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Introduction
In educational research studies, we often aim at statements

about larger populations. For example we compare com-

petencies of students belonging to different school types or

contrast students’ motivation in urban and rural areas. In

an ideal world, we would test or interview all students of

the respective groups for those analyses and then report

the results based on that data. However, in reality, time

and other resources are often limited and therefore, the

number of students being analyzed is almost always sub-

ject to restrictions. If only a part of the population, i.e. a

sample, is analyzed, certain requirements have to be ful-

filled in order to obtain reliable results nonetheless.

Consider for example a study in which we want to de-

termine the average mathematical competency of students

attending the eighth grade in Austrian secondary schools.

On the one hand, we could test all students attending the

eighth grade in all secondary schools in Austria. On the

other hand, we could restrict the test to a sample of these

students. In the latter case, the average competence of

the sample of students should estimate the average compe-

tence of all students. For achieving a representation which

is as close to the average competence value of all students

as possible, the students in the sample have to mirror the

students in all schools (i.e. the population) as much as pos-

sible.

In educational settings, we face specific challenges in

building samples. Almost always, students having simi-

lar characteristics such as residential area or social her-

itage show homogeneous competencies in comparison to

students with different characteristics. Next to these char-

acteristics, competencies of students attending the same

schools or even the same classes are oftentimes more alike

than competencies of students from different schools and

classes. Capturing this heterogeneity should be the goal of

each sample in educational settings. Famous educational

studies which are based on samples of students are large-

scale studies (i. e. large studies which are used to monitor

competencies of students) as for instance the Programme

for International Student Assessment (PISA; OECD, 2019a),

the Trends in InternationalMathematics and Science Study

(TIMSS; Mullis & Martin, 2017) and the Progress in Inter-

national Reading Literacy Study (PIRLS; Mullis & Martin,

2019).

Preliminary considerations
In addition to being representative, as discussed above, the

quality of a sample also depends on its precision. The pre-

cision of an estimator based on the sample is defined in a

statistical sense. It builds on the idea of drawing a sam-

ple several times (which is a random process), estimating a

descriptive statistic in each sample (e. g. the mean value)

and then calculating the variance between the different es-

timations (i.e. the standard error). In reality, the precision

is not calculated based on multiple samples, but with the
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help of theoretical formulas assuming some characteristics

of the population (e. g., the normality assumption).

Designing a sample with an accurate precision depends

on two (mostly) contradicting aspects: On the one hand,

a sample which is as large as possible increases the pre-

cision (e. g. estimations which are an empirical base for

far-reaching political implications should be fostered by a

high level of accuracy). On the other hand, a sample which

is as small as possible saves the most resources. However,

the estimations obtained from small samples are not very

precise and we should not trust the results.

We can think of two approaches for choosing a sample

with an accurate precision: a) choosing the design that pro-

vides the greatest precision and representativeness with-

out going over budget or b) selecting the most economical

design that provides a predefined level of precision.

In case of a) the researcher would always choose the

largest sample size being possible given the available re-

sources. This is a common scenario in educational settings,

where politics or research funds provide resources for test-

ing e. g. “about 10,000” students. The present tutorial fol-

lows that approach in describing techniques of designing a

sample given a fixed sample size.

Case b) defines an optimization problem that requires

the determination of the sample size as a function of the

estimator’s standard error. In the past, analytical formulas

for standard errors of typical estimators (e.g. means, sums,

differences of means,. . . ) have been developed. However,

for many multivariate statistics (e.g. correlation, regres-

sion coefficients,. . . ) these formulae are only available for

simple randomized sampling (cf. Section “simple random-

ized sampling”). Nowadays standard errors for more com-

plicated statistics in complex sampling designs (cf. Sec-

tion “combing multiple types of sampling techniques”) are

calculated using resampling procedures by means of e. g.

the bootstrap method or Monte Carlo simulations (Hard-

ing, Tremblay, & Cousineau, 2014; Yu, 2003).

This tutorial shows different ways of designing sam-

ples, points out their advantages and disadvantages and

illustrates the approaches with an example data set and

program code in R (R Core Team, 2020). However, this tu-

torial does not show how to analyze the resulting samples.

Analyzing samples is straightforward as long as each ele-

ment i has the same probability πi to be included in the
sample (i. e. πi is called inclusion probability). These sam-
ples are called self-weighting. The easiest self-weighting

samples are simple randomized samples (cf. Section “sim-

ple randomized sampling”). If the probabilities are not

equal for all elements, sampling weights wi = 1
πi
(Lohr,

2010, p. 39) are defined as the reciprocal of the inclusion

probability. The sampling weight of element i is compa-
rable to the number of elements in the population which

are represented by element i in the sample. An exam-
ple of a sample with different inclusion probabilities (i. e.

sampling weights) is given in the case of cluster random-

ized sampling (cf. Section “cluster randomized sampling”):

The sample of students is collected by drawing schools ran-

domly and including all students of these schools in the

sample. In the first step of drawing schools, large schools

attended by many students have a higher probability to be

chosen. This means that each student attending a large

school has a higher probability to be in the sample. How-

ever, as we do want each student to have the same prob-

ability to get into the sample, the existing inequalities are

balanced by including the sampling weights wi = 1
πi
in

analyses of the sample. For example sampling weights are

incorporated in calculating point estimates, e. g. for the

population total or the population mean and their stan-

dard errors. Defining wi as reciprocal of the inclusion
probability is called probability proportional to size (e. g.
Lohr, 2010). There are several books showing how to ana-

lyze the samples and presenting much more in-dept infor-

mation than this tutorial (e. g. Cochran, 1963; Lohr, 2010;

Singh & Mangat, 2013; Thompson, 2012; Wu & Thompson,

2020, p. 231). Especially I would like to mention the book

of Lohr, 2010, which I found very helpful for my work.

Basic methods of sampling
If the goal is taking a sample of n students from the pop-
ulation of N students, there are at least three basic ways

to do so, which will be presented in the following. All of

them have their own advantages and disadvantages. Some

R Code is given, which illustrates the three techniques with

an example data set. The example shows how to draw stu-

dents from Austrian secondary schools following the pre-

sented sampling techniques.

Simple randomized sampling
Simple randomized sampling (without replacement) is a

straightforwardway to randomly draw n out ofN students
(Lohr, 2010, p. 33). A simple randomized sample is easy to

draw and easy to analyze. As each student has the same

probability to be drawn, the sample is self-weighting, thus

the variable to be analyzed can directly be calculated in

the sample and the estimation is unbiased (Lohr, 2010, p.

36). Drawing a simple randomized sample is the method

of choice if no or little information about the data is given.

In practice, simple randomized sampling is rarely used be-

cause there are almost always more efficient techniques.

Nevertheless, simple randomized sampling is used as a

benchmark to which other designs are compared. Simple

randomized sampling is also the basis of more complex de-

signs and many formulas (e. g. for standard errors) are

only exact when combined with this form of sampling (be-

The Quantitative Methods for Psychology 2872

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.3.p286


¦ 2021 Vol. 17 no. 3

cause it is self-weighting, see the last section).

Stratified sampling
If information about different groups in the population is

given, one may want to cover all groups within the sam-

ple. In our example of drawing students from Austrian

secondary schools, research has shown that there exists

an average difference between the competencies of stu-

dents attending the two types of secondary schools found

in Austria. Thus, in the sample, students of each type of sec-

ondary school should be represented. Procedures leading

to balanced compositions of sub-populations (i. e. strata)

in a sample are called stratification methods. In the follow-

ing, I will present explicit and implicit stratification meth-

ods. Strata are build with respect to a so-called stratifi-

cation variable, which could be e. g. the type of school

students attend, the school size, the area of the school or

the parents income. No clear rules exist for the number

of strata, for the selection of stratification variables or for

which variables to identify as explicit or implicit (Piazza,

2010, pp. 144–146).

Explicit stratification. Explicit stratification involves

building S disjunctive strata with respect to a stratifica-
tion variable (i. e. sub-populations in which each individ-

ual belongs to only one population). Then, separately for

each stratum, samples of size n(s) are drawn, such that∑S
s=1 n

(s) = n. For example, as already mentioned above,
onemay draw students from each type of secondary school

in Austria by building two strata (one strata including stu-

dents from grammar schools and one strata including stu-

dents from comprehensive schools) and sampling students

in each of them separately. The variable to be analyzed is

estimated in each stratum and afterwards, the estimations

are combined to one estimation for the whole sample. For

practical implementation this means that the researcher is

working with two lists of students, i. e. one for students of

each stratum, from which the samples are drawn. These

lists are called sampling lists.

In some studies, the same proportion of students is

drawn for each of the strata, i. e. a proportional stratified

sample is built. However, this is not necessarily required.

If, for example, each stratum should be defined as a sepa-

rate domain of the study (e. g. in one stratum a reading test

is administered while in another stratummath is tested) or

if some strata are very small, the researcher may choose

disproportionate stratified sampling. In contrast to pro-

portional stratified sampling, in disproportionate stratified

sampling, sampling weights have to be included in analy-

ses of the sample.

The advantages of performing explicit stratification are

the following: Firstly, it guarantees to have members of all

defined sub-populations in the sample. This specific selec-

tion of elements increases the sample’s representativeness

(Thompson, 2012, p. 141). Secondly, like an estimation

based on a simple randomized sample, the total estimation,

i. e. the estimation consisting of the estimations of each

stratum, is unbiased (Lohr, 2010, p. 79). Thirdly, an estima-

tion based on a stratified sample may have a higher preci-

sion than an estimation coming from a simple randomized

sample. This is especially true in case of strata in which

the individuals are very homogeneous with respect to the

stratification variable (Cochran, 1963, p. 88).

Implicit stratification. Another method for stratification
is implicit stratification, which is sometimes also called sys-

tematic sampling. For the purpose of conducting system-

atic sampling, the elements of the population (e.g. stu-

dents) are ordered according to the values of an (often-

times continuous) implicit stratification variable (e. g. the

size of the schools the students attend or the number of na-

tive speakers at the schools). Then beginning from a ran-

dom start we choose one element and from thereon each

I-th element is collected. In that systematic process, I is
called the sampling interval. In doing so, we guarantee

that the members of the sample are characterized through

a wide distribution of values of the stratification variable.

If we want to select n students from a population ofN stu-
dents, the sampling interval is calculated as the integer of

I = N
n . The systematic sampling process starts at a ran-

dom numberR lying between 1 and I . From that value on
each I-th student Zh is collected, whose rank is given by

Zh = R+ (h− 1) · I, h = 1, . . . , n.

The advantages of implicit stratification are very sim-

ilar to that of explicit stratification: It guarantees to cover

the full range of values of the stratification variable, it leads

to an unbiased estimation (Ross, 1978, p. 116), and it may

have a higher precision than a simple randomized sample.

However, the handling of implicit stratification in contrast

to explicit stratification may be easier because of working

with only one sampling list. Nonetheless, explicit stratifi-

cation may be preferred over implicit stratification in the

following cases: Firstly, if a predefined sample size has to

be adhered to. Secondly, if the sample has to contain el-

ements from each stratum. Thirdly, if a sample with sub-

populations being disproportional to the population has to

be drawn. In large scale assessments, both stratification

methods are often applied together. That is, the population

is divided into explicit strata at first and then each explicit

stratum is ordered according to an implicit stratification

variable. One argument in favor of that approach is that

it increases the number of stratification variables while re-

ducing the number of sampling lists.
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Cluster randomized sampling
Other reasons not to select a simple randomized sample

are high administrative effort and expensive travel costs.

In our example of sampling students in Austria, the stu-

dents included in a simple randomized sample might be

spread over the whole country. In the worst case only one

student is drawn per school and thus has to be tested. A

solution is given by cluster randomized sampling. In clus-

ter randomized sampling (Lohr, 2010, pp. 165ff.), existing

clusters in the data are considered for designing the sam-

ple. In educational settings, naturally occurring clusters

are students in classrooms and classrooms in schools. An-

other example may be a political survey in Austria, where

the individual respondents live together in households. In

cluster randomized sampling the individual elements (e.

g. students) are only part of the sample if their cluster (i.

e. school or classroom) is selected. The respective clusters

which are drawn, e. g. schools or households, are often-

times called primary sampling units (Lohr, 2010, p. 165).

Cluster randomized sampling is widely used if a) it is

difficult or expensive to construct a sampling list of the in-

dividual elements (e. g. locating and registering all people

in Austria suffering from diabetes for a medical study) or

b) the population is widely distributed across the country

and appears in natural clusters, which are less expensive

to observe (e. g. in terms of travel costs and administrative

resources, it is much cheaper to test whole classes than in-

dividual students). However, cluster randomized sampling

has also some disadvantages: Firstly, in contrast to strat-

ification, cluster randomized sampling decreases the pre-

cision of the sample. In taking several individuals from

the same cluster, we partly repeat information, as indi-

viduals in clusters tend to be more similar than randomly

drawn individuals. Secondly, it is not possible to analyze

a cluster randomized sample in the same direct way as a

simple randomized sample. This would lead to standard

errors which are much smaller than they should be (the

case for one-stage cluster randomized sampling was math-

ematically derived in Cousineau and Laurencelle, 2016).

Thus for analyzing a cluster randomized sample, sampling

weights have to be considered, which involve the number

of the individual elements and the size of the clusters.

One-stage cluster randomized sampling. In one-stage

cluster randomized sampling, every element within a sam-

pled cluster is included in the sample. That is, every in-

dividual belonging to a cluster j, j = 1, . . . , J , which is
drawn, is automatically selected. A main consideration in

cluster randomized sampling concerns the number C of
clusters to draw for obtaining a sample of size n, e. g. n
students from C schools. For calculating C we collect in-
formation of howmany individuals we select on average if

we include one cluster j (i. e. one school j) in the sample.
Then the number C of schools to draw is given by

C =
n

1
J

∑J
j=1Nj

,

where J denotes the number of schools in the population
and Nj the number of students in cluster j. Finally, C
schools are drawn and all students attending these schools

are selected for the sample.Two-stage cluster randomized sampling. One may ex-

tent the logic of one-stage cluster randomized sampling

to two-stage cluster randomized sampling, in which only

some elements of the selected clusters are included in the

sample. An example of two-stage clustering in educational

settings is the following: After drawing schools as primary

sampling units (first stage), we do not include all students

attending these schools in the sample, but perform a ran-

dom sample (second stage) of students or classes in the se-

lected schools and include only these students in the sam-

ple. If one wants to select exactly one class per school and

reach a sample of n students, the number C of schools (i.
e. classes) has to be calculated. This time the number of

schools to draw is given by

C =
n

1
K

∑J
j=1

∑Kj

k=1Njk
,

where K is the number of classes in the population, Kj

is the number of classes in school j and Njk the number
of students attending class k, k = 1, . . . ,Kj , in school j.
As a generalization of two-stage cluster randomized sam-

pling sometimes multistage cluster randomized sampling

is used, which extends the procedure described above

from two to more stages (Thompson, 2012, p. 171 ff.)

Basic examples
This section illustrates the previously introduced basic

sampling techniques with the help of example data from

large-scale assessment. For drawing such samples in prac-

tice, Listing at the end includes suitable R code (R Core

Team, 2020). The example data is included in the R package

LSAmitR (Kiefer, Robitzsch, Trendtel, & Fellinger, 2020),
which we load and prepare in Listing , lines 1 to 14.

The LSAmitR package was built to illustrate empiri-
cal methods applied in large-scale assessments which are

presented in the book Large-Scale Assessment mit R (Breit
& Schreiner, 2016). The data set accompanying chapter

2 includes a list of students, called schueler and a list
schule of schools these students are attending. Although
these data sets are artificial, they are constructed to closely

represent a real survey of educational standards in the

eight grade in Austria. In the examples which follow, we

assume that the list ofN students (Line 5) holds all popula-
tion members, i. e. all students attending the eighth grade
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Table 1 Comparison of population and different samples for example data set in Section “Basic examples”.

students schools classes distribution of students in strata

N J K N (1) N (2) N (3) N (4)

Population 51644 1327 3466 28103 7425 7678 8438

(54.4%) (14.4%) (14.9%) (16.3%)

n j k n(1) n(2) n(3) n(4)

Random 10000 1317 3262 5461 1421 1476 1642

(54.6%) (14.2%) (14.7%) (16.4%)

Explicit 10000 1255 2871 2500 2500 2500 2500

stratification (25.0%) (25.0%) (25.0%) (25.0%)

Implicit 10000 1203 3333 5354 1439 1531 1676

stratification (53.5%) (14.4%) (15.3%) (16.8%)

One stage 9978 257 666 5083 1515 1518 1862

Cluster (50.9%) (15.2%) (15.2%) (18.7%)

Two stage 9875 671 671 6062 1551 963 1299

Cluster (61.4%) (15.7%) (9.7%) (13.2%)

Note. The sample size n in cluster randomized sampling is given for one specific random seed. Over 50 different
random seeds, n ranged from 9428 to 10521 in one-stage cluster randomized sampling and from 9665 to 10006 in two-
stage cluster randomized sampling.

in Austria in one specific year. Because theLSAmitR pack-
age has German descriptions the variable names are trans-

lated (Lines 8 + 9) and variables for the number of students

N and schools J are defined (Lines 11 + 12). Finally our
goal is to draw samples of students of size n (Line 14) fol-
lowing the theoretical approaches of Sections “simple ran-

domized sampling”, “stratified sampling” and “cluster ran-

domized sampling”. Characteristics of the different sam-

ples are compared with each other and with the popula-

tion in Table 1. The population given in the data yields

N = 51644 students of grade eight, which attend J = 1327
schools in altogetherK = 3466 classes of grade eight.
The data set students with the IDs indexstudent

of the N students in grade eight includes some more in-

formation for each student: indexschool shows the
ID of the school a student is attending and indexclass
the ID of the class she or he is attending. In addi-

tion classinschool provides a serial number of eighth
grade classes within each individual school (this informa-

tion can also be derived from indexclass). Thus pos-
sible values for classinschool in a school with three
eighth grade classes are 1, 2 and 3. Furthermore, the data

set students holds information about the gender of each
student (we will not need this variable in the examples),

and includes a binary variable, called participation,
indicating if the student has taken part in the educational

standards test (she or he may have been ill). The informa-

tion about the student’s participation in the test is actually

not known at the time the researcher draws the samples.

Thus we will not use this variable in the examples. The last

information given in the students data set is the vari-
able strata. This is a stratification variable belonging to
the school the student is attending. Except for the data-

level (student instead of school) this information is redun-

dant with the variable strata in the ”schools” data set
described next.

The second data set schools holds information

about the J schools the students are attending (Line 6):
indexschool gives the school IDs needed to merge
the information of the two data sets schools and

students. Furthermore, for each school the number
numberstudents of eighth graders and the number
numberclasses of classes in the eighth grade is given.
The columnindex is a serial number of the schools, which
we do not need. The stratification variable strata in-
cludes four categories defining four strata. The strata are

defined by using school type (grammar school/comprehen-

sive school) and school location (rural/urban) as explicit

stratification variables. In building all possible combina-

tions, we end up with four explicit strata (category 1: com-

prehensive school × urban, category 2: comprehensive

school × rural, category 3: grammar school × urban, cat-
egory 4: grammar school × rural). All schools are dis-

tributed within the four strata, with strata 1 including sig-

nificantly more students than the other three; see Table 1.

First we draw a simple randomized sample of n =
10, 000 students (Listing , Lines 16 + 17). Table 1 shows that
the students in the sample are widely distributed over all
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schools and classes. The distribution of students in strata

in the sample is similar to the distribution in the popula-

tion.

In cases in which the sample in each strata should have

the same size or where we want to guarantee a good cover-

age of all strata we may apply explicit stratification. There-
fore, the set of students is split into four disjunctive sets of

students from each stratum and from each of these sets a

random sample of (e. g.) n/4 = 2500 is drawn (Lines 19
– 24). The sample resulting from explicit stratification is

evenly distributed across the strata (see Table 1), but again

includes students from almost all schools and classes.

If, in another scenario, the researcher wants to ensure

that the students in the sample attend schools of all sizes,

she/he may use implicit stratification. For implicit stratifi-
cation the list of students is ordered by the size of schools

they attend, starting with the largest school (Lines 26 –

29). Then the size of the sampling interval is calculated

(Lines 30 + 31), such that the final sample includes about

n = 10, 000 students, and a random start is determined
(Line 32). Next, by applying the sampling interval students

are chosen (Lines 34 + 35) and a final list of the sample is

composed (Lines 35 + 36). The students in that sample at-

tend less schools than in simple randomized sampling and

explicit stratification.

If minimizing travel costs is the decisive criterion of

building the sample, we apply one-stage cluster random-
ized sampling. For one-stage cluster randomized sampling,
the number of schools to draw is calculated by taking into

account the average school size in the population (Lines 38

– 41). Next, the schools are randomly sampled (Lines 42

+ 43) and all students attending the drawn schools are in-

cluded in the sample (Lines 44 + 45). The number of schools

attended by students in that sample is very small compared

to simple randomized sampling and the two stratification

samples (cf. Table 1).

Given a fixed number of students, one may want to ex-

ploit advantages of one-stage cluster randomized sampling

and still increase the precision of the sample at the same

time. In this case we use two-stage cluster randomized sam-
pling, in which for example only one class per school is
added to the sample. In order to do so, we calculate the

number of schools to samplewhile considering the average

class size in the population (Lines 47 – 49). After drawing

the calculated number of schools in the first stage (Lines 50

+ 51), exactly one class is drawn from each sampled school

(Lines 52 – 55) and a final list of the sample is built (Lines 56

+ 57). The two-stage cluster randomized sample includes

more schools than the one-stage cluster randomized sam-

ple (Table 1), and, as we take one class per school, the num-

ber of schools and classes involved in that sample is equal.

Combing multiple types of sampling techniques
This section describes complex sampling (Lohr, 2010, pp.

281 ff.), which is for example used in large-scale assess-

ments such as PISA, PIRLS and TIMSS. In complex sampling

the basic methods described in Section “basic methods of

sampling” are combined to benefit from the advantages of

the different methods.

Identifying constraints when planning a complex sam-
pling design
Sampling in educational settings inherits various chal-

lenges, which can be solved by complex sampling. Firstly,

researchers want to reduce travel costs and administra-

tion time. However, a sample which includes almost all

schools and classes would not save travel costs, and testing

only a few students in each class would not be economic

in terms of administration resources. Thus, instead of a

random sample, a cluster randomized sample is used. Sec-

ondly, to enhance the precision of the sample, a two-stage

cluster randomized sample is employed instead of a one-

stage cluster randomized sample. Students in one school

are likely to be more similar in their background variables

and thus in their competencies than students from differ-

ent schools. Hence for the sample, only one or two classes

or a random sample of students is collected in stage two

of the cluster technique, which leads to collecting more

schools and results in a higher variance of the students’

competencies. Thirdly, one wants to increase the repre-

sentativeness of the sample. From research findings, it

is well-known that sub-populations of students may show

different average competencies. For example, students at-

tending different types of schools have on average differ-

ent competencies, as well as students attending schools in

rural areas in contrast to urban areas. Therefore, in com-

plex sampling, stratification methods are used to ensure

that the sample covers all sub-populations.

Multistage stratified cluster randomized sampling
Multistage stratified cluster randomized sampling follows

the subsequent procedure, which basically combines the

basic methods given in Section “basic methods of sam-

pling”: In a first step, explicit and implicit stratification

variables are chosen and the associated strata are built.

As described earlier, stratification variables are used to

balance (possible) group-specific differences in the vari-

ables which are measured by the sample (e. g. competen-

cies). There are no strict rules about how many strata to

built. However, existing knowledge about influential con-

ditions should be taken into account. Examples for explicit

strata are urban/rural areas, types of schools, participation

of schools in funding programs or categorized results of a
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reading test. Examples of implicit stratification variables

are school size or the percentage of students with migrant

background attending the school.

In a second step, for each explicit stratum s, the num-
ber of schools J?(s), which has to be drawn to reach a de-
fined sample size, is calculated. In order to do so, in each

explicit stratum the average number of students is calcu-

lated which would be added to the sample if an arbitrary

school is drawn. In this step two additional aspects have to

be considered: Firstly, in most complex samples not all stu-

dents of the drawn schools are included in the sample. In-

stead, in a second stage of the sampling process, a smaller

set of students in the selected schools is sampled. Thus, the

number of students being added to the sample of a drawn

school is smaller than the whole number of students at-

tending that school. Secondly, if in an explicit stratum s
also implicit stratification is applied, following the proba-
bility proportional to size assumption (which is most com-
mon, cf. Section “preliminary considerations”), the schools

in that stratum have different probabilities of getting into

the sample. For example a large school withmany students

has a higher probability for being drawn in the context

of implicit stratification than a small school. That is, it is

more likely that a higher number of students (from a large

school) is added to the sample than a small number (from

a small school). By including weights while calculating the

average number of expected students per school, the effect

of different inclusion probabilities is taken into account.

In a third step, in each explicit stratum s, the calcu-
lated number of schools J?(s) is drawn. If there is no im-
plicit stratification variable, simple randomized sampling

of schools may be conducted. In case of an implicit stratifi-

cation, firstly students are sampled via a sampling interval

and secondly the schools attended by the drawn students

are identified and taken for the sample. For construct-

ing the sampling interval, we order the list of students in

stratum s according to the implicit stratification variable.
Without limitation of generality, we assume that the school

j, j = 1, . . . , J (s)
, in stratum swith the largest value of the

implicit stratification variable includesN
(s)
1 students up to

the school with the smallest value of the implicit stratifi-

cation variable in s which includes N
(s)

J(s) students. With

J?(s) being the number of schools to draw in stratum s,
the size of the sampling interval I(s) is calculated by the
rounding of

I(s) =
N (s)

J?(s)

where N (s)
denotes the total number of students in stra-

tum s. The systematic sampling process starts at a random
number R(s)

lying between 1 and I(s). From that value,

each I(s)-th student Z
(s)
h is collected, with

Z
(s)
h = R(s) + (h− 1) · I(s), h = 1, . . . , J?(s).

Technically speaking, the identification of the schools at-

tended by the drawn students is implemented with the

help of the so-called cumulative size method (Lohr, 2010,

p. 185). First the set of schools in stratum s is ordered ac-
cording to the values of the implicit stratification variable.

For the j-th ordered school, the cumulative number of stu-
dents is

C
(s)
j =

{
0 , j = 0∑j
l=1N

(s)
l , j ≥ 1

.

Then each school j is identified for which

C
(s)
j−1 < Z

(s)
h ≤ C

(s)
j , h = 1, . . . , J?(s).

Finally in the fourth step, the second stage of the cluster

randomized sampling process is conducted. At each drawn

school, we take a sample of students. This is possible for ex-

ample by randomly drawing whole classes or by perform-

ing a random sample of students.

A complete example
In this example, we want to draw a complex sample

of 10,000 students which satisfies the following assump-

tions: Firstly, to fulfill representativeness issues, the sam-

ple should be balanced across two types of schools (gram-

mar school and comprehensive school) and two different

school locations (urban and rural). The final sample should

include about the same number of students in each of the

aforementioned groups. Furthermore, schools of all sizes

should be in the sample. Additionally, for reasons of travel

costs, we want to draw whole schools. However, to in-

crease precision, a maximum of three classes per school

should be added to the sample. Thus, we need a mul-

tistage stratified cluster randomized sample, because we

will draw two stages of clusters (first schools and then

classes) and we need stratification variables to balance the

sample across different subgroups. For illustration pur-

poses, the same data as in Section “basic examples” is used.

Some R code for implementing complex sampling is given

in Listing .

In step one, the stratification variables are defined. In

our example, we use school type and school location as ex-

plicit stratification variables. In building all possible com-

binations, we end up with four explicit strata. Categori-

cal variables describing the strata are already present in

the student and school data set (category 1: comprehensive

school× urban, category 2: comprehensive school× rural,
category 3: grammar school × urban, category 4: gram-
mar school × rural). Furthermore, we use the size of the
schools as implicit stratification variable, which is given
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through the number of students attending the schools (List-

ing , Lines 1 – 3).

In a second step, for each of the four explicit strata s,
the number of schools J?(s) is calculated which has to be
drawn to reach the defined sample size of 2,500 students

per stratum. This step is the most complicated in the whole

process, because all following steps already have to be con-

sidered. Thus, to reach the defined sample size, we need

some pre-calculations: First, a data set including informa-

tion on the level of strata is formed, which also holds the

number of students in each stratum (Listing , Lines 6 – 9).

Second, for each school the number of students is deter-

mined, which would be added to the sample if the school

is drawn. This step is straightforward for schools with a

maximum of three classes, because in this case all classes

and students would be added to the sample (Lines 11 +

12). For schools with more than three classes, not all stu-

dents (i. e. classes) but only a selection of three classes is

added to the sample. These schools with more than three

classes are identified (Lines 14 – 17). To get the expected

number of students in three arbitrary classes of the iden-

tified schools, the average number of students across all

classes of a school is calculated and multiplied by three

(Line 18). Third, because all schools will be drawn follow-

ing the method of implicit stratification via sampling inter-

val, large schools have a higher probability to be drawn.

Thus, the inclusion probabilities are calculated for each

school (Lines 20 – 22). Then the number of students which

would be added to the sample is weighted with the afore-

mentioned probabilities (Lines 23 + 24). Finally, in each

stratum an average number of students per school is cal-

culated, which is a weighted average of the probabilities of

the schools to be drawn and the expected number of stu-

dents in the schools (Lines 27 + 28).

In the third step, the number of schools J?(s) calculated
in step two is drawn in each explicit stratum by conside-

The selection of different
approaches is primar-
ily a question of the re-
search problem and the
goal to be reached with
the analysis of the sam-
ple. It is not without rea-
son that one also speaks
of “designing a sample”.

ring the implicit stratification variable

school size. This step includes the first

stage of the cluster randomized sam-

pling. For illustration purposes, let us

imagine to line up all students in a

stratum ordered by the sizes of their

schools. We then select students with

equal distances between their positions

in the row: We choose the student at the

position of the sampling interval’s ran-

dom start (Line 34) and then take each

student, whose distance in position to

the first student is a multiple of the

length of the sampling interval (Lines

32 + 33). The length of the sampling in-

terval in each stratum ensures that we

select as many students as we want to draw schools. For

each stratum, the selected positions of the students in the

rows are stored (Lines 35 + 36). Next, for each selected stu-

dent we identify the school she/he is belonging to. In order

to do so, we may imagine that we ask the students stand-

ing in the rows to count through their positions. We save

the positions of each student in the row attending a new

school and thus get a measure of cumulative school size

(Lines 39 – 42). The positions identifying the beginnings

(and the endings) of school membership in the rows of stu-

dents are now compared with the positions of the selected

students. From the position of a selected student down-

wards, we take the next (highest) position which indicates

the beginning of a new school. The respective school is se-

lected. This selection of schools is done for each selected

student and for each stratum (Lines 43 – 51).

Finally, in the fourth and last step, we draw classes in

the schools selected in step three. This step includes stage

two of the cluster randomized sampling. A list of all classes

is prepared (Lines 55 + 56), as well as an indicator showing

if classes have to be drawn (Lines 57 + 58). We distinguish

between two cases: On the one hand, in selected schools

with a maximum of three classes all classes are added to

the sample (Lines 59 + 60). On the other hand, in selected

schools with more than three classes (Lines 61 + 62) a ran-

dom sample of classes is performed. That is, of all classes

in that schools, three are randomly drawn and added to

the sample (Lines 63 – 68). The final sample consists of all

students attending the classes which we identified in this

fourth step.

Summary and further topics
Samples are relevant when not all individuals of

a certain population can be considered, e. g. in-

terviewed or tested. For example, testing the

mathematical competencies of all students attend-

ing the eighth grade in Austria, which

are about 80,000, may be problematic

for researchers in terms of time and fi-

nancial resources. However, good re-

search is characterized by valid results

which can be generalized to the popu-

lation even if not all members of the

population are considered. This step

of generalization is possible if research

is based on an adequate sample taken

from of the population. However, in

many research articles, the rules of

sampling are not applied. Self-selection

often leads to samples which are not

representative of the population. Thus,

the results given in those studies should
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be interpreted with care. Even if the construction of the

sample follows all rules, there may be obstacles in ana-

lyzing complex samples. A famous problem is analyzing

samples from clusters of homogeneous individuals with-

out considering sampling weights. This procedure would

lead to standard errors which are smaller than they should

be and in turn to results which are significant even if they

should not.

The simplest method of drawing a sample is simple ran-

domized sampling. Although drawing and analyzing a ran-

domized sample is relatively easy, this method has disad-

vantages: It may lead to samples in which the individuals

are widely spread across the country, which may lead to

enormous travel costs. Simple randomized sampling can

also result in samples in which specific subgroups are un-

derrepresented, which leads to a poor representativeness

of the sample. For these and other problems, different

methods of sampling provide solutions (see Section “ba-

sic methods of sampling”). These techniques may even be

combined for more complex contexts (see Section “multi-

stage stratified cluster randomized sampling”). However,

there are no strict rules which methods to apply or to

combine. The selection of different approaches is primar-

ily a question of the research problem and the goal to be

reached with the analysis of the sample. It is not without

reason that one also speaks of “designing a sample”.

In educational settings, the application of sampling

methods has to deal with a great amount of complexity (cf.

Section “combing multiple types of sampling techniques”).

Some complexity is caused by the different levels of the

school system: Students attending classes and classes be-

longing to schools. Furthermore, the school system in-

herits a wide range of groups, which show heterogeneous

characteristics if compared to other groups, but which are

homogeneous inside. The goal of forming a sample is to

maintain this complexity. All these characteristics are in-

cluded in the sampling process of famous large-scale stud-

ies such as PISA (OECD, 2019b, Chapter 4), PIRLS and TIMSS

(Martin, Mullis, & Hooper, 2015, Chapter 3).

In this tutorial I have shown simple randomized sam-

pling, stratification methods (implicit and explicit) and

(multistage) cluster randomized sampling for the case of

a predefined sample size. This is the most common case

in educational settings, because federal finances or re-

search funds only allow for testing or interviewing a spe-

cific number of students. However, in other disciplines, e.

g. medicine, the estimators determined by a sample have

to maintain a given precision. It goes without saying that

the larger the sample the higher the precision. However,

also in these cases it makes sense for economic reasons to

calculate the minimal number of objects to analyze. For

further information see e. g. Lohr (2010; p. 46).

In this tutorial I have not shown how to analyze sam-

ples. As briefly mentioned, analyzing samples is only

straightforward in case of simple randomized samples. In

all other cases, sampling weights have to be included in

the analysis (cf. Section “preliminary considerations”; for

further information e. g. Wu and Thompson, 2020, pp.

115 ff.). Another aspect, which is also solved by including

weights in the analysis of the sample, are non-responses.

If the sample is drawn and the students are tested, several

students might nevertheless not take part in the test (e. g.

because they are ill). This may lead to biased estimations.

Thus, by including weights in the analysis of the sample,

the non-responses are compensated by the results of their

colleagues in class (given the assumption that students in

the same class have similar characteristics). For more in-

formation see e. g. Lohr (2010, p. 258 ff.). Furthermore,

determining standard errors of the estimators in complex

samples may be challenging, as there may exist no analyti-

cal formulas. In these cases, so-called resampling methods

are used. For further information see e. g. Wu and Thomp-

son (2010, pp. 223 ff.).
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Listing 1 R commands for designing samples in basic examples (see Section “Basic Examples”).
1 ## read and prepare data
2 library(LSAmitR)
3 set.seed(2021)
4 data("datenKapitel02")
5 students <- datenKapitel02$schueler
6 schools <- datenKapitel02$schule
7 # translate column names
8 colnames(students) <- c("indexschool", "classinschool", "indexclass", "indexstudent

", "female", "strata", "participation")
9 colnames(schools) <- c("index", "indexschool", "strata", "numberstudents", "

numberclasses")
10 # number of students and schools in population
11 N <- dim(students)[1]
12 J <- dim(schools)[1]
13 # number of students to sample
14 n <- 10000
15

16 ## Simple Randomized Sample
17 randomsample = students[sample(N, n, replace=FALSE),]
18

19 ## Stratified Sampling
20 # Explicit stratification
21 randomsamplestrata <- numeric()
22 for(x in 1:4){
23 randomsamplestrata <- rbind(randomsamplestrata,students[sample(which(students$

strata==x), 2500, replace = FALSE),])
24 }
25

26 # Implicit stratification
27 # order students in terms of the size of schools they attend
28 students <- merge(students, schools, by=c("indexschool", "strata"))
29 students <- students[order(students$numberstudents, decreasing =TRUE),]
30 # length of sampling interval and random start
31 I <- round(N/n)
32 R <- sample(I, 1)
33 # choose students via sampling interval
34 tickets <- (1:n)*I + R
35 # list of sampled students
36 implicitstudents <- students[tickets,]
37
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38 ## Cluster Randomized Sampling
39 # One stage
40 # number of schools to sample to get a sample of about n=10000 students
41 C <- round(n/mean(schools$numberstudents))
42 # randomly sampled schools (clusters)
43 clusteronestageschools <- schools$indexschool[sample(J, C, replace=FALSE)]
44 # take all students in sampled schools
45 clusteronestagestudents <- students[which(students$indexschool %in%

clusteronestageschools),]
46

47 # Two stage
48 # number of classes to sample for n=10000 students
49 C <- round(n/mean(table(students$indexclass)))
50 # first stage: draw C schools
51 firststageschools <- schools[sample(J, C, replace=FALSE),]
52 # second stage: sample one class in each school
53 for(i in 1:dim(firststageschools)[1]){
54 firststageschools$"classinschool"[i] <- sample(1:firststageschools$numberclasses[

i], 1)
55 }
56 # list of students in selected schools and classes
57 clustertwostagestudents <- merge(students, firststageschools,
58 by=c("indexschool","classinschool", "strata"))
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Listing 2 R commands for designing a complex sample (see Section “A Complete Example”)
1 ## Step 1: explicit strata given in data, implicit is school size
2

3 ## Step 2: calculate how many schools have to be drawn in each strata to get a
sample of 2500 (per stratum)

4

5 # Precalculations
6 # (i) define data set for strata, calculate number of students in each stratum
7 strata <- aggregate(schools[,"numberstudents", drop = FALSE], by=schools[,"strata",

drop = FALSE], sum)
8 colnames(strata)[2] <- "numberstudentsstrata"
9 # (ii) calculate expected number of students per school
10 # (ii.1) for schools with less than four classes all students are expected
11 schools$numberstudents.exp <- schools$numberstudents
12 # (ii.2) for schools with more than three classes students of three randomly

choosen classes are expected
13 # identify schools with more than three classes.
14 schools$drawclasses <- 0
15 schools[which(schools$numberclasses>3), "drawclasses"] <- 1
16 ind <- which(schools$drawclasses == 1)
17 schools[ind, "numberstudents.exp"] <- schools[ind, "numberstudents"]/schools[ind,

"numberclasses"]*3
18 # (iii) calculate average number of students in one school for each stratum
19 # (iii.1) calculate the probability of drawing the school in implicit

stratification
20 schools <- merge(schools, strata[, c("strata","numberstudentsstrata")], by="strata"

)
21 schools$partstudentsinstrata <- schools$numberstudents/schools$numberstudentsstrata
22 # (iii.2) weight the number of expected students in each school with probabilty

from (iii.1)
23 schools$school.exp <- apply(schools, 1, function(x) x["numberstudents.exp"]*x["

partstudentsinstrata"])
24 # average number of students per school in each stratum: take the weighted sum of (

iii.1) and (iii.2)
25 strata$"averagestudentsperschool" <- rowsum(schools$school.exp, schools$strata)
26 # define number of schools to draw in each stratum
27 strata$"numberdrawschools" <- round(2500/strata[,"averagestudentsperschool"])
28

29 ## Step 3: choose schools via implicit stratification in each explicit stratum
30

31 # calculate length of sampling interval and random start
32 strata$sampint <- round(strata$numberstudentsstrata/strata$numberdrawschools)
33 strata$start <- sapply(strata$sampint, sample, size = 1)
34 # draw students via sampling interval
35 tickets <- sapply(1:4, function(x) 0:(strata[strata$strata==x,"numberdrawschools"]

- 1) * c(strata[strata$strata==x,"sampint"]) + strata$start[x])
36 # identfication of schools attended by drawn students
37 # precalculations:
38 # list of schools ordered by size
39 schools <- schools[order(schools$strata, schools$numberstudents),]
40 # cumulative measure of schoolsize
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41 schools$cumnumberstudents <- unlist(sapply(1:4, function(x) cumsum(schools[schools$
strata==x, "numberstudents"])))

42 # identify school via cumulative measure
43 schools$schoolinsample <- 0
44 for(s in 1:4) {
45 cumnumberstudentsstrata <-
46 schools[schools$strata==s, "cumnumberstudents"]
47 inds <- sapply(tickets[[s]], function(x)
48 max(which(cumnumberstudentsstrata <= x)))
49 schools[schools$strata==s, "schoolinsample"][inds] <- 1
50 }
51

52 ## Step 4: random sampling of classes
53

54 # list of all classes
55 schoolclasses <- unique(merge(schools[, c("indexschool","numberclasses", "

drawclasses", "schoolinsample")], students[, c("indexschool", "indexclass")], by
="indexschool"))

56 # select classes
57 schoolclasses$classinsample <- 0
58 # take all classes in sampled schools with less or equal than three classes
59 schoolclasses$classinsample[which(schoolclasses$drawclass==0 & schoolclasses$

schoolinsample ==1)] <- 1
60 # select all schools in sample with more than three classes
61 schoolclassesdraw <- schoolclasses[which(schoolclasses$drawclass==1 & schoolclasses

$schoolinsample ==1),]
62 # random sample of classes
63 for(indexschool in unique(schoolclassesdraw[,"indexschool"])){
64 temp <- schoolclassesdraw[schoolclassesdraw$indexschool==indexschool, "indexclass"]
65 temp.drawn <- sample(temp,3)
66 schoolclasses$classinsample[which(schoolclasses$indexclass%in%temp.drawn)] <- 1
67 }
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