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Abstract This is a brief expository paper on reparameterized intercepts under constrained vari-

ants of the nominal response model, including the generalized partial credit and partial credit mod-

els. Such parameterizations are commonly found in item response theory software packages such

as flexMIRT®, IRTPRO, and OpenMx / rpf, and both these models are highly popular in educational
and psychological testing. A heuristic graphical interpretation is provided. We give examples of

how intercepts may be easily generated for Monte Carlo simulation studies, including a brief study

to increase generalizability and explore limitations of a recently developed information matrix test

to detect misspecification when collapsing adjacent response categories.
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Introduction
As the nominal response model (NRM; Bock, 1972; Thissen

& Cai, 2016; Thissen, Cai, & Bock, 2010) itself is compli-

cated, tutorials often overlook interpretation of the inter-

cepts in favor of other aspects (Falk & Ju, 2020; Revuelta,

Maydeu-Olivares, & Ximenez, 2019). In this paper, we fo-

cus on interpretation of reparameterized intercepts under

the Thissen et al. (2010) NRM, and in particular for con-

strained versions of the NRM such as the generalized par-

tial credit model (GPCM; Muraki, 1992) and partial credit

model (PCM; Masters, 1982). We first present various pa-

rameterizations of the NRM. Next a heuristic graphic inter-

pretation of the intercept parameters under Thissen et al.

(2010) in the context of the GPCM along with code for an

example of simulating items. In the final section, a small

Monte Carlo study is conducted to increase generalizabil-

ity and explore limitations of an information matrix test

developed by Harel and Steele (2018) to detect misspecifi-

cationwhen collapsing adjacent response categories under

the PCM.

Nominal, generalized partial credit, and partial credit
models
A general form for the category response functions (CRFs)

of NRM for an item is:

T (k|θ) = exp(zk)∑(K−1)
m=1 exp(zm)

(1)

where k = 0, 1, . . . ,K − 1 are categories and θ is the la-
tent trait. Conceptually, Equation (1) traces the probability

of category k for an item at values of the latent trait, θ.
There are multiple ways to write zk. In the original

NRM, Bock (1972) used zk = akθ + ck. Thus, each cate-
gory had its own specific slope (ak) and intercept (ck). In
recent unidimensional versions of the NRM (e.g., Thissen

et al., 2010), the following is used:

zk = a∗skθ + ck (2)

where a∗ is a slope parameter that can be interpreted sim-
ilarly to a factor loading, sk is a scoring function value for
category k, and ck is an intercept for category k. For iden-
tification, ck may be subject to a constraint (e.g., sum equal
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to zero or the first c0 = 0) or parameterized as described
shortly. Similarly, constraints are necessary on scoring

function values for identification, but are described else-

where (tbc10). When the scoring function values are

fixed to ordered integers, s =
[
s0 s1 · · · sK−1

]
=[

0 1 · · · K − 1
]
, the items are ordinal with respect

to the latent trait and the NRM reduces to the GPCM, which

represents a popular item responsemodels for polytomous

items in educational and psychological measurement con-

texts (Penfield, 2014). Further constraining slopes equal

across items results in the PCM, and additional constraints

on intercepts lead to the rating scalemodel (Andrich, 1978).

Traditional parameterizations of the GPCM often have

a threshold (b) analogous to overall difficulty and step pa-
rameters (dj) that control cross-over among CRFs:

zk =

k∑
j=0

1.7a(θ − b+ dj) (3)

where 1.7 is the usual scaling constant (for a review, see

Savalei, 2006). For example, by combining b and dj , the
point along θ where adjacent CRFs cross can be deter-
mined. Alternatively, these cross-over points can be deter-

mined by the bj parameters in yet another parameteriza-
tion of the GPCM:

zk =

k∑
j=0

1.7a(θ − bj) (4)

Note that constraints on dj in (3) or on bj in (4) are also nec-

essary for identification, usually d0 = 0 and
∑k

j=1 dj = 0

for (3), and b0 = 0 or
∑k

j=0 bj = 0 for (4).
There are at least two reasons why enhanced under-

standing of the intercepts in (2) is desirable. First, variants

of Equation (2) are used in recent software packages such

as flexMIRT® (Cai, 2017), IRTPRO (Cai, Thissen, & du Toit,

2011), and the rpf module that works with OpenMx (Neale
et al., 2016; Pritikin, 2020b; Pritikin & Falk, 2020; Pritikin,

Hunter, & Boker, 2015) in part because (2) is more easily

generalized to measure multiple latent constructs than is

(3) and (4). Second, it can be cumbersome for Monte Carlo

simulation studies to simulate step parameters or cross-

over parameters since a value for one parameter may af-

fect whether a value for another parameter is realistic (e.g.,

leading to cross-over of CRFs that are atypical). Thus, some-

times a very small variance or limited range (e.g., Zhou &

Huggins-Manley, 2020) or even fixed values (e.g., Kim &

Paek, 2017) for each parameter is used, which adversely

affects generalizability and makes it difficult to study how

variability in CRFs may affect the performance of studied

approaches.

Understanding reparameterized intercepts
The aforementioned sofware packages implement a ver-

sion of the NRM that further reparameterizes the inter-

cepts, c = Tcγ, where c (K × 1) contains all intercepts
for an item, γ is (K − 1) × 1 and contains all estimated
parameters, and Tc is a K × (K − 1) matrix. Thus, γ
contains parameters, γ1, γ2, . . . , γK , that are all freely es-
timated. These values are transformed into intercepts for

calculation of Equation (2).

In our experience, students often have difficulty un-

packing concise descriptions of the “gamma” parameters:

“. . . the linear-Fourier basis separates the parameter space

into a (first) component for b = −γ1/a∗ and a remain-
der that parameterizes ‘spacing’ among the thresholds or

crossover points of the curves” (Thissen et al., 2010, p. 61)
1
.

Direct interpretation of the intercepts is similarly difficult.

The goal of this brief expository paper is to elucidate how

such parametersmay be interpretable when using a linear-

Fourier basis for Tc as recommended by Thissen et al.

(2010) and as the default in these software packages.
2
The

matrix is typically constructed as follows (see Thissen et al.,

2010) :

T =


0 0 · · · 0
1 t22 · · · t2(K−1)
2 t32 · · · t3(K−1)
.
.
.

.

.

.

.

.

.

K − 1 0 · · · 0

 (5)

with tkk′ = sin(π(k′ − 1)(k − 1)/(K − 1))
To explain, we rely on a 5-category item and its matrix

for the intercepts:

Tc =


0 0 0 0
1 .7071 1 .7071
2 1 0 −1
3 .7071 −1 .7071
4 0 0 0

 (6)

Tc has a linear first column, with remaining columns

determined by a Fourier series. Conceptually, these addi-

tional columns take the places of “quadratic and higher-

order polynomial terms” (Thissen et al., 2010, p. 93). The

columns from the second onward are mutually orthogonal

(their inner product is zero). Likewise, wemay think of the

γ parameters as providing information about the strength
and direction of each trend, and for themost part can be in-

dependently interpreted and manipulated in simulations.

A graphical, heuristic interpretation is apparent by

varying only one parameter at a time for a 5-category

1
Subscripts dropped from original quote to match notation in the current manuscript.

2
This is the "Trend" option forTa andTc matrices in flexMIRT®, IRTPRO, and rpf.
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Figure 1 Manipulation of one gamma parameter at a time.

GPCM item in Figure 1. Each row changes a single γ (with
a∗ = 1 for all plots). For instance, the first row varies γ1,
but keeps all other γ’s constant. In this way, it is easy to
see that γ1 controls the difficulty of the item, which was
noted by Thissen et al. (2010). The CRF shapes remain the

same, but shift in response to changes in γ1 – with negative

values resulting in more difficult items. Conceptually, γ2
controls the overall spread in where the CRFs cross – with

γ2 = 0 resulting in all CRFs crossing at the same point,
and positive values (e.g., γ2 = 2) resulting in CRFs that
cross in order but are more spread out. In our opinion,

these latter CRFs seem more typical of Likert-type or par-

tial credit items on cognitive tests. These first two trends

will be typical of all ordered polytomous items. The re-

maining γ’s may depend on the total number of categories.
For this 5-category item, γ3 appears to control asymmetry
in how close the spacing is between crossover points, with

negative γ3 leading to closer crossover points on the lower
end of θ, and positive values leading to this same effect at
the lower end of θ. In addition, we can see submersion
of the second and fourth categories for negative and pos-

itive γ3, respectively. Sometimes such a pattern results in
real data, yet simulation of step parameters from a limited

range may avoid such CRFs altogether. Finally, γ4 appears
to vary spacing of cross-over points such that alternating

categories are more/less dominant or submerged. For in-

stance, on the left-hand side of the bottom row in Figure

1, the first, third, and last categories appear to be domi-
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nant response options (when γ4 = −.5), while the oppo-
site is true for the right-hand side of the bottom row (when

γ4 = .5).
For those who wish to experiment more regarding vi-

sualization, we recommend two resources. First, CRFs

for the parameterization in (2) can be plotted using either

R code in flexMIRT®support page (https://vpgcentral.com/

software/irt-software/support/) or using the itemModel-
Explorer() function in the ifaTools R package (Pritikin,
2020a; Pritikin & Schmidt, 2016). To use the latter for the

GPCM, the “nominal” model should be chosen as the item

model, “trend” matrices for both “T.a” and “T.c” options,

“alf1” should be set to 1 and the remaining “alf” parame-

ters should be set to 0. To explain briefly, s = Taα is typ-
ically used to parameterize scoring functions in (2), with

Ta constructed similarly toTc. Setting the first α to 1 with
the remaining 0 will provide the ordinal scoring function

values of the GPCM (the first column ofTa). The user may

then manipulate the slope (“a”) and γ (“gam”) parameters
as desired.

Finally, the interpretation for the γ parameters here
holds when the linear-Fourier series contrast matrix is

used. Thissen et al. (2010) present an identity-based ma-

trix that could be utilized or the user may employ a custom

contrast matrix. In these cases, the γ parameters will have
a different interpretation. In particular, with the identity-

basedmatrix the γ’s would have the same interpretation as
the intercepts in (2): the first intercept is fixed to zero and

the remainder of the intercepts (c1 to ck) translate directly
to the γ parameters (γ1 to γk) without modification (e.g.,
γ1 = c1). Further examples of use of the identity-based
matrix, albiet in the context of slope parameters, are given

by Preston, Reise, Cai, and Hays (2011). We would presume

the user has another purpose if a custom contrast matrix is

used.

Simulating GPCM item parameters: Example code
Given that the γ’s essentially represent independent
trends, this may make simulation of CRFs easier.

3
Figure

2 presents plots of 20 simulated GPCM items. Relevant

R code (see Listing 1 at the end) utilizes the rpf package
(Pritikin, 2020b) and demonstrates generation of both item

parameters and item responses for 5 category items, us-

ing the same data generating distributions as mentioned

here.
4
Slopes were generated from a lognormal distri-

bution, a∗ ∼ logN (0, .152). We also desired items that
were slightly difficult to endorse, γ1 ∼ unif(−1.25, .25),
CRFs that were usually spread out instead of crossing

in the same place, γ2 ∼ unif(.5, 2), and allowed some
mild heterogeneity with respect to other features, γ3 ∼

unif(−.6, .3), γ4 ∼ unif(−.3, .3). Such CRFs provide het-
erogeneity with some CRFs crossing out of order (e.g., item

8), but while still appearing realistic. Examination of real

data could also be used to inform a choice of generating

distribution for each parameter. As a concise example,

we fit a between-item multidimensional GPCM to the same

Big Five personality data (Goldberg, 1992) as analyzed by

Jeon and De Boeck (2019) from the Open-Source Psycho-

metrics Project (N = 7, 899; https://openpsychometrics.
org/_rawdata/). Across the 50 items (with 5 categories

each), the mean values for a∗ (M = 1.03, SD = .39), γ2
(M = 1.64, SD = .59), γ3 (M = −.10, SD = .11), and γ4
(M = .10, SD = .09) were similar to the center of the gen-
erating distributions listed above, and only γ1 (M = .56,
SD = .67) indicated that items were slightly more diffi-
cult to endorse. In educational testing contexts, it may be

desirable to generate a∗ and γ1 with some negative depen-
dency (Lord, 1975). We emphasize that the above gener-

ating distributions may not be representative of all appli-

cations and testing contexts. In practice, checking for rea-

sonable information functions and marginal probabilities

is also recommended. For these 20 items, for example, test

information peaks at about 24 near θ = .5, and assuming
a standard normal θ, marginal reliability is approximately
.93 and the lowest marginal probability is approximately

.035 for the highest category on item 9 -meaning that about

3.5% of respondents from a standard normal θ would se-
lect this category.

Simulation Studies
To illustrate the utility of being able to simulate a greater

variety of CRF shapes, we provide a small set of simula-

tions inspired by Harel and Steele (2018). During test con-

struction, there are several reasons why a psychometri-

cian may desire to collapse and recode adjacent categories

(for a review, see Harel & Steele, 2018). For example, one

might suspect that category boundaries are not clearly dis-

tinguishable by participants (Preston et al., 2011). In such

a case, collapsing may be well justified and not result in

misspecification. If very few responses are observed in

some categories, collapsing may be done to avoid estima-

tion difficulty (Rose et al., 2014), even if it technically consi-

titutes misspecification. Harel and Steele (2018) developed

a new information matrix test (IMT) to detect misspecifi-

cation when adjacent categories for the PCM are collapsed

into a single category. Our studies are an exploration of

how features of the collapsed item and other items on the

test may affect statistical power to detect misspecification.

Harel and Steele (2018) investigated Type I error (false

positives) and power of the IMT versus several alternatives

3
In our experience, the distribution of slopes may affect choices for the other parameters.

4
The code is slightly more compact than that used for Figure 2.
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Figure 2 Simulated GPCM items.

(Preston et al., 2011; Kang & Chen, 2008, i.e., ) in simula-

tions. In any given replication, a single item was subject to

the IMT, with all items following the PCM:

zk =

k∑
j=0

(θ − bj) (7)

which is equivalent to Equation (4) with 1.7a = 1, and
b0 = 0 for identification, or to the NRM in Equation (2)
with a∗ = 1 and ordinal scoring functions. Latent traits
were generated from a standard normal distribution.

The tested item followed one of four different shapes

(Figure 3). See Table 1 for both threshold (b’s) and gamma
(γ’s) parameters.5 We will focus on two (out of four) con-
ditions that were crossed with item type: 1) a condition

where no collapsing was done; and 2) a condition where

the middle and 4th categories were collapsed. The first

condition results in no misspecification and can be used to

assess Type I error, whereas the second condition results

in misspecification as the recoded item no longer follows

the PCM.

All untested items had threshold parameters (b’s) “se-
lected to be a series of quantiles of a standard normal dis-

tribution, ranging from -1.96 to 1.96, with the items de-

5
To convert from thresholds to gammas, note that ck = −

∑k
j=0 bj/(1.7a) under (4) or ck = −

∑k
j=0 bj under (7). Once intercepts are obtained,

from c = Tcγ we can solve for γ via the matrix operations: γ = (T′cTc)−1T′cc.
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Table 1 Item parameters for the tested item under four item shape conditions used by Harel and Steele (2018) and our

Study 1.

Item Shape b1 b2 b3 b4 γ1 γ2 γ3 γ4
1 -1.645 -.385 .385 1.645 0 2.18 0 .15

2 -1 0 .2 1 -.05 1.26 .05 .16

3 -1 .2 0 1 -.05 1.16 .05 .26

4 -1 .5 -.5 1 0 .96 0 .46

Note. Slope parameter is fixed to 1. Parameters from both the PCM and NRM are provided.
Figure 3 Tested items from Harel and Steele (2018)

signed to interlace, and thus each cover a large portion of

the range of expected θ values” (Harel & Steele, 2018, p.
218) A similar description is given in describing Item 1 in

Figure 3. We take this to mean that item parameters were

fixed across replications and provide information across

the latent trait but primarily towards the middle of the la-

tent trait distribution.

Based on these items, we make two observations. First,

the choice to collapse is likely to occur when few re-

spondents endorse a category (i.e., the category has low

marginal probability). The tested items involved increas-

ing submersion of the middle category, which leads to a

marginal probability as low as .12 under item 4. However,

the middle category is still located at the middle of the la-

tent trait distribution, where most respondents were gen-

erated. Harel and Steele (2018) report higher power when

this middle category has lower marginal probability (e.g.,

the power under item 4was greater than under item 1). We

suppose that it is more common that low marginal proba-

bilities that prompt collapsing more often occur towards

the endpoint categories – outside of the most concentrated

part of the latent trait distribution – and that this pattern

regarding marginal probability and power may not hold

generally. Second, the remaining items on the test, if ac-

tually similar to item 1, may provide information primar-

ily in the middle of the latent trait generating distribution

and also near the middle collapsed category. To investi-

gate whether a variety of items adversely affect power, we

generated a greater variety of PCM items by manipulating

intercepts using the NRM parameterization.

Method

We designed two simulation studies. In all cases, latent

traits were generated from a standard normal distribution,

the total number of items was fixed at 6 (only 1 item was

tested), and sample size (N = 100, 250, 500) was manip-
ulated. Although we generated items using a constrained

NRM, the PCM was used for model fitting and construction

of the IMT (with α = .05). Conceptually, the IMT relies on
the equivalence of the negative expected Hessian (i.e., the

matrix of second-order derivatives of the log-likelihood)

and expected outer product of the score vector (i.e., first-

order derivatives of the log-likelihood) under a correctly

specified model (e.g., Ranger & Kuhn, 2012; Yuan, Cheng, &

Patton, 2014). A discrepancy therefore may indicate misfit

and can be used to form a test statistic. Harel and Steele

(2018) form such a test statistic from these matrices rele-

vant for a subset of item parameters (i.e., bj ’s) surround-
ing or adjacent to the collapsed categories. Under a cor-

rectly specified model, the IMT asymptotically follows a

chi-square distribution with degrees of freedom equal to

the number of unique elements in the relevant subset of

the aforementionedmatrices. For further technical details,

we refer the reader to their original paper, and note that

the code used to implement the test is available in the R
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package IMTest (Harel, 2017).6
Study 1
In Study 1, item parameters for the tested items were iden-

tical to those used in Harel and Steele (2018) (Table 1).

The 5 untested items were PCM items randomly generated

across replications and were intended to be slightly diffi-

cult, γ1 ∼ unif(−.75, .25), interlacing, γ2 ∼ unif(.5, 2),
and varying remaining features, γ3 ∼ unif(−.5, .3) and
γ4 ∼ unif(−.3, .3). Type I error (no collapsing) and power
based on collapsing the middle and 4th categories as in the

original Harel and Steele (2018) study were examined. We

conducted 10,000 replications per cell of the design. Aside

from untested item shapes, these conditions overlap with

those from Harel and Steele (2018). This Study was aimed

at extending the generalizability of the IMT under condi-

tions where the other items on the test were varied.

Study 2
In Study 2, the same data generating conditions as in Study

1 were used for non-tested items. We varied the approach

for generating the tested items and categories. In Condi-

tion 1, the tested itemwas fairly difficult such that the high-

est category had lower marginal probability due to being

far from the center of the latent trait distribution, γ1 ∼
unif(−1.25, .25), γ2 ∼ unif(.75, 3), γ3 ∼ unif(−.25, .75),
and γ4 ∼ unif(−.75, .75). We investigated collapsing

of the highest two categories, with the IMT involving the

highest threshold. In Condition 2, generated items were

roughly in the middle of the latent trait distribution, γ1 ∼
unif(−.75, .75), but other features were varied such that
the lowest two categories sometimes had low marginal

probability, also in part to being located far from the cen-

ter of the latent trait distribution. In particular, spacing

between crossover points was high, γ2 ∼ unif(2, 3), and
some asymmetry may lead to lower marginal probability

of the first and second categories, γ3 ∼ unif(−1,−.25),
and γ4 ∼ unif(−.75, .5). 10,000 replications per cell were
conducted with tested items re-used for each of the three

sample size conditions. Thus, Study 2 was designed to test

endpoint categories while varying item features to result

in somewhat low marginal probability of the involved cat-

egories. On average in Condition 1, the 4th and 5th cat-

egories had marginal probabilities of .13 and .08, respec-

tively, and under Condition 2, the 1st and 2nd categories

had .11 and .12 marginal probabilities.

Results and Discussion

For Study 1, power and Type I error (false positive) rates

(Table 2) were similar to those reported by Harel and Steele

(2018). In most cases, Type I error was close to the nom-

inal rate (.05). Comparable rates of power were found –

around .1 or below at N = 100 and between .48 and .64
at N = 500. We also observed higher power for Item 4
than for the other items, in the same pattern as previously

observed.

Under Study 2, Type I error rates were very close to the

nominal rate (Table 3). However, power did not increase as

rapidly with sample size as in Study 1, with power slightly

below .1 at N = 100 and reaching .26 and .32 for Con-
ditions 1 and 2, respectively, at N = 500. We employed
an ad-hoc approach to further probe for whether our pro-

posal that varying the marginal probability of the relevant

categories resulted in different power. In particular, we fit

two generalized linear mixed models (separate models for

Condition 1 and 2) with a binomial link function to Study 2

data. The random intercept was based on replication num-

ber as the same item parameters for the tested item were

repeated at each sample size. Predictors included sample

size (dummy coded, withN = 100 as the reference group),
and a composite that was the sum of themarginal probabil-

ities of the two tested categories. In general, the pattern of

results (Table 4) suggested that marginal probability of the

relevant categories was positively related to power under

Condition 1, but was unrelated under Condition 2. This re-

sult is in contrast to the pattern apparent from Study 1 and

originally found by Harel and Steele (2018). Thus, there are

likely other non-trivial features of tested or untested items

that affect power of the IMT. We suspect that a similar pat-

tern may be found if other approaches to detect misspeci-

fication were studied.

Conclusion
In conclusion, it is hoped that this paper will aid in inter-

pretting “gamma” parameters that may commonly appear

in software output such as that from flexMIRT®, IRTPRO,

and the item factor analysis module of OpenMx. Even if
a traditional parameterization of the GPCM or PCM is pro-

vided as output by some of these software programs, it may

still be sometimes necessary or useful to simulate data by

using the “gamma” parameters. The strategy we have pro-

posedmay then be used, and we expect to be useful in both

unidimensional and multidimensional GPCM and PCM ap-

plications where each items loads on one factor at a time.
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6
The IMT also requires Monte Carlo methods to approximate the covariancematrix among the residual terms. We used the same 100,000 simulations

per test as used by Harel and Steele (2018).
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Table 2 Type I error and power under Study 1.

Item Shape N Type I Error Power

1 100 .051 .077

2 100 .051 .079

3 100 .050 .092

4 100 .051 .103

1 250 .054 .212

2 250 .051 .234

3 250 .052 .251

4 250 .050 .298

1 500 .050 .480

2 500 .051 .526

3 500 .053 .567

4 500 .049 .642

Table 3 Type I error and power under Study 2.

Condition N Type I Error Power

1 100 .051 .083

2 100 .052 .092

1 250 .051 .152

2 250 .050 .190

1 500 .052 .260

2 500 .052 .319

Table 4 Generalized linear mixed effects models for

power in Study 2.

Condition 1
Fixed Effect Estimate SE z p
Intercept -3.12 .06

N250 .73 .05 15.42 <.001

N500 1.47 .05 32.22 <.001

MargProb 2.15 .18 11.92 <.001

Condition 2
Fixed Effect Estimate SE z p
Intercept -2.55 .06

N250 .90 .05 20.06 <.001

N500 1.68 .04 38.01 <.001

MargProb -.02 .18 -.13 .894

Note. Sample size is dummy coded, with N = 100 as
the reference group. MargProb = sum of the marginal

probability of the two collapsed categories. Variance

of the random intercept was .58 under Condition 1,

and .67 under Condition 2.
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Listing 1 Simulating GPCM item parameters

# This example simulates item parameters and responses
# for twenty-five items with 5 categories per item,
# unidimensional GPCM

library(rpf) # load rpf
set.seed(1239) # set random number seed

n<-25 # number of items
ncat<-5 # number of categories

# simulate item parameters
a<-rlnorm(n,0,.15)
alf1<-rep(1,25)
alf2<-alf3<-alf4<-rep(0,25)
gam1<-runif(n,-1.25,.25)
gam2<-runif(n,.5,2)
gam3<-runif(n,-.6,.3)
gam4<-runif(n,-.3,.3)

# combine into matrix, 1 item per row
pars<-cbind(a,alf1,alf2,alf3,alf4,gam1,gam2,gam3,gam4)

# create nrm.item object
nrm.item<-rpf.nrm(ncat, factors=1, T.a="trend",T.c="trend")

# generate data
N<-500 # sample size
thetas<-rnorm(N,0,1) # standard normal latent traits

# simulate responses
dat<-rpf.sample(thetas, replicate(n,nrm.item), t(pars))

# Result is matrix with "ordinal" factors as columns for use with OpenMx
# If merely numeric data is required with other software, simply do:
dat<-apply(dat,2,as.numeric)

# and if it is also desired that categories start from 0, 1, 2, 3, etc.
# instead of 1,2,3,4, etc, do:
dat<-dat-1

# dat is now ready for use
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