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Jan Tünnermann
aB

and Ingrid Scharlau
b

a
Department of Psychology, Phillips University Marburg, Marburg, Germany
b
Department of Arts and Humanities, Paderborn University, Paderborn, Germany

Abstract We present a large and precise data set of temporal-order judgments on visual stim-

uli. Stimulus asynchronies ranged from 0 to 80 ms in steps of 6.67 ms. The data set includes a

salience-based attention manipulation driven by one target’s orientation compared to background

elements (either zero or 90 degrees). Each of 25 stimulus asynchronies was sampled with at least

196 repetitions (and beyond 400 repetitions in two participants). Furthermore, fixation, an impor-

tant concern in studies on covert attention, was monitored. Precise data are helpful for answering

theoretical questions in psychology. For some questions such as model comparisons, they may even

be necessary. Three different example models are fitted to the data.
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Introduction
Modeling is an important part of psychology. Although

one can discuss whether or how far psychology right now

faces a methods crisis (for different opinions see, for in-

stance, Bakker, van Dijk, & Wicherts, 2012; Gilbert, King,

Pettigrew, & Wilson, 2016; Ioannidis, 2005; Maxwell, Lau,

& Howard, 2015; Open Science Collaboration, 2015; Pash-

ler & Harris, 2012; Simmons, Nelson, & Simonsohn, 2011),

it is undisputed that enhanced methods will substantially

contribute to progress in psychology. Formal modeling is

among them (see. e.g., Krüger, Tünnermann, Rohlfing, &

Scharlau, 2018).

Modeling presupposes appropriate data sets. Disparate

models, even two that differ quite substantially in the pro-

cesses they call on to explain a certain phenomenon or

effect, may barely differ in predicted data patterns (e.g.,

Tünnermann & Scharlau, 2018b). In this case, very pre-

cise data are required to convincingly distinguish between

models, or estimate parameters with high confidence.

In areas of cognitive research where data collection

is extremely expensive, researchers have already started

creating high-quality large-scale data sets which then are

made available to the research community. To name just

one example, Hanke et al. (2014, 2016) curate an openly

available and constantly extended data set with fMRI and

structural scans, eye-tracking, and other auxiliary data.

This data set was obtained with participants who watched

the movie Forrest Gump in an fMRI scanner. The data set

has facilitated very different studies—such as those on the

processing of event boundaries in continuous experiences

(Ben-Yakov & Henson, 2018) or the direct comparison of

brain activity across participants (Joshi, Chong, Li, Choi, &

Leahy, 2018).

Although collection of behavioral data is quicker and

much less expensive, behavioral studies could benefit from

similar collaborative efforts. For instance, temporal-order

judgments (TOJs) are often used to infer causal influences

on processing speed, such as advantages—to give a few re-

cent examples—caused by attending to a location (Shore,

Spence, & Klein, 2001), by task relevance and bottom-up

salience (Born, Kerzel, & Pratt, 2015), by threatening and

non-threatening faces (West, Anderson, & Pratt, 2009), or

by being the active compared to the non-active object in

a pair (such as a cork screw compared to the corked bot-

tle; K. L. Roberts & Humphreys, 2010). Most of these stud-

ies demonstrated the assumed influences by showing that

perceived temporal characteristics differ between condi-

tions. This temporal perception is usually operational-

ized as a descriptive parameter of the distribution of judg-
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ments, the point of subjective simultaneity (PSS), assum-

ing that a shifted PSS indicates faster or slower process-

ing speed. Although this method is very common, we have

to note that the relationship between the PSS, which de-

scribes observed behavior, and the underlying temporal

processing is at best indirect. Without formally linking the
PSS (or other features of the order-judgment distribution)

to themechanisms that should explain the effects, little can

be learned about what exactly causes them.

There are some approaches at modeling TOJs in more

detail. For instance, Schneider and Bavelier (2003) com-

pared three types of models already identified by Stern-

berg and Knoll (1973), a deterministic decision rule model,

a triggered-moment model, and a perceptual-moment

model, and found that sensory facilitation and modula-

tions of the decision mechanism caused reliable accel-

eration of processing (“prior entry”) whereas attention

seemed to be less relevant as a causal influence. More

recently, Garćıa-Pérez and Alcalá-Quintana (2018) postu-

lated an indecision-range observer model with processing

speed, latency, decision, and response factors as parame-

ters. Unlike Schneider and Bavelier, Garćıa-Pérez and Al-

calá-Quintana ascribe prior entry to decision processes. A

further approach (e.g., Tünnermann & Scharlau, 2016) is

to model TOJs with the fundamental components of atten-

tional processing from Bundesen’s (1990) theory of visual

attention (TVA; for a review see Bundesen, Vangkilde, &

Petersen, 2015). In this perspective, effects such as prior

entry can be linked to theoretical components whose ex-

istence and meaning are supported by data from entirely

different behavioral paradigms, clinical research, and neu-

ral theories. We pick up some of the approaches described

above later for example evaluations of the high-accuracy

TOJ data set we present in this paper.

Brief methodological context
TOJs have been a common experimental methodology in

psychology ever since its beginnings (e.g., Boring, 1957;

Hoffmann, 2006), especially, but not exclusively, in the

study of prior entry (Spence & Parise, 2010). For enabling

high-confidence analyses, the present data set focuses on

data quality within an individual observer’s data set (num-

ber of measuring points and repetitions, i.e., a larger num-

ber of trials M per participant, “big-M”) and therefore
only tests few participants (a small-N design, see, e.g.,

Smith & Little, 2018). As an example question, we study the

influence of salience on temporal-order perception (e.g.,

Krüger, Tünnermann, & Scharlau, 2017).

Search for a Powerful Design
Before conducting the experiment delineated above, we

analyzed power with the following procedure. Within par-

ticipants, the experimental power of TOJs is determined by

at least three factors, the range and spacing of the stimu-

lus onset asynchronies (SOAs)
1
to be judged and the repe-

titions of each SOA. We aim to produce a versatile TOJ data

set for advanced analysis and comparisons of models that

deal withminute fluctuations in the psychometric function

(cf. Tünnermann & Scharlau, 2018b). Hence, we opt for a

tight SOA spacing of 6.67 ms, which can be reliably pre-

sented on a 150 Hz CRT monitor. Our SOAs range from -80

to +80 ms, covering the complete psychometric functions

we typically observe for our stimulus material (see, e.g.,

Krüger, Tünnermann, & Scharlau, 2016). With these fac-

tors fixed, the number of SOA repetitions is the factor that

can be adjusted to achieve the desired power.

We illuminate the relationship between SOA repeti-

tions and power in a general manner to help researchers

judge the power of the present data set and visual TOJ data

sets in general. Especially with advanced model-based

analysis, the power depends on the model and the effect

(size) of interest, which we cannot anticipate. However, a

widely used and general model of binary TOJs is a sigmoid

function with a PSS (point of subjective simultaneity; the

SOA at which stimuli are perceived as simultaneous) and

DL (difference limen; an index of the function’s slope and

an indicator of discrimination performance). Because of

its widespread use and comparative simplicity, we use this

model for the following power analyses.

TOJ researchers might be interested in several results

of this analysis. Often, they want to establish that a PSS is

different from zero, for instance that centrally cued stimuli

are perceived faster than uncued ones (Shore et al., 2001),

or that stimuli in the left visual field are processed faster

than those in the right visual field (Matthews & Welch,

2015). Other researchers should be more interested in the

size of a PSS difference than its existence because this size

is often taken as an index of changes in processing speed.

To this end, we conduct a novel Bayesian power search

(BPS). In the BPS we are not interested in the power of de-

tecting one particular simulated effect but in the PSS sizes

that can be detected with a desired power depending on

the number of SOA repetitions.

We therefore systematically search through PSS-size

candidates by simulating data with certain PSSs with a lo-

gistic model (Finney, 1971). Starting with one PSS can-

didate, multiple data sets (500) are simulated by drawing

frombinomial distributions at each SOAwith a success rate

1
The conventional term is “stimulus onset asynchrony” in the TOJ literature, and we stick with it, although strictly speaking we use a stimulus blink

asynchrony, as explained below in the Summary of the Methodology.
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Figure 1 (a) Number of repetitions × PSS shift size 0.8 “power curves” obtained with the Bayesian power search. Re-
searchers can read off the number of repetitions (x-axis) required to detect PSS shifts of different sizes (y-axis) with a
power of 0.8. Successful detection refers to PSS posterior distributions for which zero, no difference, lies below the lower

95-%-HDI boundary (solid lines) or the posterior mode being within±20% of the true (simulated) PSS (dashed lines). PSS:
point of subjective simultaneity; DL: difference limen. (b) Illustrations of psychometric functions with different DLs and

PSSs.

determined by the current psychometric function and ac-

cording to the current number of repetitions. A Bayesian

parameter estimation is then conducted for all data sets.

The power is the proportion of estimations in which the re-

search goal (e.g., a PSS larger than zero) is achieved. If this

turns out to be smaller than 0.8
2
, a larger candidate (be-

tween the current and an upper limit) is used in the next it-

eration. If the power is larger than the desired power (e.g.,

> 0.8), the new candidate is chosen in themiddle between
zero (the lower limit) and the current value. The upper and

lower limits of the search range are always updated based

on which parts of the search space can be excluded. In this

fashion, a bisection search is performed to find the can-

didate that is the closest to the desired power.
3
Once the

search has homed in on the best candidate (which has a

power close to 0.8), this value is stored for the current num-

ber of repetitions and the same procedure is performed for

the next larger number of repetitions. Because with more

repetitions smaller PSSs can be found with a power of 0.8,

the maximum candidate size for the new iteration can be

set to the PSS size just found with a smaller number of iter-

ations, facilitating the search.

We perform the BPS for different DL values that corre-

spond to typical weak, medium and high accuracy in vi-

sual TOJs, 60, 20, and 6 ms. The reason for this is that

“weaker curves” are closer to the chance level and have

higher uncertainties in the binomial distributions, which

has an impact on the power. Moreover, we look at the two

different research goals already mentioned above: Detect-

ing a PSS different from zero (something akin to a typical

significance test) and measuring the “true” (simulated) PSS

with an accuracy of ±20 %. The resulting relationship is
illustrated in Figure 1A. As the curves in Figure 1A show,

many repetitions are required if researchers are interested

in small PSSs (e.g., smaller than 10ms). If DL is large (weak

discrimination performance) or if the size and not just the

presence of a PSS shift is of interest (dashed lines), hun-

dreds of repetitions are required. Beyond PSS effects, if

2
The value of 0.8 is conventional and should be adapted depending on which question is asked and how serious a beta error is assumed to be in a

specific field of research.

3
Of course the candidate list must be established to include sufficiently close values. This is best determined by a few preliminary power estimations

of the type described here for some test values.
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Figure 2 (a) General setup (image adapted from Krüger et al., 2021). (b) Presentation procedure. The 20 ms blinks are

indicated by the red markings (not present in the actual displays). Salient condition. Here, a negative SOA is shown at

which the salient target flickered first.

models that produce very similar judgment distributions

are to be compared, an even larger amount of data might

be required (this is not illustrated in the figure; but see

Tünnermann & Scharlau, 2018b). Hence, for the proposed

data set we ensured that the number repetitions at each

SOA are as high as possible. The data sets of different par-

ticipants have average repetition counts per SOA of at least

196, some up to more than 470 (see Figures 3 and 4).

We hasten to add that we (Tünnermann, 2016) and oth-

ers (e.g., Alcalá-Quintana & Garćıa-Pérez, 2013) have crit-

icized the identification of PSS differences with process-

ing speed differences on the ground (mentioned briefly in

the Introduction) that the PSS lacks a formal connection to

the processes that drive temporal perception. The PSS is

a parameter that conveniently describes observer perfor-

mance, that is, the psychometric function. Because formal

modeling of TOJs is still uncommon whereas the use of PSS

is widespread, we carried out the power analysis for this

parameter. The same analysis could be repeated for pa-

rameters drawn from theory-based formal models such as

that of Alcalá-Quintana and Garćıa-Pérez, 2013 or our own

(Tünnermann, 2016).

The algorithm to perform the BPS is presented in Ap-

pendix A.

Summary of the Methodology
The apparatus for this study was a PC (with an Intel Core 2

Duo CPU 3.00GHz, 4 GB RAM; Windows 7) with a Samsung

SyncMaster 957DF CRT monitor running at 640 × 480 pix-
els with 150 Hz (non-interlaced) for accurate stimulus pre-

sentation. The experiment was implemented in Open-

Sesame 3.1.9 (Mathôt, Schreij, & Theeuwes, 2012) with

the PsychoPy (Peirce et al., 2019) backend. Blocking flips

synchronized presentation with the vertical retrace of the

monitor and the PC’s internal clockwas used tomonitor for

missed flips. Trials with missed flips were very rare, sig-

naled via a blue screen background to the participants, and

repeated later in the experiment. Trials with such timing

errors were not included in the final dataset. A standard

keyboard was used to collect the unspeeded judgments. An

eye tracker (SR Research EyeLink 1000 plus) was used to

ensure central fixation.

In the present study, stimuli were unimodal and visual.

Judgment was binary, that is, observers judged whether

one or the other visual target is first (for other methods

see, e.g., Ulrich, 1987). The experiment had two intermixed

independent variables, the SOA between the two targets

(ranging from 0 to 80 ms in steps of 6.67 ms to cover the

whole range of accuracy, from very few errors to guessing

at SOA zero), and orientation salience. For each trial, the

orientation of the background elements for the left half of

the screen was drawn at random from 18 equally spaced

orientations within the range of 0° to 170° (with 10° in-

tervals; note that starting at 180° the appearance of the

line segments repeats). The orientation of the background

elements in the right half of the screen was obtained by

adding 90°, the maximum possible difference, to the orien-

tations of the left-field elements (see Figure 2B for an ex-

ample). Each of the screen halves contained one of the tar-

gets. One target had the same orientation as the elements
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surrounding it and thus was non-salient. In half of the tri-

als, the other target had a maximally different orientation

(90°) relative to its background (salient condition; see Fig-

ure 2). In the other half, it had the same orientation as its

background elements (non-salient condition). We call the

target that always had the same orientation as the back-

ground the reference stimulus, r, and the target that could
be salient or not the probe stimulus, p. Note that, as illus-
trated in Figure 2, the left and right distractor fields had el-

ement orientations which were orthogonal to each other.

Distractors were dark gray [R:127, G:127, B:127] bars on

a light gray [R:192, G:192, B:192] background, 8 × 8 on
each side of fixation. The targets were a darker gray [R:71,

G:71, B:71] and appeared at random locations within the

inner 6 × 6 stimuli, one at each side of fixation. The exact
positions and line width were slightly jittered to create a

less regular appearance. Each target blinked shortly (be-

ing turned off for 20 ms), separated by the SOA. On the 22"

monitor at 50 cm distance. The length of the bars was 1.37°

and the strength of the stroke was about 0.32° (plus a small

jitter).

The participants indicated without time pressure

which target had blinked first by pressing a left or right

key. Fixation was controlled by an EyeLink 1000 Plus eye

tracker. In trials with a fixation deviation of more than ap-

proximately 1 degree from the central fixation point, the

screen background briefly turned red after the response

and the trials were repeated later in the experiment.

The experiment was self-paced; participants could take

a break after blocks of 50 trials (and by postponing re-

sponses even within blocks) and do as many blocks as they

wanted in each session.

Summary of the Results
Seven adult participants took part in the study, among

them one of the authors (denoted as P4 in the Figures). The

other six participants were students who received e8 per
hour. All participants had normal or corrected-to normal

vision. They produced a minimum of 196 data recordings

per SOA and condition on average; maximum was self-set

and ranged between 196 and more than 470 recordings.

Details about the repetitions of each SOA in each partici-

pant can be found in Appendix C, Table C1 (neutral condi-

tion) and Table C2 (salience condition). The number of rep-

etitions varies slightly across SOAs because of two reasons:

(1) We kept partial sessions which participants started but

did not complete. (2) Due to a programming error, some

recordings in participants 2 and 3 had erroneous −20 and
20 SOAs. These were removed and additional SOAs of this
magnitude were added in later sessions to approximately

compensate the loss. We do not expect this to influence our

analysis. However, researchers interested in analyzing the

data set in chronological blocks (e.g., to assess learning ef-

fects) might want to exclude these SOAs from these partic-

ipants.

The recorded data is plotted as points (proportion of

“probe first” judgments at each SOA) in Figures 3 and 4. As

can be seen in the figures, the data pattern follows the typ-

ical s-shaped course. The selected SOA range seems appro-

priate and informative, as most curves reach or approach

their convergence at the largest SOAs. As expected, there

is some variability between the participants in variability,

slope and salience-induced shift.

The figures include estimates of the conventional TOJ

parameters DL (an index of the slope in the inner quar-

tiles of the function) and (shift of) PSS (SOA at judgment

frequency 0.5). Salience shifts the PSS by up to 12 ms, de-

pending on participant. DL values range from −22 to −43
ms. The upcoming sections will discuss the different mod-

els used as examples and how they perform on the data

set.

Reaction time (RT) is not a measure of interest in most

TOJ studies. In the experiments reported here, participants

were not instructed to respond as fast as possible. We nev-

ertheless recorded RTs (with limited precision, as a stan-

dard keyboard was used). However, in the analyses we

report we do not exclude any data based on RTs. If par-

ticipants took longer breaks within blocks (by withholding

the response, which was permitted) they also broke fixa-

tion, and such trials were removed based on fixation er-

rors. We include the RTs in the final dataset because they

might help to distinguish fixation errors during voluntary

breaks from involuntary fixation errors that might be of

interest for other researchers. In Appendix D we provide

more information about the distribution of RTs in the trials

without fixation errors.

Model
In this section we describe three TOJ models from different

theoretical backgrounds and with different complexities,

which we ran on the data set described in this manuscript.

We only briefly summarize the background of these mod-

els and list the parameters and their meaning. For formal

derivations, please refer to the cited studies. For the tech-

nical implementations, see Listings 1–4 in Appendix B.

Model Example 1: Toolbox Logistic Regression
A logistic regression corresponds to fitting a sigmoid to the

data. Logistic regression is a standard analysis method

available in many statistics packages. Here we use the

Bayesian logistic regression implemented in the GLM (gen-

eralized linear model) module in PyMC3 in its default con-

figuration (flat priors on the intercepts, zero-centered Nor-

mals with precision τ = 1 · 10−6
on the regressor coef-

The Quantitative Methods for Psychology 3592

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.4.p355


¦ 2021 Vol. 17 no. 4

Figure 3 Data (proportion of “probe first” reports; point markers with binomial proportion 95 % confidence interval

error bars), parameter estimates (means with 95-%-HDIs in brackets; black ink = neutral condition; green ink = salience

condition), leave-one-out-model comparison score (LOO; smaller is better) and posterior predictive visualizations (lines

showmeans, shaded areas indicate 95-%-HDIs) for participants 1 to 4 (rows) for each of the three model examples (Logis-

tic regression, AQGP, and TVATOJ, columns, see Tables 1–3). RpSOA refers to the average number of repetitions per SOA.

Parameter units are given in Tables 1–3.
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Figure 4 Data (proportion of “probe first” reports; point markers with binomial proportion 95 % confidence interval

error bars), parameter estimates (means with 95-%-HDIs in brackets; black ink = neutral condition; green ink = salience

condition), leave-one-out-model comparison score (LOO; smaller is better) and posterior predictive visualizations (lines

showmeans, shaded areas indicate 95-%-HDIs) for participants 5 to 7 (rows) for each of the three model examples (Logis-

tic regression, AQGP, and TVATOJ, columns, see Tables 1–3). RpSOA refers to the average number of repetitions per SOA.

Parameter units are given in Tables 1–3.
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Table 1 Parameters of the logistic model.

Parameter Unit Interpretation
PSS Time (ms) (relative) latency difference

DL Time (ms) judgment precision

ficients). We transform the coefficients into PSS = −a/b
and DL = log (0.75/0.25)/b, where a refers to the inter-
cept and b to the slope. These are typical parameters

in psychometric TOJ analysis. Changes in DL indicate a

change in discrimination accuracy (lower DL means that

observers can discriminate better between two temporal

events). Changes in PSS are interpreted as changes in (rel-

ative) stimulus processing latency (PSS differences from

zero are interpreted as one stimulus, for instance the at-

tended one, being processed faster). TOJs have often been

assessed with such models, for instance (to give only a

very few examples) by Born et al. (2015), Neumann and

Scharlau (2007), R. D. Roberts and Humphreys (2008), K. L.

Roberts and Humphreys (2010), Scharlau, Ansorge, and

Horstmann (2006), Schofield, Yousef, and Denson (2017),

Shore et al. (2001), Wada, Moizumi, and Kitazawa (2005).

Model Example 2: Model by Alcalá-Quintana and
Garćıa-Pérez (2013) (AQGP)
In contrast to sigmoid models that merely describe the ob-

served performance, process-based models pin down the

assumed processes that drive the observed judgments. One

such model (covering TOJs well as simultaneity judgments;

the latter are not relevant in the present context though

an important advantage in others) has been proposed by

Garćıa-Pérez and Alcalá-Quintana (2012; see also Alcalá-

Quintana and Garćıa-Pérez, 2013). Stimulus encoding is

here described by several parameters that have a direct

psychological interpretation. Two λ parameters describe
the processing speeds of the two stimuli (called λp and λr
in the present context with the subscript p denoting the
probe and the subscript r denoting the reference stimu-
lus). Parameter τ describes a possible (net) delay caused
by latencies in the processing of the two stimuli. Finally, ξ
indicates a bias towards reporting one or the other stimu-

lus. The model also includes a parameter δ that indicates
a range of indecision, that is a temporal interval below

which temporal order cannot be discriminated. The model

has originally been applied to audio-visual TOJs but later

also to purely visual TOJs (Garćıa-Pérez & Alcalá-Quintana,

2015).

Model Example 3: TVA-based TOJ Model (TVATOJ)
Whereas the process-based model above is a general ap-

proach to modeling TOJs independent of the exact the-

ory of stimulus processing, the TVA-based model is de-

rived from a theory of visual attention and stimulus pro-

cessing (Bundesen, 1990; Bundesen & Habekost, 2008).

It links TOJs to well-understood parameters identified

by TVA. These are the attentional weights w devoted to
each stimulus and the overall processing rate C. These
parameters are supported by a broad range of empiri-

cal findings from tasks other than TOJs as well as clini-

cal studies and a neural interpretation (for reviews see

Bundesen et al., 2015; Habekost, 2015). Several stud-

ies have applied the TVATOJ model to TOJ data (Krüger

et al., 2016, 2017; Tünnermann, Petersen, & Scharlau,

2015; Tünnermann, 2016; Tünnermann, Krüger, & Schar-

lau, 2017; Tünnermann & Scharlau, 2016; Tünnermann &

Scharlau, 2018a; Tünnermann & Scharlau, 2018b), includ-

ing a successful application to gaming scenarios in which

the TOJs are part of a video game and online experiments

(Krüger et al., 2021). Many of these studies support that at-

tention affects the attentional weights and not the overall

processing rate C. Hence, we implement the model with
a C parameter shared among the two conditions. For all
other parameters (also in the other models) we use one pa-

rameter per condition.

Fits and Comparison
To demonstrate the data set we estimate the parameters of

the three models described above with Bayesian parame-

ter estimation via MCMC sampling (NUTS sampler; Hoff-

man & Gelman, 2014) implemented in PyMC3 (Salvatier,

Wiecki, & Fonnesbeck, 2016). In Figures 3 and 4, we re-

port the parameter estimates and their certainty. The plots

show the data with 95 % binomial proportion confidence

intervals obtained via the asymptotic normal approxima-

tion implemented in the Python module “statsmodels”

(Seabold & Perktold, 2010). The model predictions are de-

picted as the mean of the posterior predictive distribution

(solid lines) and the 95-%-HDIs (shaded area). Moreover,

we report model comparison scores (leave-one-out cross-

validation) for each model in each participant.

Discussion of the Performance of the Example Models
on the Data Set
We have fitted three different models to our highly pre-

cise TOJ data set on the participant level. Depending on

the number of repetitions per SOA, the parameters were

obtained with different degrees of precision. For instance,

for P2, the participant with the most repetitions per SOA,
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Table 2 Parameters of the AQGP model. The priors have been selected to broadly cover reasonable parameter ranges

and let the data rule the outcome. Moreover, they are neutral (i.e., neither in favor nor against salience-induced effects).

Unit Interpretation Prior
λp Items per time (I/ms) Processing speed of the (potentially) attended stimulus Normal(µ = .04, σ = .02)
λr Items per time (I/ms) Processing speed of the unattended stimulus Normal(µ = .04, σ = .02)
τ Time (ms) Possible net delay between the latencies of the two stimuli Normal(µ = 0, σ = 30)
ξ Bias for reporting a certain stimulus (neutral at 0.5) Normal(µ = .5, σ = .02)
δ Time (ms) Range of indecision Uniform(lo = 0, hi = 100)
εp Lapse rate for missing the (potentially) attended stimulus HalfCauchy(σ = 0.05)
εr Lapse rate for missing the unattended stimulus HalfCauchy(σ = 0.05)

Table 3 Paramaters of the TVATOJ model. The priors are based on previous studies, see Tünnermann (2021).

Unit Interpretation Prior

C Items per time (I/ms) Overall processing capacity (overall speed of processing) Normal(µ = .08, σ = .05)
wp Attentional weight of the potentially attended stimulus (neu-

tral at .5)

Normal(µ = .5, σ = .2)

the PSS (logistic model) was estimated to be only 2.66 ms

in the salience condition. Despite the small magnitude, the

95-%-HDI, ranging from 1.47 to 3.83, clearly distinguishes
this estimate from zero, no effect. In other words, a minute

salience-induced PSS shift could be detected in this par-

ticipant. All participants except P4 show clear attention-

induced PSS shifts with 95-%-HDIs that exclude zero. The

parameters of the other models are similarly consistent.

Concerning the quality of the fits, judged visually in the

posterior predictive plots in Figures 3 and 4 (solid lines

show mean predictions, shaded bands the 95-%-HDI), the

AQGPmodel seems to capture the data best, accounting for

the detours around the center of the curve. The TVATOJ

model seems to perform worst, not hitting the data points

in the central region, and the logistic model lies in between

the others. Looking at the quantitative model comparison

scores obtained using leave-one-out cross-validation (LOO;

Vehtari, Gelman, & Gabry, 2017), the TVATOJ model per-

forms best (lowest LOO score) in all participants except

for P4 and the logistic and AQGP models come second and

third (in different orders in different participants). The

reason for this discrepancy between the visual and quanti-

tative assessment originates from the different model com-

plexities. The version of the TVATOJ model we imple-

mented uses only three parameters to model two condi-

tions (one probe weight per condition and the processing

rate parameter C which is shared between both condi-

tions). The AGQP model was implemented in its entirety,

with 14 parameters (7 per condition), many of which could

probably be removed (e.g., the ε lapse parameters are es-
timated close to zero) or pooled across conditions (e.g.,

the probe and reference rates λ are often very similar).
That said, this model comparison was not intended to pro-

vide a definite model ranking or judgment of these models.

The intention was to illustrate models with different com-

plexity and theoretical background. Any attempt to find

“the best model” for our data set should be conducted in a

theory-guided manner and focus on a particular research

question. In the past, we have compared (on a much less

precise data set) the AQGPmodel with an extended version

of the TVATOJ model that included a (theory-based) mech-

anism that also leads to detours in the central areas of the

curves (Tünnermann & Scharlau, 2018b). This question is

out of the scope of the present paper, but we intend to re-

visit the topic with this new data set (and perhaps look at

further candidate models).

Conclusion
As mentioned in the Introduction, differences between

models can be extraordinarily small. A few very precise

participants with a very high number of repetitions might

be necessary if such slight differences are in the focus of

research. One of the reasons for producing the data in

this study was to establish a data set that allows to capture

these slight, but important differences.

Besides answering our questions concerning the influ-

ence of salience, the size and precision of the data set will

allow researchers to test for other, even subtle, differences

in processing speed inherent in the present material. For

instance, learning effects over sessions could be captured

in parameters such as perceptual bias or overall capacity

dedicated to the task (for the latter see, e.g., the respective

analyses in Krüger et al., 2021). Also within a session, we

can look at the effects of repetitions. The distribution of at-

tention over the visual field with suspected differences be-

tween the hemifields as well as the upper and lower field
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Figure 5 Meanings and units in the data file “dataset.csv”. Obvious ones are not labeled.

(e.g., Matthews & Welch, 2015) and their interaction can

be tested as well. Furthermore, one could split up the set

with regard to target orientation, bearing on the question

whether, as an example of preferential processing of orien-

tations (Westheimer, 2017), cardinal orientations are pro-

cessed faster than non-cardinal ones.

Description of Data Files
The data are stored as a CSV (comma-separated values) file

containing 15 columns and 100,294 rows. It follows the

“long format” in which each row is a trial and the columns

specify to which participant and condition the trials be-

long andwhat the states of all relevant variables were. The

columns have been named as intuitively as possible includ-

ing the units where appropriate. Additional details can be

found in Figure 5.

Open Data & Analysis
The data set is available in this OSF repository: osf.io/e4stu/

The analysis scripts can be found at: github.com/jeti182/

big_M_toj_models
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Appendix A: Bayesian Power Search

Algorithm 1 Bayesian Power Search Algorithm

1: SOAs← range of SOAs

2: DL← DL of interest

3: CPSS ← list of candidate PSS sizes

4: N ← list of "number of repetitions" to be tested

5: for n in N do
6: Stop← False

7: Limitlower ← 0
8: Limitupper ← |N | . see note below
9: BisectionPoint = Limitlower + (Limitupper − Limitlower)/2
10: while Stop not True do
11: c← C[BisectionPoint]
12: TOJs← SimulateManyTOJs(SOAs = SOAs, PSS = c, DL = DL)

13: [PSSTrace,DLTrace]← RunBayesianParameterEstimation(TOJs)

14: if HDI of PSSTrace not includes 0 then . or another success criterion
15: successes← successes+ 1
16: end if
17: power← successes/|TOJs|
18: if if power < 0.8 then . or other desired power
19: Limitlower ← BisectionPoint . Continue search in remaining upper half
20: else
21: Limitupper ← BisectionPoint . Continue search in remaining lower half
22: end if
23: if Limitlower = Limitupper then
24: Stop← True

25: end if
26: c is now the PSS size that can be found with n repetitions, add to list Results
27: end while
28: end for
Note: If monotonous increase in power over the iterations is guaranteed, this line can be omitted to make the search
more efficient. In the power search for PSS sizes (±20ms) which we report in the manuscript, this is the case for DLs of
6 and 20 ms. With DLs of 60 ms there is so much noise in the estimates that this resetting cannot be skipped.

Appendix B: Model Implementations
Listing 1 Psychometric functions and data handling (models.py, part 1)

1 import pymc3 as pm
2 from theano import tensor as tt
3

4 ########## Psychometric functions ##########
5

6 def difcdf(x, shift, rp, rr):
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7 """ Bilateral exponential CDF arrival time distribution with two
8 rates rp and rr and a shift parameter as defined by
9 Alcalá-Quintana & García-Pérez (2013)
10 [Behav Res Methods doi.org/10.3758/s13428-013-0325-2]
11 """
12 y = x - shift
13 left = rp * tt.exp(rr * y) / (rp + rr)
14 right = 1 - (rr * tt.exp(-rp * y) / (rp + rr))
15 return (y <= 0) * left + (y > 0) * right
16

17 def aqgp(soa, λ_p, λ_r, ∆, τ, ξ, ε_p, ε_r):
18 """ Psychometric functions from Alcalá-Quintana & García-Pérez (2013)
19 See source for parameter meanings
20 """
21 pPF = difcdf(-∆, soa+τ, λ_p, λ_r)
22 pRF = 1 - difcdf(∆, soa+τ, λ_p, λ_r)
23 pS = 1 -pPF - pRF
24 return (1 - ε_p) * pPF + (1 - ξ) * pS + ε_r * pRF
25

26 def tvatoj(soa, C, wp):
27 """ TVA-based psychometric function parametrized via difcdf (see above).
28 For parameter meaning see T unnermann, Petersen & Scharlau (2015)
29 [J Vis //doi.org/10.1167/15.3.1 ] or Kr uger et al. (2021).
30 """
31 rp = C * wp
32 rr = C * (1 - wp)
33 return 1-difcdf(soa, 0, rr, rp)
34

35 ########## Handle data ##########
36

37 def provide_data(data):
38 """ Extract rows from long dataframe. Modify to use with other formats."""
39 soas = data[’SOA_IN_MS’].values
40 pf = data[’PROBE_FIRST_RESPONSE’].values
41 condition = data[’PROBE_SALIENT’].values
42 return (soas, pf, condition)

Listing 2 PyMC3 implementations of the models (models.py, part 2)
1 ########## Graphical models (PyMC3 implementations) ##########
2

3 def logistic_regression_model(data):
4 """ Uses PyMC3’s default logistic regression with its default priors """
5

6 soas, pf, condition = provide_data(data)
7

8 with pm.Model() as lr_model:
9 # Model is a one-liner!
10 formula = \
11 ’PROBE_FIRST_RESPONSE ~ SOA_IN_MS + PROBE_SALIENT + SOA_IN_MS * PROBE_SALIENT’
12 pm.glm.GLM.from_formula(formula, data, family=pm.glm.families.Binomial())
13

14 # Deterministic transforms for compatibly with the visualization & PSS + DL
15 a = pm.Deterministic(’a’, tt.stack((lr_model[’Intercept’],
16 lr_model[’Intercept’]+lr_model[’PROBE_SALIENT’])))
17 b = pm.Deterministic(’b’, tt.stack((lr_model[’SOA_IN_MS’],
18 lr_model[’SOA_IN_MS’]+lr_model[’SOA_IN_MS:PROBE_SALIENT’])))
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19 PSS = pm.Deterministic(’PSS’, -a/b)
20 DL = pm.Deterministic(’DL’, (tt.log(0.75/0.25)/b))
21

22 return lr_model
23

24 def tvatoj_model(data):
25 """ The TVA-TOJ model with default priors motivated here"""
26

27 soas, pf, condition = provide_data(data)
28

29 with pm.Model() as tvatoj_model:
30 C = pm.Normal(’C’, 0.08, 0.05)
31 w_p = pm.Normal(’w_p’, 0.5, 0.2, shape=2)
32 θ = pm.Deterministic(’θ’, tvatoj(data[’SOA_IN_MS’].values, C , w_p[condition]))
33 y = pm.Bernoulli(’y’, p=θ, observed=data[’PROBE_FIRST_RESPONSE’])
34

35 return tvatoj_model
36

37 def aqgp_model(data):
38 """ Alcalá-Quintana & García-Pérez’s (2013) full 7-parameter version """
39

40 soas, pf, condition = provide_data(data)
41

42 with pm.Model() as aqgp_model:
43 λ_p = pm.Normal(’λ_p’, 0.04, 0.02, shape=2)
44 λ_r = pm.Normal(’λ_r’, 0.04, 0.02, shape=2)
45 ∆ = pm.Uniform(’∆’, 0, 100, shape=2)
46 τ = pm.Normal(’τ’, 0, 30, shape=2)
47 ξ = pm.Normal(’ξ’, 0.5, 0.2, shape=2)
48 ε_p = pm.HalfCauchy(’ε_p’, 0.05, shape=2)
49 ε_r = pm.HalfCauchy(’ε_r’, 0.05, shape=2)
50 θ = pm.Deterministic(’θ’, aqgp(soas, λ_p[condition], λ_r[condition],
51 ∆[condition], τ[condition], ξ[condition],
52 ε_p[condition], ε_r[condition]))
53

54 y = pm.Bernoulli(’y’, p=θ, observed=pf)
55 return aqgp_model

Listing 3 Plot prediction with parameter estimates (score_and_plot.py)
1 import pymc3 as pm
2 import arviz as az
3 import numpy as np
4 from statsmodels.stats.proportion import proportion_confint as prop_ci
5 from matplotlib.pylab import plt, rc
6 rc(’font’, size=6); rc(’lines’, linewidth=1); rc(’lines’, markersize=2)
7

8 def plot_ppc_and_score(trace, data, ax=None, title=’PPC’, paras=None):
9

10 # Sample PPC
11 ppc_trace = pm.sample_posterior_predictive(trace=trace, var_names=[’y’])
12

13 # Calculate LOO score
14 loo = az.loo(trace).loo
15 loo_text = "LOO = %.2f"%loo
16

17 # Aggregate binary responses
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18 new_trace = []
19 for soa in sorted(set((data.SOA_IN_FRAMES))):
20 new_trace.append(ppc_trace[’y’][:,(data.SOA_IN_FRAMES==soa) &
21 (data.PROBE_SALIENT==0)].mean(axis=1))
22 new_trace.append(ppc_trace[’y’][:,(data.SOA_IN_FRAMES==soa) &
23 (data.PROBE_SALIENT==1)].mean(axis=1))
24 ppc_trace = {’y’: np.array(new_trace).T}
25

26 # Prepare axes if none provided
27 if ax is None: f,ax= plt.subplots()
28

29 # Get SOAs and condition mask from data
30 SOAs = sorted(set(data[’SOA_IN_MS’]))
31 cond = data.groupby([’SOA_IN_MS’, ’PROBE_SALIENT’])[’PROBE_SALIENT’].min().values
32

33 # Plot
34 az.plot_hdi(y=ppc_trace[’y’][:,cond==0],x=SOAs, color=’k’, ax=ax,
35 hdi_prob=0.95, fill_kwargs={’alpha’ : 0.23})
36 az.plot_hdi(y=ppc_trace[’y’][:,cond==1],x=SOAs, color=’g’, ax=ax,
37 hdi_prob=0.95, fill_kwargs={’alpha’ : 0.23})
38 ax.plot(SOAs, np.mean(ppc_trace[’y’][:,cond==0],axis=0), color=’k’)
39 ax.plot(SOAs, np.mean(ppc_trace[’y’][:,cond==1],axis=0), color=’g’)
40 pf_mean = data.groupby([’SOA_IN_MS’, ’PROBE_SALIENT’]).mean().PROBE_FIRST_RESPONSE
41 pf_count = data.groupby([’SOA_IN_MS’, ’PROBE_SALIENT’]).sum().PROBE_FIRST_RESPONSE
42 pf_obs = data.groupby([’SOA_IN_MS’, ’PROBE_SALIENT’]).count().PROBE_FIRST_RESPONSE
43 pf_ci = abs(np.array(prop_ci(pf_count.values, pf_obs.values)) - pf_mean.values)
44

45 ax.plot(SOAs, pf_mean.values[::2], ’k.’)
46 ax.errorbar(np.array(SOAs)-0.5, pf_mean.values[::2],
47 pf_ci[:,::2], fmt=’none’, color=’k’, alpha=0.5)
48 ax.plot(SOAs, pf_mean.values[1::2], ’g.’)
49 ax.errorbar(np.array(SOAs)+0.5, pf_mean.values[1::2],
50 pf_ci[:,1::2], fmt=’none’, color=’g’, alpha=0.5)
51 ax.axvline(0, linestyle=’dashed’)
52 ax.axhline(0.5, linestyle=’dashed’)
53 ax.text(-20,0, loo_text)
54

55 if paras is not None:
56 for i, varname in enumerate(paras):
57 stats = az.summary(trace, var_names=[varname], hdi_prob=.95)
58 for j, s in enumerate(stats[’mean’]):
59 text = r’$’ + varname + r’$: %.2f [%.2f, %.2f]’
60 text = text%(s, stats[’hdi_2.5%’][j], stats[’hdi_97.5%’][j])
61 posx, posy = .1 + .5 - (1 - j) * .5, 0.95 - (.05*i) - ((1-j)*.5)
62 ax.text(posx, posy, text, transform = ax.transAxes, color=[’k’,’g’][j])
63 ax.set_title(title)

Listing 4 Control flow for running the model on the data (run_models.py)
1 import pymc3 as pm
2 import pandas as pd
3 from matplotlib.pylab import plt
4

5 from models import logistic_regression_model, tvatoj_model, aqgp_model
6 from score_and_plot import plot_ppc_and_score
7

8 df = pd.read_csv(’dataset.csv’)
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9 all_participants = sorted(set(df[’PARTICIPANT_NUMBER’]))
10

11 # For all participants (in subsets of 2) ...
12 for ps in [(0,2),(2,4),(4,6),(6,8)]:
13

14 # Select subset of the data
15 participants = all_participants[ps[0]:ps[1]]
16

17 # Create empty figure
18 f, axs = plt.subplots(3, 2, sharex=True, figsize=(6,8))
19

20 # Sample from each model and create plots
21 for i,p in enumerate(participants):
22

23 # Exclude observations where fixation was lost
24 data = df[(df[’PARTICIPANT_NUMBER’] == p) & (df[’EYE_ERROR’] == 0)]
25

26 # Run logistic regression model
27 with logistic_regression_model(data) as _lr_model:
28 lr_trace = pm.sample(4000, tune=2000, init=’adapt_diag’, chains=4)
29 plot_ppc_and_score(lr_trace, data, paras=[’PSS’, ’DL’],
30 title=’P’+str(p)+’: Logistic Regression’, ax=axs[0,i])
31 del _lr_model, lr_trace # Just to free up memory.
32 # You might consider saving these objects to disk for later use.
33

34 # Run AQGP model
35 with aqgp_model(data) as _aqgp_model:
36 aqgp_trace = pm.sample(4000, tune=4000, init=’adapt_diag’, chains=4,
37 target_accept=0.95)
38 plot_ppc_and_score(aqgp_trace, data,
39 paras=[’λ_p’, ’λ_r’, ’∆’, ’τ’, ’ξ’,’ε_p’, ’ε_r’],
40 title=’P’+str(p)+’: AQGP’, ax=axs[1,i])
41 del _aqgp_model, aqgp_trace
42

43 # Run TVATOJ model
44 with tvatoj_model(data) as _tvatoj_model:
45 tvatoj_trace = pm.sample(4000, tune=2000, init=’adapt_diag’, chains=4)
46 plot_ppc_and_score(tvatoj_trace, data, paras=[’C’, ’w_p’],
47 title=’P’+str(p)+’: TVATOJ’, ax=axs[2,i])
48 del _tvatoj_model, tvatoj_trace
49

50

51 # Save plot to file
52 plt.tight_layout()
53 plt.savefig(’participants-%d-to-%d.svg’%(ps[0],ps[1]))

Appendix C: SOA Repetitions
Tables C1 and C2 indicate the number of repetitions of the SOAs for the different participants in the neutral and the

salience conditions. In the tables, the numbers before the parentheses refer to the number of repetitions of trials, exclud-

ing trials with fixation errors. The number of trials that contained fixation errors is shown within the parentheses.
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Table C1 Repetitions of the SOAs for the different participants in the neutral condition.

SOA P1 P2 P3 P4 P5 P6 P7
-80 200 (4) 480 (8) 198 (3) 200 (11) 200 (19) 438 (29) 200 (3)

-73 200 (10) 463 (6) 194 (6) 199 (19) 200 (17) 438 (32) 200 (2)

-66 200 (4) 481 (10) 196 (6) 200 (21) 200 (23) 438 (20) 200 (1)

-60 200 (13) 479 (7) 197 (2) 197 (17) 200 (23) 438 (19) 200 (4)

-53 200 (13) 476 (6) 198 (1) 197 (19) 200 (13) 438 (20) 200 (4)

-46 200 (10) 475 (6) 196 (8) 197 (30) 200 (22) 438 (27) 200 (3)

-40 200 (10) 472 (5) 199 (11) 200 (13) 200 (29) 438 (24) 200 (4)

-33 200 (14) 467 (5) 194 (7) 197 (17) 200 (45) 438 (21) 200 (3)

-26 200 (6) 472 (10) 196 (9) 196 (29) 200 (33) 438 (17) 200 (1)

-20 200 (14) 468 (12) 195 (5) 200 (21) 200 (34) 438 (16) 200 (2)

-13 200 (16) 465 (4) 195 (10) 202 (38) 200 (31) 438 (23) 200 (0)

-6 200 (15) 474 (7) 198 (10) 198 (29) 200 (39) 438 (25) 200 (4)

0 200 (9) 486 (7) 202 (6) 199 (23) 200 (40) 438 (21) 200 (3)

6 200 (12) 469 (7) 198 (15) 199 (33) 200 (43) 438 (19) 200 (0)

13 200 (5) 473 (3) 198 (13) 199 (32) 200 (36) 438 (33) 200 (2)

20 200 (11) 471 (3) 189 (3) 199 (31) 200 (25) 438 (30) 200 (4)

26 200 (10) 472 (5) 198 (10) 198 (35) 200 (38) 438 (20) 200 (5)

33 200 (10) 473 (5) 195 (2) 198 (28) 200 (34) 438 (28) 200 (5)

40 200 (7) 466 (5) 195 (5) 198 (29) 200 (21) 438 (20) 200 (5)

46 200 (7) 471 (10) 193 (5) 199 (18) 200 (17) 438 (29) 200 (2)

53 200 (10) 467 (17) 195 (6) 200 (20) 200 (18) 438 (17) 200 (1)

60 200 (12) 473 (4) 198 (7) 200 (15) 200 (23) 438 (22) 200 (4)

66 200 (10) 470 (7) 199 (8) 199 (18) 200 (15) 438 (23) 200 (2)

73 200 (6) 475 (8) 196 (8) 197 (25) 200 (27) 438 (21) 200 (2)

80 200 (9) 471 (9) 198 (5) 202 (11) 200 (20) 438 (14) 200 (4)

Total 5,000 11,809 4,910 4,970 5,000 10,950 5,000

(247) (176) (171) (582) (685) (570) (70)

Table C2 Repetitions of the SOAs for the different participants in the salience condition.

SOA P1 P2 P3 P4 P5 P6 P7
-80 200 (4) 476 (3) 194 (6) 198 (15) 200 (21) 438 (23) 200 (3)

-73 200 (11) 466 (4) 194 (8) 198 (16) 200 (22) 438 (31) 200 (1)

-66 200 (7) 463 (7) 194 (4) 200 (16) 200 (21) 438 (33) 200 (4)

-60 200 (4) 472 (2) 199 (8) 198 (13) 200 (23) 438 (30) 200 (3)

-53 200 (7) 471 (2) 197 (7) 197 (23) 200 (19) 438 (25) 200 (1)

-46 200 (8) 473 (7) 195 (11) 200 (25) 200 (23) 438 (29) 200 (3)

-40 200 (13) 475 (9) 199 (10) 202 (23) 200 (17) 438 (27) 200 (3)

-33 200 (12) 468 (8) 198 (5) 197 (17) 200 (26) 438 (17) 200 (2)

-26 200 (13) 463 (5) 197 (6) 202 (30) 200 (24) 438 (22) 200 (6)

-20 200 (14) 470 (5) 200 (6) 200 (28) 200 (39) 438 (29) 200 (5)

-13 200 (10) 477 (8) 199 (13) 195 (22) 200 (31) 438 (30) 200 (4)

-6 200 (23) 463 (4) 197 (10) 200 (24) 200 (35) 438 (23) 200 (9)

0 200 (12) 486 (7) 201 (14) 199 (38) 200 (33) 438 (29) 200 (4)

6 200 (16) 471 (5) 198 (5) 197 (30) 200 (49) 438 (24) 200 (5)

13 200 (13) 471 (1) 195 (14) 201 (21) 200 (29) 438 (23) 200 (8)

20 200 (14) 467 (11) 198 (6) 197 (26) 200 (30) 438 (25) 200 (4)

26 200 (12) 479 (5) 194 (9) 196 (29) 200 (28) 438 (30) 200 (3)

33 200 (9) 467 (3) 196 (8) 198 (25) 200 (17) 438 (25) 200 (5)

40 200 (9) 474 (5) 199 (6) 199 (29) 200 (28) 438 (27) 200 (3)

46 200 (5) 477 (3) 196 (9) 198 (26) 200 (15) 438 (13) 200 (3)

53 200 (8) 472 (3) 199 (7) 198 (32) 200 (24) 438 (31) 200 (4)

60 200 (8) 474 (6) 201 (5) 198 (21) 200 (14) 438 (20) 200 (3)

66 200 (10) 473 (4) 194 (6) 199 (16) 200 (19) 438 (28) 200 (4)

73 200 (5) 475 (1) 197 (7) 198 (15) 200 (21) 438 (19) 200 (1)

80 200 (9) 478 (9) 197 (4) 197 (25) 200 (20) 438 (12) 200 (7)

Total 5,000 11,801 4,928 4,962, 5,000 10,950 5,000

(256) (127) (194) (585) (628) (625) (98)
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Figure D1 Distribution of reaction times from all participants. Trials with fixation errors were removed.

Appendix D: Reaction Times
Judgment data are often considered superior to reaction times (RTs) because of the absence of motor influences. For the

models present in the paper, RTs play no role. In order to ensure broad usability of our dataset, we include the RTs and

provide a short summary here.

Figure D1 shows the reaction times (RTs) from all participants and conditions as a single distribution. These RTs refer

to the duration from the end of the TOJ presentation (when the stimulus that flickered second reappeared on the screen)

until the keyboard response. Trials with fixation errors were removed from this visualization and the description below.

Fixation errors occasionally coincide with breaks the participants took after the trials, leading to extremely long reaction

times. In the experiment, trials with fixation errors were repeated.

The distribution shown in Figure D1 is a typical early-peaking and long-tailed reaction time distribution. Of these

trials, 95.6 % had RTs shorter than 1000 ms, 99.8 % trials had RTs shorter than 2000 ms, only 27 RTs (less than 0.1 %) were

longer than 3000 ms, 6 RTs were longer than 4000 ms, and 2 RTs longer than 5000 ms. The distribution peaks at about

270 ms, not much higher than values reported for many simple reaction time experiments. In part, these quick RTs might

be explained by the fact that the information about the temporal order might be available before the TOJ presentation is

complete (e.g., when the second stimulus begins to flicker, i.e., at stimulus offset, which is 20ms earlier than the re-onset).

However, the extensive training of the participants might be another reason.
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