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Abstract The sense of school belonging refers to students’ feelings of being accepted and con-

nected to their particular school. School belonging has been considered an important determinant

of a range of academic and socioemotional outcomes. Yet despite an extensive literature on the

topic, it is not clear what factors are more strongly related to the students’ sense of school belong-

ing. Using a nationally representative dataset, we investigated the extent to which school belonging

in fifth grade can be predicted by a wide range of individual and contextual-level factors using two

statistical learning techniques (Lasso andMARS). The strongest predictor of school belonging across
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at school. These results suggest that peer social relationships are a key component of students feel-

ing of being connected to their school.
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Introduction

The sense of school belonging refers to students’ feelings

of fitting in, i.e., of being accepted and connected to their

particular school (Anderman, 2003). School belonging

has been considered an important determinant of a range

of academic and socioemotional outcomes (Anderman &

Freeman, 2004). Yet despite an extensive literature on

this topic, it is not clear what factors are more important

in promoting students’ sense of school belonging. Causal

research in this field is scarce, and correlational studies

point to a wide-range of potential factors related to the stu-

dent, teachers, families, peers and schools (e.g. Allen, Kern,

Vella-Brodrick, Hattie, &Waters, 2018; Korpershoek, Canri-

nus, Fokkens-Bruinsma, & de Boer, 2019).

In a recent meta-analysis, Allen et al. (2018) report

that eight general ‘themes’ are significantly associated with

school belonging: academic motivation, parent support,

teacher support, emotional stability, peer support, gender,

personal characteristics and environmental features. The

authors use the word ‘theme’ to indicate that each of these

dimensions is composed of many different factors. For ex-

ample, ‘personal characteristics’, ‘environmental features’

or ‘emotional stability’ can be operationalized in many dif-

ferent ways. Prior research suggests, then, that many vari-

ables related to different dimensions can potentially influ-

ence students’ sense of school belonging. This is a common

finding in social and behavioral research, where outcomes

are typically related to many factors –they are, to use Fried

and Robinaugh’s (2020) expression, ‘massively multifacto-

rial’.

Once we recognize that there can be dozens or even

hundreds of potentially informative factors related to our

outcome of interest, two important questions arise. First,

to what extent can we predict the outcome of interest us-

ing the observed factors? And second, which factors are

stronger predictors of the outcome? Even if social and be-

havioral researchers have been mostly concerned with de-

scribing causal mechanisms, assessing predictability has

important practical and scientific consequences (Hofman,

Sharma, & Watts, 2017; Yarkoni & Westfall, 2017). Among

other things, predictive modelling can be used to inform

policy interventions (Kleinberg, Ludwig, Mullainathan, &

Obermeyer, 2015), and lead to the generation of new the-

ories, methods, measures and hypotheses (Hofman et al.,

2017; Shmueli, 2010; Yarkoni & Westfall, 2017).
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The explanatory or ‘model-based’ approach to analyz-

ing data generally operates by assuming a parametric (typ-

ically linear) model that connect a set of inputs to a particu-

lar output (Breiman, 2001; Molina & Garip, 2019). The pro-

posed model is supposed to replicate the data-generating

process, in which case the parameter estimates obtained

by fitting the model to the data may be unbiased. Even if

this approach can be successful in different scenarios, it

also has important disadvantages. Notably, the results de-

pend on the particular model assumed by the researcher.

The fact that researchers work with different datasets and

choose one among potentially many different models is the

source of well-known problems in social sciences such as

‘p-hacking’ or ‘researcher degrees of freedom’ (Gelman &

Loken, 2013; Simmons, Nelson, & Simonsohn, 2011).

The increasing amount of rich and large datasets as

well as developments in statistical learning have opened

the door to investigate more flexible relationships than

the ones implied by the linear and additive models com-

monly used in social and behavioral research (e.g. Molina

& Garip, 2019; Varian, 2014). In addition, statistical learn-

ing techniques allow researchers to compare the predic-

tive accuracy of different models as well as classes of mod-

els.

For example, statistical learning methods allow us to

investigate whether including interaction terms improves

the predictive accuracy of themodel. Social and behavioral

phenomena are generally considered context-dependent,

in the sense that they are moderated by individual and

contextual-level factors (e.g. Cartwright & Hardie, 2012;

Ragin, 2009). For instance, Allen et al. (2018) report that

the effect of several factors on school belonging is mod-

erated by geographic location (the effects are generally

stronger in rural and suburban areas). Yet a common

problemwhen examining interactions is that only some in-

teractions are considered, and interaction terms increase

the risk of overfitting (e.g. Simmons et al., 2011). Statisti-

cal learning techniques allow us to search for arbitrarily

complex interactions between predictors while preventing

over-fitting the model by assessing the out-of-sample pre-

dictive performance (e.g. Hastie, Tibshirani, & Friedman,

2009; Mullainathan & Spiess, 2017a).

The goals of this paper are twofold. First, we investi-

gate the extent to which students’ sense of school belong-

ing can be predicted by a wide range of individual and

contextual-level variables using two statistical learning

models: the least absolute shrinkage and selection oper-

ator (Lasso), and multivariate adaptive regression splines

(MARS). Second, we use these models to identify which in-

dividual or contextual-level factors are more predictive of

school belonging.

We use a nationally representative sample (ECLS-K:

2011) of 11,434 children and focus on students’ sense of

school belonging in fifth grade. Focusing on this age range

allow us to identify factors associated with school belong-

ing in a critical transition period, where students’ sense

of school belonging begin to show a general decline (An-

derman, 2003). In our models we consider 88 factors at

the individual, classroom, peer, teacher, school, family and

neighborhood level, whichmight be associated with school

belonging (see, e.g. Allen et al., 2018; Anderman, 2003;

Maurizi, Ceballo, Epstein-Ngo, & Cortina, 2013).

Basic principles in statistical learning

Broadly speaking, statistical learning (also called ‘machine

learning’ or ‘data mining’) refers to a set of methods in-

tended to extract information and knowledge from data

(Molina & Garip, 2019). Statistical learning approaches are

generally classified in two categories: supervised and un-

supervised. The goal of the former is to build a model that

accurately predicts an outcome of interest, and the goal of

the latter is to uncover patterns among a set of inputs (i.e.,

no output is available). In this paper, we will focus exclu-

sively on supervised statistical learning (SML) approaches.

The goal of SML is to produce accurate predictions of

an outcome Y given a set of inputsX using some function

f (X). SML relax some assumptions about the functional
form of f , and SML approaches are thus considered non-
parametric (Hastie et al., 2009; Kleinberg et al., 2015). For

example, rather than assuming that the inputs in f com-
bine in a linear and additive fashion (as in ordinary least

squares), SML methods can search for a particular f that
maximizes predictive accuracy without assuming linearity

or additivity. The fact that f (X) is not constrained by a
functional form specified beforehand allows researchers

to uncover complex patterns in the data (e.g., related to in-

teractions or non-linearities) that might have been difficult

to detect using more rigid model specifications.

Yet the flexibility of SML methods comes with a greater

risk of overfitting the data –that is, of following the error,

or noise, of the data too closely (James, Witten, Hastie, &

Tibshirani, 2013). If the model captures both the signal

and the noise of the data at hand, then it will have an ex-

cellent fit to the training data (i.e., the data used to esti-

mate f (X)). However, we are typically not interested in
predicting the scores in the training data (as we know the

values of Y for those observations), but rather in predict-
ing the scores of observations we have not yet seen. The

goal of SML methods is to achieve an adequate balance be-

tween flexibly capturing the patterns in the training data

while having a good out-of-sample performance. Put dif-

ferently, the goal is to estimate a function that minimizes

both the in-sample and the out-of-sample prediction er-

ror. As suggested above, there is often a tradeoff between

The Quantitative Methods for Psychology 3132

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.3.p312


¦ 2021 Vol. 17 no. 3

these two quantities: as model flexibility increases, the in-

sample prediction error (or bias) will decrease; however,

if the model is too flexible then it will be too sensitive to

the data at hand (i.e., it will vary across training sets), and

will not generalize well to other datasets. In the statistical

learning literature this is referred to as the bias-variance

tradeoff (Hastie et al., 2009).

A key tool employed in SML to address the bias-

variance tradeoff is regularization (Berk, 2008; Hastie et

al., 2009). The idea behind regularization is to reduce the

flexibility of the function (which generates overfitting) by

penalizing complexity. Without regularization, the func-

tion might have a good in-sample fit but might not gener-

alize well to other samples. By including a regularizer, we

can reduce the flexibility of the function to ensure a good

out-of-sample performance.

A central part of implementing SML methods consists

in choosing the adequate level of regularization. This step

is often referred to as ‘tunning the algorithm’, and is often

determined empirically using cross-validation (Berk, 2008;

Varian, 2014). The idea behind cross-validation is to esti-

mate the out-of-sample accuracy of the function by fitting

the function in one portion of the data (the training set)

and evaluating its performance in another portion (the val-

idation set). A common type of cross-validation is k-fold
cross validation, which consists in randomly partitioning

the sample in k folds, and successively using one of the
folds as the validation set and the remaining folds as the

test set (Hastie et al., 2009). The best tunning parameter is

the one associated with the lowest cross-validated error.

Regularization and empirical tunning are two key

elements that distinguish SML from traditional statisti-

cal techniques (Mullainathan & Spiess, 2017b). As Mul-

lainathan and Spiess (2017b) explain, any SML algorithm

can be defined by a function class F (e.g., trees or smooth-
ing splines), and a regularizer R (f) that determines the
complexity of the function. The nature of the regularizer

depends on the function class: for example, in the case of

trees the complexity might depend on the number of nodes

or minimal leaf size, whereas in the case of splines it might

depend on the number of knots.

In the present study, we implement two SML methods

related to two different classes: the least absolute shrink-

age and selection operator (Lasso), which is associated

with the class of linear functions; and multivariate adap-

tive regression splines (MARS), which is associatedwith the

class of splines. These methods differ along several dimen-

sions, notably in terms of their flexibility and interpretabil-

ity (James et al., 2013). In statistical learning there is often

a tradeoff between accuracy and interpretability: more re-

strictive models tend to be less accurate and more inter-

pretable, while more flexible models tend to be more accu-

rate and less interpretable (see Rudin, 2019). For example,

Lasso regression is a restrictive (linear) model which can

be easy to interpret, while random forests are highly flexi-

ble models that can be difficult to interpret.

The aim of this study is to use SML methods in order

to (1) assess the predictability of students’ sense of school

belonging in fifth grade, and (2) identify the factors that

are most predictive. By using two different SML methods,

we aim to check whether variable importance holds across

model specifications, and whether more flexible models

that include complex nonlinearities and interactions have

a better performance than less flexible models. We also

wish to illustrate how researchers can use SML methods

to move beyond the linear-additive models that are com-

monly used in social and behavioral research. Below, we

provide a brief introduction to the two SML methods im-

plemented.

Conducting variable selection with Lasso

A basic premise in social and behavioral research is that

human development and behavior is shaped by a mul-

titude of interrelated processes that take place in differ-

ent contexts (e.g. Bronfenbrenner, 1979; Thelen & Smith,

2007). An implication of this principle is that there can be

potentially many variables one can investigate. For exam-

ple, prior research suggests that a variety of factors can

influence school belonging, from individual-level charac-

teristics to peer, family or school-level influences (see, e.g.

Allen et al., 2018; Korpershoek et al., 2019). An important

task consists in identifying the factors that are most pre-

dictive of the outcome of interest –in this case students’

sense of school belonging. Rather than selecting a subset of

factors based on prior knowledge, as is commonly done in

social and behavioral research, we take a data-driven ap-

proach, aiming at empirically determining which among a

large set of predictors are more influential, and which fac-

tors have a negligible association with the outcome.

The Lasso is a well-known statistical learning tool for

variable selection. Lasso belongs to the class of linear func-

tions, and is considered a more restrictive approach than

OLS, as it sets some of the estimated coefficients to zero

(Hastie et al., 2009). By being less flexible, Lasso is also

more interpretable than OLS, as it only selects the vari-

ables that are most predictive of the outcome. In addition,

Lasso can generate more accurate predictions and prevent

overfitting due to the inclusion of a regularizer.

The Lasso penalizes complexity by constraining the

magnitude of the regression coefficients. This type of reg-

ularization is referred to as shrinkage, as the regression

coefficients are shrunk toward zero (Berk, 2008). The goal

of shrinking the coefficients is to reduces the variance in

the predictions. Shrinkage methods are implemented by
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including a shrinkage penalty when estimating the regres-

sion coefficients. More specifically, given a sample of n
cases and p predictors, where yi is the outcome for the
ithcase and xij the j

th
predictor for the ithcase, the coeffi-

cients in Lasso minimize

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj |

= RSS + λ

p∑
j=1

|βj | ,

(1)

where λ ≥ 0 is a tunning parameter. Note that the first
term is the residual sum of squares (RSS) used to estimate
the coefficients in OLS. The second term, λ

∑p
j=1 |βj |, is the

penalty that shrinks the coefficients toward zero (Hastie et

al., 2009). If λ = 0, then Lasso will produce the OLS esti-
mates. As the value of λ increases, the shrinkage penalty
grows, and the coefficients will tend to zero. Variable se-

lection occurs when the coefficient of a set of variables is

set to zero. Typically, the value of the tunning parame-

ter λ is empirically determined using cross-validation. The
idea behind this approach is to choose different values of

λ, compute the cross-validation error for each λ, and then
select the value of the tunning parameter with the smallest

error (Hastie et al., 2009).

It is worth noting that there are other methods for

conducting variable selection. Popular techniques include

stepwise methods such as forward and backward stepwise

selection, which are fit using least squares. Unlike Lasso

regression, these techniques do not use a tuning parame-

ter that determines the complexity of the model. In addi-

tion, they are not guaranteed to yield the best model con-

taining a subset of predictors and, contrary to Lasso, re-

quire that the number of observations is larger than the

number of predictors (James et al., 2013). Even if different

techniques can be useful in different scenarios, simulation

studies indicate that Lasso outperforms other variable se-

lection methods (Hastie, Tibshirani, & Tibshirani, 2020).

Similarly, it is important to note that apart from Lasso

there are other shrinkage methods, e.g., ridge regression

(Hastie et al., 2009). Similar to Lasso, ridge regression

includes a term in the minimization function, λ
∑

j β
2
j ,

which shrinks the estimates toward zero, and the tuning

parameter can also be determined using cross-validation.

By shrinking the coefficients (and, as a consequence, reduc-

ing the variance), ridge regression can be used to increase

the predictive accuracy of the model. However, ridge re-

gression does not set the coefficients exactly to zero, and

as a consequence is not used for variable selection. As ex-

plained above, a key goal in this study is to identify the

set of variables that are related to our outcome of interest

and eliminate all irrelevant predictors (which means set-

ting their coefficient to zero). Thus, we will use Lasso to

search for a sparse and interpretable model that includes

only a subset of relevant predictors .

Modelling non-linear and non-additive effects with
MARS

As explained above, Lasso is a linear regression analysis

with a regularizer that can improve prediction accuracy

and conduct variable selection. Linear models have sev-

eral advantages, notably related to inference and inter-

pretability (James et al., 2013). However, some phenomena

are inherently nonlinear, so we need to account for non-

linearity in order to adequately represent the phenomena.

Researchers often deal with nonlinearities by transform-

ing variables or adding terms to the model (e.g., squared

terms). However, in order to do this one needs to know the

nature of the nonlinearity in the data, and the resultsmight

depend on the particular transformation or terms added

to the model –i.e., on the ‘researcher degrees of freedom’

(Simmons et al., 2011). In order to address this problem,

one can use statistical learning tools that estimate nonlin-

ear functions that maximize predictive accuracy.

A SML method that relaxes the linearity assumption

while maintaining interpretability is a form of regression

called multivariate adaptive regression splines (MARS).

MARS accounts for nonlinearities by fitting piecewise lin-

ear regressions; that is, by breaking the predictors into

different bins, and fitting a linear regression within each

of these bins (Hastie et al., 2009; Kuhn & Johnson, 2013).

These linear relationships are often called ‘hinge’ functions

(Kuhn & Johnson, 2013). The appropriate number of cut-

points (or knots) that determine the number of hinge func-

tions is considered a tuning parameter and can be deter-

mined empirically using cross-validation. In this approach,

each point for each predictor is evaluated, and the cut-

point that achieves the smallest cross-validated error is re-

tained (Kuhn & Johnson, 2013). The algorithm also consid-

ers the prediction error of a model without any cut-points.

If a predictor (with or without knots) does not improve the

prediction accuracy of the model, then it is not retained.

Consequently, MARS automatically conducts variable se-

lection.

Apart from modelling nonlinearities, MARS can be

used to identify non-additive effects by considering the

product of two or more hinge functions. For example, in a

second-degree MARS model, second-order interactions be-

tween the hinge functions identified are included in the

search procedure. The degree of the terms added to the

model is considered a tunning parameter, and as a conse-

quence can be determined using cross-validation. In sum,

the MARS model has two tunning parameters (the degree

The Quantitative Methods for Psychology 3152

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.3.p312


¦ 2021 Vol. 17 no. 3

of the terms included and the number of terms retained),

both of which can be determined using cross-validation

(Kuhn & Johnson, 2013).

The MARS model has several advantages. First, as

noted above, themodel automatically conducts variable se-

lection. Second, the results are highly interpretable (i.e., it

is clear how the selected predictors affect the outcome), as

each hinge function models in a linear fashion a particu-

lar region of the predictor space (Kuhn & Johnson, 2013).

Third, MARS models can handle both continuous and cate-

gorical data. This is an important advantage in social and

behavioral research, where datasets are typically mixed

and many of the measures used are ordinal in nature (e.g.,

they are based on Likert-style response items). Given that

Likert-scale items provide ordinal (rather than metric) in-

formation, researchers have argued that common descrip-

tive statistics such as means and standard deviations, as

well as models that assume a metric scale such as the t-

test, analysis of variances and ordinary least-squares re-

gression, should not be used to analyze rating-scale data

(Jamieson, 2004; Liddell & Kruschke, 2018). Apart from the

ordinal nature of the scale, Likert-style items often violate

distributional assumption (e.g., normality) of parametric

models, which can systematically lead to errors (Liddell &

Kruschke, 2018). The MARS model does not rely on these

parametric assumptions, and any nonlinearities are auto-

matically identified by the algorithm. Finally, MARS can

be used to estimate the relative importance of the predic-

tors considered by examining the reduction in the predic-

tion error that occurs when adding a particular predictor

to the model (for details, see Milborrow, Hastie, & Tibshi-

rani, 2014).

Data and Methods

Analytic Sample

The data comes from the Early Childhood Longitudinal

Study (ECLSK: 2010) conducted by the National Center for

Education Statistics (see Tourangeau et al., 2018, for more

information regarding this study). The study tracks a

nationally representative sample of 18,170 U.S. children

who entered kindergarten in the 2010–2011 school year

through fifth grade. The analytic sample was defined as

11,434 individuals that had a non-missing value in the out-

come variable (school belonging in 5th grade).

Missing data

The amount of missing data in the analytic sample was not

substantial, as most variables had less than 10% of miss-

ing cases, and no variable had more than 30% of missing

cases. In order to include the entire sample in the analysis,

single imputation methods were conducted for replacing

a single value for each missing data point. Longitudinal

imputation using the most recent non-missing value was

conducted for relatively stable variables (e.g., school dis-

trict poverty and school safety), and for the remaining vari-

ables stochastic regression imputation was conducted. In

order to improve the imputation models, several auxiliary

variables were added, including the previous value of the

imputed variables (if available) and demographic charac-

teristics (Nguyen, Carlin, & Lee, 2017).

Variable selection

Prior research suggests that students’ sense of school be-

longing might be determined by a range of factors at the

individual, classroom, peer, teacher, school, family and

neighborhood level. For example, prior research sug-

gests that school belonging is associated with a range of

student-level characteristics such as students’ prosocial be-

haviors (Demanet & Van Houtte, 2012), psychological well-

being (Jose, Ryan, & Pryor, 2012), and involvement in ex-

tracurricular activities (Fredricks & Eccles, 2006); teacher-

level characteristics such as pedagogical practices (Ander-

man, 2003) and teacher support (Chiu, Chow, McBride, &

Mol, 2016); school-level characteristics such as school size

(Anderman, 2003) and school safety (DeRosier & Newcity,

2005); peer-level characteristics such as harassment (Wa-

ters, Cross, & Shaw, 2010); and family-level characteristics

such as immigrant status and family communication (Chiu

et al., 2016).

In the analysis, we considered 89 variables which can

be broadly classified in the following categories: children’s

demographic characteristics (5), cognitive skills (12), so-

cioemotional behaviors (27) and habits (4); family socioe-

conomic status, composition and dynamics (15); instruc-

tional variables related to the curriculum, pedagogy and

time spent on different activities (15); and school (10) and

neighborhood (1) characteristics (see Table 2 in the Ap-

pendix). These variables could also be classified according

the that eight general ‘themes’ that have been found to be

associated with school belonging (Allen et al., 2018): aca-

demic motivation, parent support, teacher support, emo-

tional stability, peer support, gender, personal characteris-

tics and environmental features. We tried to include all (or

at least the majority) of variables in the dataset that could

be potentially related to the outcome of interest, while pay-

ing attention to the validity and reliability of the constructs

. Measurement quality has been generally overlooked in

machine learning, and yet it can affect the effectiveness of

the algorithms (Jacobucci & Grimm, 2020).

Out of the 89 variables considered, 52 variables were

based on Likert-type questions included in the child,

teacher, parent or school administrator questionnaire, as

well as in the parent interview. These variables were con-
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structed by averaging the items related to the construct.

The majority of variables included were measured in fifth

grade. If the variable was not measured in fifth grade,

then we used its closest value (e.g., if a variable was not

measured in fifth grade, then we included the measure ob-

tained in fourth grade; if it was not measured in fourth

grade, then we included the measure in third grade, and

so on).

The ECLS included 5 Likert-scale items measuring the

outcome of interest –students’ sense of school belonging–

in 5th grade. Students were asked to self-report on a 4-

point scale the extent to which they fit in and felt con-

nected with different aspects of the school (Tourangeau et

al., 2018). Response options included 1 (Never), 2 (Some-
times), 3 (Often), and 4 (Always). The questions asked were:
‘This school year, how often did you. . . (1) Feel like you

fit in at your school? (2) Feel close to classmates at your

school? (3) Feel close to teachers in your school? (4) Enjoy

being at your school? (5) Feel safe at your school?’ Individ-

ual scores were computed by averaging these 5 items.

Out of the 89 variables considered, 8 variables were

categorical. Some of these variables were binary (e.g., dis-

ability status and sex) and others had multiple categories

(e.g., school type and school location).

Finally, 29 variables were based on a continuous scale.

Some of these variables were based on direct assess-

ments (e.g., the variables related to the students’ academic

achievement and executive functions), while others were

based on responses to interviews or questionnaires (e.g.,

regarding the amount of time the child spends on partic-

ular academic and non-academic activities). Table 2 in-

cludes all the constructs included in the analysis along

with the variable name, dimension, original scale, mea-

surement procedure and measurement occasion (for more

information about the variables included, see Tourangeau

et al., 2018, and the references therein).

Standardization

Shrinkage methods such as the Lasso regularize the coeffi-

cient estimates, and as a consequence the results can vary

depending on the scale of the predictors. Consequently, it

is recommended to standardize all predictors by dividing

each variable by its standard deviation (James et al., 2013).

We standardized all predictors following this procedure,

and dummy coded all categorical variables. We used this

dataset for estimating the Lasso, and the non-standardized

dataset for estimating the MARS model.

Training and test datasets

We randomly assigned 9,134 individuals (80%) to a training

dataset, and 2,300 individuals (20%) to a test dataset. The

training dataset was used for fitting and tuning the models

using cross-validation. The test dataset was used to assess

the models’ final predictive performance and compare the

performance across different models. In order to measure

the quality of fit we used the models’ mean squared error

(MSE).

Model selection

All tunning parameters were selected using 10-fold cross-

validation applied to the training dataset. We trained the

Lasso model using the glmnet package (Friedman, Hastie,

& Tibshirani, 2009), and the MARS model using the caret

(Kuhn, 2008) and earth (Milborrow et al., 2014) packages.

In order to select the most conservative and sparse mod-

els, we used the ‘one-standard-error’ rule, which picks the

most parsimonious model within one standard error of the

minimum value of the tunning parameter (see Hastie et al.,

2009). That is, we select the simplest model that has a sim-

ilar predictive accuracy to the best model. The reason for

doing this is that we valued interpretability in addition to

predictive accuracy.

Results

Baseline OLS regression

We began by fitting a linear model using OLS in the train-

ing data with all 88 predictors, and estimated the models’

predictive accuracy using the test data. The MSE in the

training data was 0.154 and the R-squared was 0.520. On

the other hand, the MSE in the test data was 0.168 and the

R-squared was 0.508. The decrease in the predictive accu-

racy in the test set compared to the training set suggests

that some overfitting has occurred.

By estimating 88 coefficients, the linear model using

OLS is difficult to interpret and unnecessarily complex. In

order to remove the irrelevant variables, we can perform

variable selection using techniques such as Lasso regres-

sion.

Lasso regression

In order to select the tunning parameter λ, we examined
the cross-validated mean-squared error across the entire

range of possible solutions and selected the ‘best’ model,

defined as the most parsimonious and accurate model us-

ing the ‘one-standard-error’ rule (Hastie et al., 2009). The

best model had a value of λ = 0.023. Due to variable stan-
dardization, interpreting the Lasso results presents some

difficulties. In particular, the MSE is scale-dependent, so

we cannot use it to compare the predictive accuracy with

models that do not require standardization. In addition, it

is often preferable to interpret the estimated coefficients

in their original metric. Consequently, we conducted a

post-Lasso OLS, where the variables selected by Lassowere
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Figure 1 Lasso and Post-Lasso OLS coefficients. The Lasso coefficients were estimated using the training dataset and

standardized covariates. The Post-Lasso OLS were estimated using the entire dataset and non-standardized covariates.

used to fit an OLS regression (for a discussion of this ap-

proach, see Belloni & Chernozhukov, 2013).

As Table 1 indicates, the predictive accuracy on the test

set of the baseline OLS model (MSE = 0.168) is similar to

the predictive accuracy of the post-Lasso OLSmodel (MSE =

0.170) . This suggests that the Lasso procedure adequately

selected the variables that are most predictive of students’

sense of school belonging. In particular, the Lasso indi-

cates that 18 predictors have a non-zero coefficient. The

predictors retained by the model along with their associ-

ated coefficients are depicted on the left panel in Figure 1.

One can see that the largest coefficient (0.296) is associated

with peerspt, which represents students’ feelings of peer
social support . The second largest coefficient (-0.210) is as-

sociated with lonely, which represents students’ feelings of
loneliness at school . One can also see that students’ grit

and life satisfaction have a standardized coefficient above

0.1, and students’ behavioral engagement and peer victim-

ization have an associated coefficient above 0.05.

The right panel in Figure 1 depicts the post-Lasso OLS

coefficients along with their confidence intervals. One can

see that the Lasso coefficients tend to be shrunken with re-

spect to the OLS coefficients. One can also see that the rank

order of the strongest predictors remains the same –in par-

ticular, the strongest predictor remains peerspt (0.19) fal-
lowed by lonely (-0.13). It is worth noting that the goal of
SML procedures is to produce accurate predictions of an

outcome variable rather than generating unbiased param-

eter estimates (Mullainathan & Spiess, 2017a). It is impor-

tant, then, to not draw any causal inferences from these

estimated coefficients and their confidence intervals.

MARS regression

There are two tunning parameters in the MARS model:

the number of terms retained and the degree of interac-

tions. As explained above, a term can be composed of a

single variable or a hinge function. In order to tune the

algorithm, we conducted a grid search to identify the opti-

mal combination of these tunning parameters. As with the

other techniques implemented in this study, we used the
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Figure 2 Cross-validated RMSE for MARSmodels with different combinations of the two tunning parameters (the degree

of interactions and the number of terms). The minimum RMSE is associated with a model with 16 terms and second-

degree interactions. We selected a model with 8 terms and no interactions, following the one-standard-error rule.

models’ cross-validated prediction error to select the best

model, defined as the simplest model within one standard

deviation of the model that minimizes the cross-validated

prediction error. The grid search was specified as 147 pos-

sible combinations of the degree of interactions (first, sec-

ond, and third degree) and the number of terms retained

(2 to 50).

The results of the grid search are depicted in Figure 2.

The figure shows the cross-validated root-mean-square er-

ror (RMSE) of all possible combinations. One can see that

the minimum RMSE is associated with a model of 17 terms

with second degree interactions (which we report below).

We selected the simplest model within one standard devia-

tion of this model. Our final model retained 12 terms com-

posed of 8 variables and no interactions. The model can be

written as

̂schbelong = 3.14+0.27max(0, 1.11− read)− 0.15max(0, 4.0− grit) + 0.11max(0, grit− 4.0)

+0.27max(0, 1.33− lonely)− 0.13max(0, lonely − 1.33)− 0.20max(0, 4.67− peerspt)
+0.27max(0, peerspt− 4.67) + 0.15max(0, engage− 4.20) + 0.22max(0, lifesat− 4.33)

+0.09max(0, 2.25− peervict) + 0.06max(0, 2.83− scavoid).

(2)

This equation shows how the MARS algorithm accounts

for non-linear relationships by including hinge functions

while preserving an additive structure. For example, the

term 0.22max (0, lifesat− 4.33) implies that a one-unit
difference in lifesat is associated with a 0.22 difference in
̂schbelong when lifesat > 4.33.
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Table 1 Fit statistics across models

Training set Test set

MSE R2 MSE R2

Baseline OLS 0.154 0.520 0.168 0.508

Post-Lasso OLS 0.156 0.512 0.170 0.504

MARS 0.158 0.506 0.172 0.496

Note. The training set was used to fit all models using 10-fold cross validation, and the test set was used to estimate
the generalization error. The training set consists of 9,134 (≈80%) randomly assigned individuals, and the test set in-
cludes the remaining 2,300 (≈20%).

Given the number of terms involved, it is difficult

to perceive how each hinge function contributes to the

model. One way of visualizing the independent effect

of each predictor is by constructing the prediction pro-

file or partial dependence plot of each variable holding

the other variables at their mean level (Kuhn & Johnson,

2013). Figure 3 illustrates the prediction profile of the 8

variables retained in the model. The figure suggests that

some variables might have non-linear relationships with

the outcome, e.g., engage, schavoid, peervict, lifesat and
reading. In particular, changes in peervict, schavoid and
reading appear to be more predictive in the lower end of
the scale, whereas changes in lifesat and engage appear
to be more predictive in the upper end of the scale. On

the other hand, other variables such as grit, lonely and
peerspt (the strongest predictors of schbelong) appear to
have a fairly linear relationship with the outcome.

Figure 4 depicts the partial dependence plots of the

MARSmodel with theminimumRMSE. Themodel includes

17 terms composed of 12 different variables. The model

includes 9 interactions between hinge functions. Interest-

ingly, 5 of these interaction terms include behavioral en-

gagement (two interactions with grit and schavoid, and
one interaction with hmwkread). Figure 4 shows how
school belonging decreases rapidly when low levels of

school engagement combine with these other factors. Even

if these interactions can be informative and can be inves-

tigated in future research, they are presented here only

for illustrative purposes. The best fitting model is not only

more complex, but also more likely to overfit, and as a con-

sequence should be interpreted with caution. One would

be more confident about the presence of these interactive

effects if they were also found in the parsimonious model

(especially if they involved the strongest predictors). From

now on, we will focus then on the parsimonious model.

Another way of interpreting the MARS model is by

quantifying the importance of each of the predictors se-

lected by the algorithm. This is generally done by ex-

amining the reduction in the prediction error that occurs

when including the predictor in the model (Kuhn & John-

son, 2013). For example, Figure 2 indicates that by adding

two predictors the RMSE is reduced from around 0.45 to

around 0.42. Figure 5 presents the importance scores as-

sociated to each variable, scaled between 0 and 100. The

prediction error considered is the residual sum-of-squares.

Consistent with prior results, peerspt appears to be the
most important variable for predicting students’ sense of

school belonging, followed by lonely and lifesat. On the
other hand, schavoid, and reading seem to have a negligi-
ble predictive power in this particular model.

Finally, Table 1 indicates that the MARS model selected

does not improve the predictive performance compared to

the two linear models estimated before. Yet it is worth not-

ing that the ‘best’ MARS model was selected not only based

on its predictive accuracy but also on its simplicity. Over-

all, however, the results indicate that a linear model pro-

vides a good approximation of the relationships between

the predictors and the outcome of interest.

Even if in this particular case fitting a nonlinear model

might not be necessary, it is important to note that it is

difficult to establish beforehand the presence or absence

of nonlinearities. Thus, researchers recommend allow-

ing for nonlinearities (especially for important predictors),

and implement linear models only if nonlinear effects are

not detected (Harrell, 2015). Finally, the fact that a linear

model fits the data well might be due to the nature of the

phenomena represented, but also to limitations in the data

(as most variables are based on 4 to 6-point Likert scale

items, which might limit the ability to identify nonlineari-

ties).

Discussion

The sense of school belonging refers to students’ feelings

of being accepted and connected to their particular school

(Anderman, 2003). School belonging has been considered

an important determinant of a range of academic and so-

cioemotional outcomes. For example, prior researcher

suggests that school belonging is negatively related to stu-

dents’ depression and anxiety (Shochet, Dadds, Ham, &

Montague, 2006), school dropout (Archambault, Janosz,

Fallu, & Pagani, 2009) and general feelings of alienation

(Hascher & Hadjar, 2018). Yet despite an extensive liter-

The Quantitative Methods for Psychology 3202

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.3.p312


¦ 2021 Vol. 17 no. 3

Figure 3 Partial dependence plots of the eight variables in the MARSmodel. Each plot depicts the estimated relationship

between the predictor and the outcome while holding the other predictors at their mean value.

ature on the topic, it is not clear what factors are more

strongly related to the students’ sense of school belong-

ing. Prior research has identified a wide range of individ-

ual and contextual level factors that might be related to

school belonging, from students’ psychological well-being

and involvement in extracurricular activities, to various

teacher, family and school level characteristics (e.g. An-

derman, 2003; Chiu & Xu, 2020; DeRosier & Newcity, 2005;

Fredricks & Eccles, 2006; Jose et al., 2012).

In the present study, we investigated the extent to

which students’ sense of school belonging can be predicted

by a wide range of individual and contextual-level fac-

tors using two statistical learning techniques (Lasso and

MARS). The results suggest that the predictive accuracy of

the SML algorithms is comparable to the predictive accu-

racy generated by a linear model estimated by OLS using

all 88 predictors. The estimated test root-mean-square er-

ror of the three models was around 0.41, which means that

our predictions would be off by around 0.41 units in the

original scale. It is also worth noting that the test R-square

was around 0.50, which indicates that 50% of the variance

in school belonging can be explained by the models. How

accurate or useful are these predictions would depend on

how the predicted values are used.

One of the main advantages of the SMLmethods imple-

mented in this study is that they allow us to generate accu-

rate predictions while performing variable selection. Thus,

we are able to approximate the predictive accuracy of the

baseline OLS model that includes 88 covariates with mod-

els that include only 18 (Lasso) or 8 (MARS) predictors. Cre-

ating models that are interpretable is a fundamental value

in scientific research as well as in policy design and imple-

mentation (e.g. Rudin, 2019). This is the reason why we

not only considered prediction accuracy but also sparsity
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Figure 4 Partial dependence plots of the MARS model with the lowest RMSE.

for model selection. The selected models and results are,

then, interpretable and useful for theory and hypothesis

generation.

Apart from selecting a subset of predictors, we used

the SML techniques to estimate which variables are more

strongly related to students’ sense of school belonging. The

results across all model specifications indicate that stu-

dents’ feelings of peer social support are the most predic-

tive factor, followed by students’ feelings of loneliness at

school. This suggests that peer relationships are a cen-

tral factor related to students’ sense of school belonging.

In addition to these social components, students’ grit and

life satisfaction are also predictive of students’ sense of be-

longing in school. These findings appear to contradict pre-

vious research suggesting that teacher-level predictors (in

particular teacher support) are the strongest predictors of

school belonging (Allen et al., 2018). However, it is impor-

tant to note that our dataset does not include all relevant

predictors, including some of the teacher-level predictors

that have been found to be important determinants of stu-

dents’ feelings of school belonging.

Finally, we used SML techniques to consider whether

complex functions including non-linear and interactive ef-

fects produced more accurate predictions or substantially

different results. Many phenomena in social and behav-

ioral sciences cannot be properly represented using linear

and additive models (e.g. Braumoeller, 2003; Ragin, 2009).

It is important, then, to consider whether more complex

relationships provide a better fit to the data. Model-based

findings often depend on researchers’ decisions to impose

a particular functional form or include a particular set of

covariates. These ‘researcher degrees of freedom’ can gen-

erate false positives or non-replicable results (Gelman &

Loken, 2013; Simmons et al., 2011). An advantage of SML

models is that one can automatically search for complex

nonlinear and interaction effects while having an objective

evaluation criterion.
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Appendix A

Table 2 Description of the eighty-nine variables included in the analysis.

Abbreviation Construct Dimension Original scale Measurement

procedure
1

Measurement

occasion

(grade)

age Age at assessment Demographic Continuous Collected from ad-

ministrative data

and child assess-

ments

5th

bmi Body mass index Demographic Continuous Calculated by ECLS 5th

disability Disability status Demographic Categorical Collected from PI 5th

sex Sex Demographic Categorical Collected from

school and PI

5th

race Race/ethnicity Demographic Categorical Collected from PI

and the Field Man-

agement System

5th

approach Approaches to learning Cognitive Ordinal 7 items from TQ 5th

attention Attentional focusing Cognitive Continuous 6 items from TQ 5th

control Inhibitory control and at-

tention

Cognitive Continuous Task composed of 20

trials

5th

grit Perseverance over the long

term

Cognitive Ordinal 6 items from CQ 5th

intmath Perceived interest/compe-

tence in mathematics

Cognitive Ordinal 5 items from CQ 3rd

intread Perceived interest/compe-

tence in reading

Cognitive Ordinal 5 items from CQ 3rd

intscience Perceived interest/compe-

tence in science

Cognitive Ordinal 5 items from CQ 3rd

math Knowledge and skills in

mathing in mathematics

Cognitive Continuous Mathematics assess-

ment

5th

reading Knowledge and skills in

reading in reading

Cognitive Continuous Reading assessment 5th

science Knowledge and skills in

reading in science

Cognitive Continuous Science assessment 5th

workmem Working memory Cognitive Continuous Task composed of 30

items

5th

cogflex Cognitive flexibility Cognitive Continuous Task composed of 40

trials

5th

schbelong School belonging Socioemotional Ordinal 5 items from CQ 5th

engage Behavioral engagement Socioemotional Ordinal 5 items from CQ 5th

externalize Externalizing problem be-

haviors

Socioemotional Ordinal 6 items from TQ 5th

incontrol Inhibitory control Socioemotional Ordinal 7 items from TQ 5th

internalize Internalizing problem be-

haviors

Socioemotional Ordinal 4 items from TQ 5th

interp Interpersonal skills Socioemotional Ordinal 5 items from TQ 5th

intpeers Perceived interest/compe-

tence in peer relationships

Socioemotional Ordinal 6 items from CQ 3rd

lifesat Life satisfaction Socioemotional Ordinal 6 items from CQ 5th

lonely Loneliness Socioemotional Ordinal 3 items from CQ 5th
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peervict Peer victimization Socioemotional Ordinal 4 items from CQ 5th

prosocial Prosocial behavior Socioemotional Ordinal 3 items from CQ 3rd

socanxiety Social anxiety/Fear of nega-

tive evaluation

Socioemotional Ordinal 3 items from CQ 5th

schlike School liking Socioemotional Ordinal 7 items from TQ 5th

sfcontl Self-control Socioemotional Ordinal 4 items from TQ 5th

socialpeers Prosocial with peers Socioemotional Ordinal 5 items from TQ 3rd

socskills Social skills with peers Socioemotional Ordinal 4 items from TQ 5th

peerspt Peer social support Socioemotional Ordinal 6 items from CQ 5th

strucplay Physical activity during

structured play time

Socioemotional Ordinal 1 item from TQ 3rd

unstplay Physical activity during un-

structured play time

Socioemotional Ordinal 1 item from TQ 3rd

schstress Worry/stress about school Socioemotional Ordinal 5 items from CQ 5th

tconflict Conflict with teacher Socioemotional Ordinal 8 items from TQ 3rd

tclose Closeness with teacher Socioemotional Ordinal 7 items from TQ 3rd

aggressor Peer victimization (child as

aggressor)

Socioemotional Ordinal 4 items from TQ 5th

victim Peer victimization (child as

victim)

Socioemotional Ordinal 4 items from TQ 5th

excluded Excluded by peers Socioemotional Ordinal 4 items from TQ 5th

schavoid School avoidance Socioemotional Ordinal 5 items from PQ 5th

vidgame Time spent playing

videogames

Habit Continuous 1 item from PQ 3rd

tvtime Time spent watching TV Habit Continuous 1 item from PQ 3rd

mediause Media usage Habit Ordinal 3 items from CQ 5th

exercise Time spent exercising Habit Continuous 1 item from PQ 3rd

homelit Home literacy environ-

ment

Family Continuous 3 items from PQ 2nd

housetotal Total number of household

members

Family Continuous Collected from PI 5th

pincome Household income Family Continuous Collected from PI 5th

parented Parent education level Family Ordinal Collected from PI 5th

noneng Primary language in the

child’s home

Family Categorical Collected from PI 2nd

numbooks Number of books the child

has

Family Continuous 1 item from PQ 3rd

pstrain Parental strain Family Ordinal 4 questions from PI 1st

pcomm Parent-child communica-

tion

Family Ordinal 6 questions from PI 3rd

pdepress Parental depression Family Ordinal 12 questions from PI 5th

pexpect Parental academic expecta-

tions of the child

Family Ordinal 1 question from PI 3rd

pwarm Parental warmth Family Ordinal 4 questions from PI 3rd

foodsecty Household’s food security

status

Family Ordinal 10 questions from PI 5th

spank Frequency in which the

parent spanked the child

Family Ordinal 1 item from PQ Kindergarten
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pdivorce Parental divorce or separa-

tion

Family Categorical 1 item from PQ 5th

monitoring Parental monitoring Family Ordinal 3 items from CQ 5th

famstruc Types of parents in the

household

Family Categorical Collected from PI 5th

flldirections Teacher’s attention to the

child’s direction-following

ability

Instruction Ordinal 1 item from TQ 5th

timeart Time spent in art, music

and physical education

Instruction Continuous 6 items from TQ 2nd

timemath Time spent in mathematics Instruction Continuous 1 item from TQ 2nd

timeread Time spent in reading and

language arts

Instruction Continuous 1 item from TQ 2nd

timescisoc Time spent in science and

social studies

Instruction Continuous 2 items from TQ 2nd

freetime Time for unstructured ac-

tivities (playing and lunch)

Instruction Continuous 2 items from TQ 3rd

hmwkread Time dedicated to home-

work

Instruction Continuous 2 items from TQ 3rd

indepwork Time spent on individual

work

Instruction Continuous 4 items from TQ 2nd

tchcenter Time spent on teacher-

centered instruction

Instruction Ordinal 1 item from TQ 2nd

schrecess Time dedicated to recess Instruction Continuous 2 items from TQ 3rd

stdtests Use of state or local stan-

dardized tests

Instruction Ordinal 1 item from TQ 2nd

skilsmath Coverage of mathematics

skills

Instruction Continuous 32 items from TQ 2nd

skilsread Coverage of reading skills Instruction Continuous 33 items from TQ 2nd

quizzes Use of classroom tests or

quizzes

Instruction Ordinal 1 item from TQ 2nd

tchobs Focus on students’ mastery

of objectives or standards

Instruction Ordinal 1 item from TQ 2nd

edstand Evaluation based on stan-

dards

Instruction Ordinal 1 item from TQ 5th

blwmath Students below grade level

in mathematics

School Continuous 1 item from TQ 5th

blwread Students below grade level

in reading

School Continuous 1 item from TQ 5th

schsafety School safety School Ordinal 6 items from SAQ 5th

schnbhd School neighborhood

safety

School Ordinal 6 items from SAQ 5th

nonwhite Percent of non-white stu-

dents in the school

School Ordinal Collected from SAQ 5th

frmeal Percent of students in the

school approved for free or

reduced-price meals

School Ordinal Collected from SAQ 5th

schtype School type School Categorical Collected from SAQ 5th

location School locality School Categorical Provided by ECLS 5th
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distpov School district poverty School Continuous Collected from SAQ 5th

nbhdsafe House neighborhood safety Neighborhood Ordinal 3 items from PQ Kindergarten

Note: 1: CQ = child questionnaire; TQ = teacher questionnaire; PQ = parent questionnaire; PI = parent interview; SAQ =
school administrator questionnaire.
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