.) but intervals should be adjusted by the

sampling procedure (Cousineau, 2017; Cousineau & Lau-

rencelle, 2015).

Because dD is only defined in within-subject design, it
is dependent on the design and thus should be avoided.

There is a non-null risk that both measures be confused

and compared inadequately. Because within-subject de-

signs generally afford more power and more precise es-

timations, these designs should return shorter intervals,

which is the case with dp as soon as correlation is positive
(Cousineau, 2019). The fact that there exists an exact confi-

dence interval for dD is an important practical advantage.
However, we believe that it does not outweigh the impor-

tance of the above two theoretical principles.

Two sorts of intervals

The results showed that interval widths can be exam-

ined with respect to two different theoretical perspec-

tives, the sampling distribution or the predictive distribu-

tion. The second, underlying the confidence interval cre-

ated by Neyman (1934), is defined under logic similar to

null-hypothesis statistical testing (NHST). It seeks intervals

which would contain the true population parameter a cer-

tain proportion of times. A crude distinction between con-

fidence interval and NHST is that NHST seeks a region of

rejection centered on the null hypothesis whereas confi-

dence interval seeks a region of rejection centered on the
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Table 4 Attributes of a confidence interval and results with regards to five methods.

Attributes

Type Accurate? Asympt. accurate? Symmetry? Short width?

Morris (2000) Pseudo † NO NO NO NO

Algina and Keselman (2003) Pseudo † yes NO NO yes ‡
Goulet-Pelletier & Cousineau (2018) Pseudo NO NO yes yes

MAG VALID NO NO yes NO

t′ Pseudo NO yes * yes NO

Λ′ Pseudo yes yes ** yes yes

Pivotal of t′ Pseudo yes yes ** yes yes

Adjusted Λ′ VALID yes yes ** yes yes

Note. Note:
*: Accurate to within 1% when n ≥ 25;
**: Accurate to within 1% when n ≥ 15.
†: These methods are invalid in situations where ρ is close to 1. This is little plausible in the psychological sciences,
but might be a plausible situation in other disciplines.

‡ : However, the left rejection rates are much smaller than the right rejection rates, favoring shorter intervals.

observed statistics. In both cases, the determination of the

zone of non-rejection is defined through a critical p value.

Basing scientific research on statistical inference and

on critical p values has been questioned in the recent

decades. First, Cumming, with his famous dance of the p
value, argued convincingly that the p value is a very un-
stable sample statistic which varies wildly across samples.

Second, many ascribed the replication crisis to a blind re-

liance on thresholds to which are attached decisions to ac-

cept (sic) or reject a theory. Amrhein et al. (2019) argued

that p-value thresholds should be abandoned and that con-

fidence intervals should be renamed compatibility inter-
vals to emphasis the fact that inferences must reflect a con-
tinuum of possibilities. Third, others have argued that a

major problem with p values is that they are poorly under-

stood (e.g. Gigerenzer, 2004; Haller & Krauss, 2002).

An alternative approach is to estimate, from the ob-

served statistics, an interval which is likely to contain

other, future, results. This effectively replaces a problem

of inference with a problem of estimation: can we estimate

the quantiles which delimit all the possible results compat-

ible with a population inferred from the observed statistics

and the experimental design? Analogous to confidence in-

tervals, we set a desired coverage level for the interval, for

example, a coverage of 95%, with (of course) equal left and

right rejection rates.

We call such approach to interval estimation a preci-

sion interval. It is based on the assumption that the ob-

served statistic is maximally representative of the popula-

tion under scrutiny. Precision intervals are to estimation

what confidence intervals are to inference.

The simulations showed that the t′ method estimates
precision intervals very precisely. One advantage of preci-
sion intervals is that they are unique: Their widths do not

have to be the shortest; they must only match the statistic’s

spread. With respect to Cohen’s dp, the precision interval
obtained from the t′ method is exact.
Despite their conceptual differences, the boundary po-

sitions obtained from confidence intervals and from preci-

sion intervals are rather similar. For example, in the sit-

uation where δ = 1, ρ = .3 and samples of size 25, the
confidence interval of the theoretical predictive distribu-

tion puts the limit at 0.468 and 1.504 whereas the theo-

retical sampling distribution puts them at 0.526 and 1.574.

We have to examine the second decimal to see differences

between the methods. A recent examination of measure-

ment precision suggests that psychology experiments do

not have this amount of precision (Cousineau, 2020a). Con-

sequently, the difference between precision intervals and

confidence intervals is immaterial in practice.

Symmetry vs. width

Neyman, who laid down the theory of confidence interval,

favored minimal width.
2
We argue that comparing meth-

ods using width makes sense only if all have the same left

and right rejection rates. When the rejection rates are un-

equal, how can we evaluate their width fully?

Instead, we believe that Neyman should have added

the attribute of equal left and right rejection rates. We

consider desirable that rejections should occur equally

2
Neyman (1934) mentioned another attribute not considered herein (p. 563): that the confidence interval be based on a table or an easily computed

function. Whereas in the 1930, a room filled with computers working day and night estimating the noncentral t distribution, the hypergeometric
function or the beta incomplete function was a concern; this concern is receding rapidly with electronic computers and more efficient algorithms.

The Quantitative Methods for Psychology 632

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.p051


¦ 2021 Vol. 17 no. 1

frequently for too-small estimates than for too-large esti-

mates. Imagine a manuscript in which the researcher per-

forms a t test with an alpha level of 5% but decides that
this alpha is split 0.5% on the left and 4.5% on the right. A

reviewer reading that would definitely raise a red flag, and

if published, the results would raise suspicions. This is ac-

tually not illegal and no written rule forbids this unequal

division of alpha; however, the general acceptance is that

rejection rates should be evenly distributed on either side.

Similarly, in the psychological sciences, we are generally

interested in testing effects against null effect. Thus, an in-

terval will more probably be used to check its lower limit

(actually, the limit pointing towards zero, which would be

the lower limit when the effect is positive). As such, any

limits that are not evenly distributed unknowingly trans-

mit a biased picture of the result. If the lower limit has,

say, a rejection rate of 0.5% (instead of the expected 2.5%

for a 95% confidence interval), then this limit is actually far

more conservative than anticipated. It would correspond

to the limit of a 99% confidence interval whose limits are

evenly divided between extremities.

Conclusion

What we retain from this extensive study of confidence

intervals is that we still have not found an exact confi-

dence interval method for the Cohen’s dp in within-subject
design. If validity is essential, then MAG or Adjusted Λ′

are two adequate methods; if asymptotic accuracy is de-

sired, then the t′, the Λ′ and the Adjusted Λ′ methods are
adequate. In contrast, for between-subject designs, exact

methods are known, the Λ′ (Lecoutre, 1999) and the Piv-
otal of t′ (Steiger & Fouladi, 1997; explored in Cousineau
& Goulet-Pelletier, 2020). As argued by Neyman (1941), a

method whose nonrejection rates would be exactly 95% is

in principle possible for continuous distributions. Thus,

additional work may improve or replace the current meth-

ods. As the distribution of dp was published only recently,
new proposals may be on their way. We are excited to see

what other proposals will emerge in the upcoming years.
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Appendix A: The distributions of the standardized difference in within-subject design
Consider a populationD, a normal populationwhosemean is µ and standard deviation is σD. LetD denote the difference
between a samplemean (obtained from n observations) taken from that population and a constant that could be different
from µ, say µ − ∆. Following the work of Hedges (1981), it is known that the distribution of that mean difference
divided by the sample standard deviation SD is a variate, call it dD , which —when scaled by

√
n— follows a noncentral

t distribution,
√
n dD =

√
n
D

SD
∼ tn−1

(
λD =

∆

σD

√
n

)
(4)

in which D is the observed mean difference, n − 1 is the degree of freedom parameter, and λD is the noncentrality
parameter. When there are two repeated measures, say X and Y, both normally distributed with means that are ∆
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apart, with a common standard deviation of σ, and with a correlation ρ, we can compute the differenceD = X−Y and
we are back to the result of Eq. (1). Because σ2

D = σ2
X + σ2

Y − 2σXσYρ Kendall and Stuart (1979) and because variances
were assumed homogeneous in the population (i.e., σX = σY = σ), we obtain

σD =
√

2 σ
√

1− ρ (5)

so that the following equation, identical to Eq. (1), is the main result of Becker (1988; also see Morris, 2000):

√
n dD =

√
n
D

SD
∼ tn−1

(
λD =

∆

σ

√
n

2(1− ρ)

)
(6)

; in what follow, we use δ to denote the population’s true standardized different ∆/σ. In a sample, the relation S2
D =

S2
X + S2

Y − 2SXSYr is still valid. However, it is implausible to maintain that the two sample standard deviations are
precisely equal. Cousineau (2019), and Goulet-Pelletier and Cousineau (2018) ignored this next step (but note that the

difference is generally small). Observing that SX × SY is the geometric mean of the two variances S
2
X and S

2
Y , we can

rewrite

S2
D = S2

X + S2
Y − 2SXSYr

= 2S2
p − 2S2

g r
S2
p

S2
p

= 2S2
p

(
1− r

S2
g

S2
p

)
= 2S2

p (1− rW )

(7)

where S2
p is the pooled variance (i.e., the arithmetic mean of S

2
X and S

2
Y), S

2
g is the geometric mean of the same two

variances and rW = r S2
g/S

2
p is a rectified Pearson correlation which takes into account fluctuations in the sample

variances. The ratio S2
g/S

2
p is very close to —but never exceeds— 1 as the two sample variances should be roughly equal

and as the geometric mean is always smaller than the arithmetic mean. Thus, |rW | never exceeds 1, as expected from a
correlation. From (4), we see that it is straightforward to convert a dD to a dp as

dD =
D

SD
=

D√
2Sp
√

1− rW
= dp

1√
2(1− rW )

(8)

(apart from the rectified correlation used in lieu of the regular correlation, this is the formula reported in Goulet-Pelletier

and Cousineau (2018), Goulet and Cousineau (2019). Whereas we can convert dD into dp (or vice versa) from Eq. (5), we
cannot convert their confidence intervals. Observe that

√
n dp =

√
n
D

Sp
=
√
n
D

SD

√
2(1− rW )

=


√
n D
SD

∼ tn−1
(
δ
√

n
2(1−ρ)

)
×√

2(1− rW ) ∼ ?

(9)

This formulation makes the problem apparent. First, we do not know the distribution of

√
2(1− rW ). Olkin and Pratt

(1958) reported the distribution of r so that the distribution of
√

2(1− r) could in principle be derived but here the
function is based on the rectified Pearson correlation (to derive the distribution, it might be easier to use the relation

2(1 − rW ) = S2
D/S

2
p ). Second, and more critical, both terms are correlated so that integrating them as if they were

independent is not legitimate.An illustration. We show in Figure A.1 an example from simulated scores. We generated one million samples composed
of pairs of normally distributed scores using these parameters: true difference between the means ∆ = 15, σ = 15 (so
that the true population standardized difference δ is 1), correlation ρ = 0.25 and sample size n = 10.
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Figure A.1 One million simulated samples from a population with parameter δ = 1, ρ = 0.25, and n = 10 and the
distribution of dD (left) and dp (right) computed from these.

In the left panel, we show the frequency distribution (yellow histograms) of dD. The dashed line is the theoretical
distribution. The true variance of the differences (Eq. 2) is

√
2 σ
√

1− ρ = 18.37 so that δD = 15/18.37 = 0.816.
In the right panel, we show the frequency distribution of dp. Also shown is the theoretical distribution (in blue dashed

line). The other two lines shows noncentral t distributions with integer degree of freedom n− 1 and 2(n− 1) which are
the limiting distribution when ρ = ± 1 and ρ = 0 respectively.
In sum. The distribution of dp is the distribution of dD rescaled by√2(1− ρ). However, in actual application, we do
not know ρ and using an estimate of it introduces variability, distorting the distribution.
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Figure B.1 Morris (2000) method. (a): nonrejection rate of the true population parameter for 95% confidence intervals as

a function of the population correlation (horizontal axis), the population true effect size (the rows) and the sample sizes

(the columns). The three red arrows indicates scenarios where the proportion of nonrejection is smaller than desired.

(b) left (green square) and right (blue triangle) rejection rates in the same simulations.

(a)

(b)
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Figure B.2 Algina and Keselman (2003) method in the same format as Figure B.1.

(a)

(b)

The Quantitative Methods for Psychology 692

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.p051


¦ 2021 Vol. 17 no. 1

Figure B.3 Goulet-Pelletier and Cousineau (2018) method in the same format as Figure B.1.

(a)

(b)
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Figure B.4 MAG method in the same format as Figure B.1.

(a)

(b)
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Figure B.5 t′ method in the same format as Figure B.1.

(a)

(b)
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Figure B.6 Λ′ method in the same format as Figure B.1.

(a)

(b)
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Figure B.7 Pivotal of t′ method in the same format as Figure B.1.

(a)

(b)
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Figure B.8 Corrected Λ′ method in the same format as Figure B.1.

(a)

(b)
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