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Abstract The Cognitive Reflection Test (CRT) is a test designed to assess subjects’ ability to override
intuitively appealing but incorrect responses. Psychologists are concerned with whether subjects

improve their scores on the test with repeated exposure, in which case, the test’s predictive va-

lidity may be threatened. In this paper, we take a novel approach to modelling data recorded on

subjects who took the CRT multiple times. We develop bivariate, longitudinal models to describe

the responses, CRT score and time taken to complete the CRT. These responses serve as a proxy for

the underlying latent variables “numeracy” and “reflectiveness”, respectively—two components of

“rationality”. Our models allow for subpopulations of individuals whose responses exhibit similar

patterns. We assess the reasonableness of our models via new visualizations of the data. We esti-

mate their parameters by modifying the method of adaptive Gaussian quadrature. We then use our

fitted models to address a range of subject-specific questions in a formal way. We find evidence of

at least three subpopulations, which we interpret as representing individuals with differing combi-

nations of numeracy and reflectiveness, and determine that, in some subpopulations, test exposure

has a greater estimated effect on test scores than previously reported.
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Introduction
The Cognitive Reflection Test (CRT) (Frederick, 2005) was

developed to assess a subject’s ability to override an in-

correct but intuitively appealing response (a so-called “gut

instinct”), a key component of rationality. The CRT is a
short, three-question test that is predictive of many cogni-

tive abilities and tendencies (Bialek & Pennycook, 2018). It

was a precursor to the Comprehensive Assessment of Ra-

tional Thinking (CART), a more in-depth test of rational-

ity currently being developed (Stanovich, West, & Toplak,

2016). Both tests can provide information about subjects’

rationality. The CRT focuses specifically on numeracy, an
aspect of rationality concerned with the ability to reason

and apply concepts involving numbers (Attali & Bar-Hillel,

2020; Erceg, Galic, & Ružojčić, 2020). Numeracy in this con-

text can be operationalized as the number of correct re-

sponses to the test questions. The tests can also yield in-

sight into subjects’ reflectiveness, which we define as the
quality of considering a question carefully rather than re-

porting the first response that springs to mind—using so-

called “System 2” thinking, as per Kahneman (2013). Re-

flectiveness can be operationalized as time spent complet-

ing a test of rationality.

A key question in the literature is whether subjects tend

to improve their test scores over time (for example, via re-

peated exposure to the same test questions), in which case

the tests may not retain their predictive validity.

In the case of intelligence, an aspect of cognitive ability

that is related to (though distinct from) rationality, the lit-

erature provides no convincing evidence that intelligence

quotient (IQ) test scores improve over time (Haier, 2014).

But, with respect to rationality (as measured by scores on

the CRT or CART), the literature is so far sparse. The first
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authors to assess this question were Meyer, Frederick, and

Zhou (2018), who administered the CRT to subjects multi-

ple times over a predefined time period. They affirmed

that test scores remain approximately stable over time, a

conclusion reached in other investigations as well (Stag-

naro, Pennycook, & Rand, 2018).

Our research extends the work of Meyer et al. (2018),

who attempt to answer various questions about changes in

subjects’ CRT scores over time. They use conventional lin-

ear regressionmodelling—regressing CRT score on the cur-

rent test exposure number and the total number of test ex-

posures. Furthermore, via various tables and graphs, they

present descriptive statistics that explore informally how

test scores change over time, e.g., they compare average

CRT scores for different values of other variables. These

models and expositions do not fully account for the longitu-

dinal nature of the data, the dependence among responses

measured on the same individual, the discreteness of the

test scores, or the role of other predictor variables. Though

Meyer et al. (2018) intimates that the CRT dataset suggests

the presence of subpopulations, their models do not incor-

porate them explicitly. To address these limitations, we

develop a bivariate longitudinal model for these authors’

data. Our model describes the relationship between var-

ious predictors (including measures of prior exposure to

the test) and two dependent response variables: subjects’

score and time spent completing the test. We also present

an extension that allows a different bivariate longitudinal

model for different subpopulations of individuals via a la-

tent cluster variable.

Our model is a special case of the multiple longitudinal

outcome mixture model (MLOMM) developed by Kondo,

Zhao, and Petkau (2017), which is an extension of the gen-

eralized linear mixed model (GLMM) (Agresti, 2013) to in-

clude additional response variables and multiple latent

clusters. However, for estimating the parameters of these

models, we take a different approach from Kondo et al.

(2017), who use a Monte Carlo expectation-maximization

(MCEM) algorithm to estimate the parameters of a two-

clusterMLOMM. Specifically, wemodify the adaptive Gaus-

sian quadrature (AGQ) approach proposed by Pinheiro and

Chao (2006) for estimating the parameters of GLMMs. Our

method allows for parameter estimation even in models

with more than two clusters.

The rest of this paper is organized as follows. In the

next section, we describe the CRT dataset and provide

novel visualizations of its features. We then present our

models and new estimation method. Subsequently, we use

our models to address questions concerning the effect of

prior exposure and compare our findings with those pro-

vided byMeyer et al. (2018). We concludewith a discussion

of the analyses’ limitations and possible future work.

Cognitive Reflection Test Data
CRT data overview

The individuals in this study comprised over 14,000 sub-

jects from Amazon Mechanical Turk (MTurk)—a crowd-

sourcing website where volunteers can participate in

tasks—and over 28,000 observations across four separate

series of surveys. (See Appendix A for a discussion of the

reliability of MTurk samples.) The data were collected

from November 2013 to April 2015. We chose the largest

series, Fall 2014 (which included observations from Sept.

3, 2014 to Jan. 12, 2015), to be the focus of our present

work. The raw dataset is available publicly from the Judg-
ment and Decision Making journal’s website (http://journal.
sjdm.org/vol13.3.html).

After data cleaning (see the next two sections), the Fall

2014 series consisted of 6,228 observations on 2,920 unique

subjects. The number of times that subjects took the test

varied, ranging from 1 to 15 within this series. Figure 1

summarizes the distribution of this variable.

Responses of interest

Meyer et al. (2018) treated CRT scores as the sole response

variable in their analyses (using the time that subjects

took to complete the test as a predictor in one). In con-

trast, we consider time to completion as a second response

variable. We view test score and time to completion as

the operationalizations of numeracy and reflectiveness,

respectively—two components of rationality. Individual

test scores range from 0 to 3 and completion times range

from 2 to 4002 seconds (or 0.69 to 8.29 log seconds).

Predictors

Various predictor variables may influence the distribution

of our two response variables. In this section, we discuss

our selection of these variables and our handling of id-

iosyncratic and missing values.

Our primary predictor of interest (the exposure vari-

able, in the language of causal inference) is the number of

times a subject has taken the CRT within the series, includ-
ing the current test. This variable is denoted by nPrevS
and takes values from 1 to 15. It is a time-varying, numeric

predictor. We acknowledge that subjects may have seen

the CRT questions prior to participating in this study, but

nPrevS remains our best objective measure of exposure.
Subjects self-reported the number of CRT questions

they had seen previously (numSeen), a numeric variable
taking values from 0 to 3. In theory, this predictor should

be time invariant after a subject’s first test exposure, since

all returning subjects would have seen all three CRT items.

However, subjects don’t always report “3” after the first
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Figure 1 Distribution of subjects’ exposures, i.e., number of times subjects took the CRT.

test exposure, and some even report decreasing values

over time. Therefore, we had to determine whether to

keep the values as reported or to implement an appropri-

ate transformation. As Meyer et al. (2018) noted, the origi-

nal variable could be informative not only for its intended

purpose (measuring number of CRT items seen) but also

as a proxy for a subject’s memory of the CRT and math-

ematical ability. In this spirit, we convert it to a categor-

ical variable (denoted by memory), defined as “0” when
nTotal=1 (i.e., the case where numSeen gives no infor-
mation about the true number of items seen by the sub-

ject), “1” when numSeen provides evidence of a faulty
memory (i.e., numSeen < 3 for any test exposure other
than the first), and “2” when numSeen = 3 for nPrevS>
1 (i.e., the case where a subject may be reporting numSeen
correctly). Both numSeen and nPrevSmeasure familiar-
ity with the CRT—albeit one subjectively and the other ob-

jectively. However, memory presumably captures indirect
information about memory not reflected in nPrevS.
The predictor aveSATS refers to a subject’s standard-

ized average self-reported SAT score over the course of the

Fall 2014 series.

The binary categorical predictor male denotes a sub-
ject’s self-reported sex (with values of “0” and “1” cor-

responding to female and male, respectively). However,

male was not always constant throughout the series. In
the case of only two observations per subject with differ-

ent values of male, we exclude both observations; oth-
erwise, we replace discrepant values with the most com-

monly used value reported by the subject.

Next, age denotes a subject’s standardized, self-

reported age, which we treat as continuous. Subjects had

to be at least 18 years old to participate. In most cases,

we use their self-reported age at first exposure to avoid

time variance due to birthdays during the study period.

However, some subjects’ reported ages vary by more than

1 year, indicating errors. In these cases, if the values do

not vary too erratically, we either replace the discrepant

value(s) with the modal value or, in the case of no modal

value, we use the median value. If the discrepancies are

too great to make an educated modification, we simply ex-

clude the observations.

Lastly, we also include nTotal, the total number of
times that a subject takes the test, as a predictor in our

models. This choice mirrors that of Meyer et al. (2018)

in one of their analyses. Although Meyer et al. (2018) do

not provide an explanation for their choice, adjusting for

nTotal is sensible. Our rationale is that less motivated
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Table 1 CRT variables selected

Variable Variable Type Description
CRT score Response (Discrete) CRT score

CRT time Response (Continuous) Log of time spent on CRT

nPrevS Explanatory (Discrete) Exposure number within series (time varying)

memory Explanatory (Categorical) Faulty memory

aveSATS Explanatory (Continuous) SAT score (standardized)

male Explanatory (Categorical) Sex

age Explanatory (Continuous) Age (standardized)

nTotal Explanatory (Discrete) Total number of test exposures

identifier Random factor Subject ID

subjects may be more likely to have both lower scores and

lower values of nTotal, i.e., we can view the differing val-
ues of nTotal as arising due to a missing test score prob-
lem. Including nTotal in the model is a way of adjusting
for subjects’ motivation; after this adjustment, we view the

missing test scores as missing at random.

Table 1 summarizes the response and predictor vari-

ables.

A substantial number of observations havemissing val-

ues for at least one predictor. See Supplementary Informa-

tion for details on how we handled missing data.

Our final dataset is intended to be a sample from the

population of relatively well-educated American adults. It

contains 6,228 observations from the Fall 2014 series.

Data visualization

We now provide further visualizations of the dataset to ex-

plore and motivate our proposed models in the next sec-

tion.

First, we examine the CRT score distribution. His-

tograms of CRT score for different values of nPrevS are
shown in Figure 2 (we omit the cases where nPrevS
≥ 4 due to lack of data) and for different categories of
aveSATS at nPrevS = 1 in Figure 3. The former reveals
bathtub-shaped distributions for each value of nPrevS.
The latter reveals bathtub-shaped distributions for each of

the first two categories of aveSATS and skewed left dis-
tributions with peaks at the maximum CRT score for the

final two categories. Histograms of the distribution of CRT

score conditional on other predictor variables reveal simi-

lar shapes.

Figure 4 displays the distribution of the time response

(on the logarithmic scale), broken down by whether sub-

jects took the test once ormultiple times. The graph reveals

an approximately normal distribution for both groups, i.e.,

for nPrevS = 1 and nPrevS >1. We also observe that
additional test exposures are associated with lower times

to completion. Histograms of completion time at different

levels of the other predictors (not shown) similarly reveal

approximately normal distributions but with no indication

of distributional differences among the different levels.

Next, Figure 5 displays the ordinary least squares (OLS)

estimates of the effects of nPrevS when CRT score (left)
and CRT log time to completion (right) are regressed on

nPrevS separately for each subject (for subjects who com-
pleted the test more than once). We do not make formal in-

ference based on these estimates; we use them simply for

visualizing the trends in subjects’ observed test scores and

completion times. The plot for CRT score reveals a peak at

0, describing the vast majority of subjects whose scores re-

mained constant over time. The majority of the remaining

estimates are greater than 0, with a small proportion less

than 0. The plot for time to completion has a peak near

0, with the majority of estimates being negative, implying

that subjects generally took less time to complete the test

with additional exposures. We also observe a small pro-

portion of subjects who spent an increasing amount of time

on additional exposures.

Lastly, we explore the changes in the two response vari-

ables over time. Of the 44% of subjects who appearedmore

than once in the series, 73% had constant CRT scores, and

their average decrease in time spent completing the test

was 0.33 log seconds per additional test exposure; 18% had

increasing scores, with an average CRT score improvement
of 0.70 per additional test exposure and an average de-

crease in time spent of 0.27 log seconds; and 9% had de-
creasing CRT scores, with an average CRT score decrease
of 0.60 and an average decrease in time spent of 0.42 log

seconds. Although all subjects decreased their time spent

on subsequent tests, on average, in the aforementioned

groups (constant, decreasing, and increasing scores), this

decrease was least for the small subset who improved their

test scores over time.

The scatterplots in Figure 6 also illustrate the relation-

ship between changes in scores and completion times for

subjects who took the test multiple times. The left panel
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Figure 2 Distribution of CRT score by nPrevS

Figure 3 Distribution of CRT score by aveSATS (for nPrevS=1)

shows subjects’ average log time to completion vs. changes

in test scores (as estimated by OLS, separately for each

subject). This scatterplot suggests a positive correlation

between change in CRT score and average time spent on

the test, i.e., subjects who improved their scores tended

to spend more time on the test, and vice versa. The right

panel shows changes in log times to completion (also esti-

mated by OLS, separately for each subject) vs. changes in

test scores. Similarly, the second scatterplot suggests a pos-

itive correlation between change in CRT score and change

in completion time. In this case, subjects who improved

their scores (positive estimated effect of nPrevS on score)
tended to spend an approximately constant amount of time

on each test (estimated effect of nPrevS on completion
time of approximately 0). Subjects who did not improve

their scores (non-positive estimated effect of nPrevS on
score) tended to spend a decreasing amount of time on

each test (negative estimated effect of nPrevS on comple-
tion time).

These plots use data only from subjects who appeared

more than once in the series and whose first test scores

were 0 or 1 (since only those subjects had the possibility of

improving their scores substantially). These statistics and

scatterplots are consistent with the observation by Meyer

et al. (2018) that a small proportion of subjects “continue

to spend time on the test”.

Statistical Methods
To model our bivariate longitudinal data and explore the

existence of subpopulations, we consider the class of mod-
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Figure 4 Distribution of the logarithm of time to completion by nPrevS

els proposed by Kondo et al. (2017). In the following sec-

tions, we describe models that are appropriate for the CRT

data and, in particular, the computational challenges that

can arise in estimating their parameters. Ultimately, we

propose two models. The first serves as our foundational

model for testing the hypotheses specified by Meyer et

al. (2018). The second extends the first to allow for the

description of subpopulations (“clusters”) of individuals

whose responses exhibit similar patterns (after adjusting

for predictor variables).

Models

Let Yij and Tij denote subject i’s CRT score and response
time (on the logarithmic scale), respectively, on the jth at-
tempt of the CRT, i = 1, . . . , n, j = 1, . . . , ni. Since a sub-

ject is awarded one point for each correct answer on the

CRT, Yij ∈ {0, 1, 2, 3}. In contrast, Tij takes values on the
real line. Throughout, we use the notation fG to denote the
probability mass (or density) function of a random vari-

ableG.

Bivariate Longitudinal Model
Let xij denote the vector of predictor variables associated

with subject i on the jth attempt of the CRT. We model the

test scores as

Yij | Ui = ui ∼ Binomial(3, θij),
where

logit(θij) = x′ijβ + ui

and where the random effects, Ui, are independent and

distributed asN(0, σ2
u). We conceive of Ui as a latent vari-

able representing numeracy. Likewise, we model the loga-

rithm of the time to completion as

Tij | Vi = vi ∼ N(µij , σ
2
t ),

where

µij = x′ijα+ vi

andwhere the random effects, Vi, are independent and dis-
tributed asN(0, σ2

v). We conceive of Vi as a latent variable
representing reflectiveness. Among other implications, the

random effects allow for correlation among scores and

times to completion observed on the same individual.

We assume that Yij | Ui is independent of all other re-

sponse variables and Vi. We also assume that Tij | Vi is in-
dependent of all other response variables and Ui. Finally,

we assume that the joint distribution of the random effects

is bivariate normal, that is,
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Figure 5 OLS estimates of the effects of nPrevS when CRT score is regressed on nPrevS separately for each subject
(left); and when CRT log time to completion is regressed on nPrevS separately for each subject (right).

(Ui, Vi)∼ N (0,Σ),

where

Σ =

[
σ2
u ρσuσv

ρσuσv σ2
v

]
.

The purpose of allowing Ui and Vi to be correlated (via the
parameter ρ) is to allow dependence between any score
and any completion time observed on the same subject.

The assumption that test scores are conditionally bino-

mial distributedmay, at first, seem suspect because the out-

comes (correct/incorrect) of the three questions posed to

each individual at each exposure are not necessarily inde-

pendent with common probability of success. However,

Figures 2 and 3 help to justify the model for Yij | Ui. In

particular, the histograms of the CRT score responses for

given combinations of predictor variables reveal that the

marginal distribution of Yij has a “bathtub” shape. This
shape can be captured by a mixture of binomial distribu-

tions where the mixing distribution is a normal distribu-

tion, i.e., our specified distribution of Yij | Ui. We thus use

this model for the overall test scores but do not interpret
the scores as arising from a series of three independent tri-

als (questions) with a common probability of success (cor-

rectness).

Figure 4motivates themodel for Tij | Vi; the histogram
of the logarithm of time to completion given combinations

of predictor variables reveal that the marginal distribution

of Tij is approximately normal. From this perspective, the
proposed models for Tij | Vi and Vi (which imply that Tij
is normally distributed) are reasonable.

With these assumptions, we can write the likelihood as

a product of the conditional distributions:

L[1](ψ) =

n∏
i=1

∫ ∞
vi=−∞

∫ ∞
ui=−∞

( ni∏
j=1

fYij |Ui
(yij |ui)fTij |Vi

(tij |vi)
)
· fUi,Vi

(ui, vi)duidvi

=

n∏
i=1

∫ ∞
vi=−∞

∫ ∞
ui=−∞


ni∏
j=1

θ
yij

ij (1− θij)3−yij · 1

σt
exp

(
− (tij − µij)

2

2σ2
t

) ·
1

σuσv
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
u2i
σ2
u

+
v2i
σ2
v

− 2ρuivi
σuσv

)}
duidvi, (1)
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Figure 6 Average time to completion (log scale) vs. OLS estimates of the effects of nPrevS on CRT score (left); OLS esti-
mates of the effects of nPrevS on log time to completion vs. OLS estimates of the effects of nPrevS on CRT score (right).
Each plot is restricted to subjects who took the test more than once and whose first test scores were 0 or 1.

where ψ = (β,α, σt, σu, σv, ρ) is the 20-dimensional vec-
tor of parameters to be estimated. We omit terms that are

constant with respect to the unknown parameters. In ad-

dition, we use superscripts with square brackets to denote

the number of clusters in the model.

Bivariate Longitudinal Model with Latent Clusters
Our second proposedmodel extends the first model by pos-

tulating that test subjects comprise distinct clusters. We

justify thismodel on two grounds. First, Meyer et al. (2018),

as part of their analysis, imply that the presence of subpop-

ulations might drive some of their findings. Second, the

multi-cluster model can be seen as an alternative way to

represent the marginal distribution of the CRT scores de-

picted in Figures 2 and 3. In particular, this (bimodal) dis-

tribution could arise due to at least two distinct clusters of

individuals. Our original model can be considered a spe-

cial case of this extended model.

Let x̄ij be the vector of all predictor variables except

nPrevS observed on subject i at time j. Let sij be the
value of nPrevS observed on subject i at time j. Let
Ci ∈ {1, 2, . . . ,K} be a latent cluster indicator. We as-
sume that the Ci’s are independent and distributed as

P (Ci = c) = γc. As per our original model, we take

Ui and Vi to be random effects with normal distributions,
independent across subjects, representing numeracy and

reflectiveness, respectively (i.e., we now consider a model

with three latent variables rather than two). However, in

this case, the distributions of Ui and Vi describe variation
in numeracy and reflectiveness among subjects within a
given cluster rather than among subjects in the overall pop-
ulation. For our final analysis, we ultimately make the sim-

plifying assumption that Ui and Vi are also independent
within subject (i.e., that ρ = 0). We discuss this choice
in more detail in the section titled “Fitted multi-cluster

model”. We take Yij | Ui = ui, Ci = ci to be distributed as
Binomial(3, θij), where

logit(θij) = βci0 + βci1sij + x̄′ijβ + ui,

where β = (β2, . . . , β7). We further assume that Tij |
Vi = vi, Ci = ci is distributed asN(µij , σ

2
t ), where

µij = αci0 + αci1sij + x̄′ijα+ vi.

The intercepts and effects of nPrevS are allowed to dif-
fer by cluster but, for parsimony, we assume that the other

regression coefficients are common across clusters.

The likelihood is
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L[K](ψ) =

n∏
i=1

∫ ∞
vi=−∞

∫ ∞
ui=−∞

K∑
ci=1

( ni∏
j=1

fYij |Ui,Ci
(yij |ui, ci)fTij |Vi,Ci

(tij |vi, ci)
)
·

fCi
(ci) · fUi,Vi

(ui, vi)duidvi

=

n∏
i=1

∫ ∞
vi=−∞

∫ ∞
ui=−∞

K∑
ci=1


ni∏
j=1

θ
yij

ij (1− θij)3−yij · 1

σt
exp

(
− (tij − µij)

2

2σ2
t

) ·
γci · fUi,Vi

(ui, vi)duidvi, (2)

where ψ = (β,α, σt, σu, σv, γ2, . . . , γK) is the vector of
parameters to be estimated. (We exclude γ1 from ψ since
it can be computed as γ1 = 1 −

∑K
c=2 γc and hence is

not a free parameter.) Altogether, this model has 5K + 14
parameters to be estimated, so, for example, the 4-cluster

model has 34 parameters to be estimated.

Estimation

Direct maximization of the likelihoods (1) and (2) requires

integrating complex functions with respect to ui and vi.
These integrals do not have closed forms. We therefore

modify the adaptive Gaussian quadrature (AGQ) procedure

of Pinheiro and Chao (2006) to find approximations to the

likelihoods. We then maximize these approximations to

obtain the (approximate) maximum likelihood estimates

(MLEs).

AGQ was originally proposed as an alternative to

Gauss-Hermite quadrature for approximating the likeli-

hood of a GLMM. As explained by Rabe-Hesketh and Skro-

ndal (2002), the key result underlying this method is that

the integrand is proportional to the posterior distribution

of the random effects, which, in turn, is approximately pro-

portional to a certain normal density. The integrand can

then be rewritten as a product of this density and an ap-

proximately constant function. Using this form of the in-

tegral and Gauss-Hermite quadrature (which allows exact

evaluation of integrals of low-degree polynomials with re-

spect to a normal density), leads to accurate and efficient

evaluation of the likelihood. Although Pinheiro and Chao

(2006) developed themethod for a univariate response and

a single cluster, we show in this section that the same argu-

ments can be used to justify its use when evaluating likeli-

hoods based on multivariate responses and multiple clus-

ters.

Our approach differs from that of Kondo et al. (2017),

who used MCEM to estimate the parameters in their multi-

cluster model. We chose our approach based on the expec-

tation of greater efficiency (given the results of Pinheiro

and Chao (2006) for the 1-cluster, univariate response case)

and because of challenges in achieving convergence when

applying the MCEM method when K > 2 (Y. Kondo, per-
sonal communication, September 12, 2020).

LetQ be the chosen number of Gauss-Hermite quadra-
ture points for evaluating one of the one-dimensional in-
tegrals in (2), and let zk and wk represent the k

th
ab-

scissa and weight, respectively, k = 1, . . . , Q. Evaluat-
ing the two-dimensional integral will thus, in general, re-

quire Q2
quadrature points. We use S = {(k1, k2) :

k1, k2 ∈ {1, . . . , Q}} to index these points. We then define
k = (k1, k2) and zk = (zk1 , zk2).
We summarize the iterative steps for maximum likeli-

hood estimation using AGQ as follows:

(a) Choose starting values of the model parameters,ψ.
(b) Using the current estimate of ψ, predict (Ui, Vi) by nu-

merically maximizing

gUi,Vi(ui, vi) = log{fYi,Ti|Ui,Vi
(yi, ti | ui, vi)×

fUi,Vi(ui, vi)}.
Define µAi = (ûi, v̂i) as the maximizer of g() and let

ΣAi =
{
∇2gUi,Vi(ûi, v̂i)

}−1
.

(c) Let Bi = (Ui, Vi). Define bik = Σ
1/2
Ai zk + µAi and

Wk = exp(||zk||2)wk1wk2 . Then numerically maxi-

mize the approximate log-likelihood (Eq. 3 below) to

obtain an updated estimate ofψ.
(d) Repeat steps 2–3 until convergence (defined as the

event that the maximum difference across consecutive

parameter estimates is less than some chosen value).

`[AGQ](ψ) =

n∑
i=1

(
1

2
log|ΣAi|+ log

{∑
k∈S

fYi,Ti|Bi
(yi, ti | bik)fBi

(bik)Wk

})
(3)
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The details of this procedure appear in Appendix C.

When Q = 1, this approximation is the Laplace ap-
proximation. Higher values of Q lead to greater accu-

racy, however, and are thus preferable. Pinheiro and Chao

(2006) argue that Q ≤ 7 is generally sufficient in the uni-
variate, 1-cluster case. In our case, we started withQ = 15
and then gradually increased Q (to a maximum of 50) to
ensure stability of the parameter estimates. In general,

Q = 35 seemed to be sufficient.
Similarly, the convergence criterion chosen in step 3

can be weak for the initial iterations of the algorithm and

more stringent for later iterations.

To obtain starting values for the parameters in the

1-cluster model, we first fit separate (generalized) linear

mixed models to the CRT scores and completion times,

treating these responses as independent. This approach is

equivalent to fitting our 1-cluster model with ρ = 0. We
then used these parameter estimates—along with 0 for ρ—
as starting values for fitting the general 1-cluster model.

For our multi-cluster models, we used the MLEs of the pa-

rameters of the 1-cluster model (with some added jitter)

as starting values, treating the parameters associated with

each cluster (including the cluster probabilities) as close to

identical.

Implementation

We implemented our proposed methods in R. We used the
function GLMMadaptive::mixed_model to fit the bi-
nomial generalized linear mixed model to the score data

and the lme4::lmer function to fit the linear mixed
model to the completion time data (as described in the “Es-

timation” section). We used the nlm function for maxi-
mizing objective functions and the package gaussquad to

obtain the Gauss-Hermite quadrature points and weights.

Otherwise, we wrote our own code available on the jour-

nal’s web site.

Results
We now present our fitted models and use them to answer

a variety of field-related questions.

Fitted 1-cluster model

Recall that the primary question of Meyer et al. (2018) is

whether CRT scores increase with number of test expo-

sures, adjusting for the other predictor variables. In this

section, we address this question using our 1-cluster model

(fit with Q = 35), which builds on the work of these au-
thors by describing the test scores and completion times

simultaneously and longitudinally.

The 95% confidence interval (CI) for β1 (the coefficient
of nPrevS) is [0.055, 0.117]. This estimate is difficult to in-
terpret concisely because it has a complicated relationship

with the mean test score. However, we can estimate and

compare mean test scores for different values of nPrevS
and the other predictor variables. Table 3 presents esti-

mated mean CRT scores (and their standard errors) for dif-

ferent values of nPrevS and nTotal using our fitted 1-
cluster model. The standardized predictors aveSATS and
age are set to 0, male is set to 1, and memory is set to 0
(i.e., these estimates are formale subjects with average SAT

score, average age, and for whom we have no information

about memory).

The first row of estimatedmean CRT scores is for an av-

erage subject, that is, for a subject with U = 0. The second
row is for the population of subjects, obtained using AGQ to

determine the requiredmarginal distribution of CRT score.

When holding aveSATS, age, male, and memory fixed
at the values specified, for each additional test exposure,

the estimated mean CRT score for an average subject in-

creases by about 0.046. More specifically, considering only

the values ofnTotal and consecutive valuesnPrevS rep-
resented in the table, the estimated increase ranges from

0.039 to 0.053 (eachwith a standard error of approximately

0.003). On the other hand, the estimated mean score in

the population of subjects with these predictor values in-

creases by about 0.031, with estimated increases (for the

chosen range of values of nTotal and nPrevS) lying be-
tween 0.030 and 0.032 (with standard errors lying between

0.008 and 0.010).

The estimated (approximate) per exposure increase in

mean CRT score for an average subject (0.046) contrasts

with the estimated 0.024 increase reported by Meyer et al.

(2018), who used OLS to estimate this effect by regressing

CRT score on nPrevs and nTotal. However, the 0.024
estimate is based on the entire dataset and does not ad-

just for the other predictors. Using just the Fall 2014 data

and all the predictors, the OLS-estimated effect of nPrevS
is 0.017. Overall, we agree with Meyer et al. (2018) that

repeated test exposure has a small but non-trivial effect

on test scores. But, because we are able to compute stan-

dard errors for the estimated mean score increases (for

specified values of the predictors), our conclusion is more

strongly justified.

We estimate that mean time to completion decreases

by 0.114 (95% CI [0.104, 0.124]) log seconds for each addi-

tional test exposure (for both an average subject and in the

population).

Meyer et al. (2018) reported slightly negative correla-

tions between CRT score and time to completion within
subject (for those who took the test at least twice). We take

a different but related approach by estimating the correla-

tion of our random effects, ρ. Theweak, negative estimated
correlation of −0.066 (95% CI [−0.123, −0.010]) is consis-
tent with the findings of Meyer et al. (2018). This estimate
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Table 2 1-cluster model parameter estimates and standard errors. The value of the maximized log-likelihood is

−12, 764.

Parameter Est (SE) Parameter Est (SE) Parameter Est (SE)
β0 (Intercept) −0.383 (0.112) α0 (Intercept) 4.137 (0.027) log(σt) −0.505 (0.012)
β1 (nPrevS) 0.086 (0.016) α1 (nPrevS) −0.114 (0.005) log(σu) 0.944 (0.027)

β2 (memory1) −1.315 (0.202) α2 (memory1) −0.228 (0.046) log(σv) −0.621 (0.026)
β3 (memory2) 0.384 (0.155) α3 (memory2) −0.481 (0.035)

log

(
1 + ρ

1− ρ

)
−0.133 (0.058)

β4 (aveSATS) 1.110 (0.061) α4 (aveSATS) −0.074 (0.013)
β5 (male) 0.915 (0.121) α5 (male) 0.024 (0.028)

β6 (age) 0.259 (0.058) α6 (age) −0.012 (0.013)
β7 (nTotal) 0.116 (0.035) α7 (nTotal) −0.060 (0.007)

Table 3 Estimated mean CRT scores for the average subject, Ê[Y |U = 0], and the population of subjects, Ê[Y ], for
different values of nPrevS and nTotal

nPrevS nTotal Ê[Y |U = 0] (SE) Ê[Y ] (SE)
1

2

2

2

2.10 (0.036)

2.15 (0.034)

1.84 (0.061)

1.87 (0.059)

1

2

3

3

3

3

2.17 (0.040)

2.22 (0.038)

2.27 (0.036)

1.88 (0.068)

1.91 (0.065)

1.94 (0.063)

1

2

3

4

4

4

4

4

2.24 (0.045)

2.29 (0.043)

2.33 (0.041)

2.38 (0.039)

1.92 (0.078)

1.95 (0.073)

1.99 (0.070)

2.02 (0.068)

1

2

3

4

5

5

5

5

5

5

2.30 (0.051)

2.35 (0.048)

2.39 (0.045)

2.43 (0.043)

2.47 (0.042)

1.97 (0.088)

2.00 (0.083)

2.03 (0.078)

2.06 (0.075)

2.09 (0.072)

suggests that our two response variables are weakly nega-

tively correlated after accounting for variation due to the

predictors.

Fitted multi-cluster model

We now present the results of fitting our multi-cluster

model, an alternative way to describe the observed pat-

terns in the data.

As mentioned in the “Bivariate Longitudinal Model

with Latent Clusters” section, we chose to specify ρ = 0 in
our final model. We justify this choice on the basis that the

latent clusters allow for correlation between Yij and Tij ,
therefore reducing the need to allow for additional corre-

lation via ρ. This argument is supported by the data: ρ did
not differ significantly from 0 in the 3-cluster model with

nPrevS as the only predictor variable andQ = 15 (results
not shown). Given that the latter took weeks to fit (com-

pared to less than two days to fit the 3-cluster model with

all the predictors and ρ = 0), massive reduction in compu-
tational effort also motivates our decision.

To choose K , the number of clusters, we fit the model
with ρ = 0 for K ∈ {1, 2, 3, 4} (using Q = 50) and ob-
tained the maximum values of the log-likelihoods (see Ta-

ble 4). We do not formally compare the fits of these models

because the likelihood ratio test statistics do not have the

usual chi-squared distributions. However, informally, we

can compare the AIC values (defined as −2 times the max-
imized log-likelihood plus twice the number of model pa-

rameters) associated with themodels. The AIC is lowest for

the 4-cluster model, suggesting that that model provides

the best description of the data of the four models consid-

ered. Moreover, as we discuss below, the 4-cluster model is

highly interpretable with respect to the psychometric con-

cerns that we laid out in the introduction. Therefore, while

Table 4 displays parameter estimates and standard errors

for all four models, from this point on, we focus our atten-
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Table 4 Cluster model parameter estimates, standard errors, and maximum values of the log-likelihoods. Note that

γ∗1 = 0 and γc = exp(γ∗c )/
∑

c{exp(γ∗c ) + 1} for c = 1, 2, 3, 4.

1-cluster 2-cluster 3-cluster 4-clusterParameter Est (SE) Est (SE) Est (SE) Est (SE)
β10 (Intercept) −0.386 (0.112) −0.616 (0.156) −1.143 (0.193) −1.076 (0.195)
β11 (nPrevS) 0.087 (0.016) 0.131 (0.038) 0.099 (0.032) 0.074 (0.031)

β20 (Intercept) - −0.219 (0.148) 0.362 (0.217) 0.539 (0.221)

β21 (nPrevS) - 0.074 (0.018) 0.070 (0.021) 0.036 (0.021)

β30 (Intercept) - - 0.034 (0.268) 0.112 (0.277)

β31 (nPrevS) - - 0.234 (0.101) 0.219 (0.105)

β40 (Intercept) - - - −1.546 (0.492)
β41 (nPrevS) - - - 0.805 (0.122)

β2 (memory1) −1.316 (0.202) −1.283 (0.205) −1.235 (0.205) −1.249 (0.205)
β3 (memory2) 0.382 (0.155) 0.401 (0.157) 0.430 (0.157) 0.427 (0.157)

β4 (aveSATS) 1.111 (0.061) 1.112 (0.061) 1.117 (0.061) 1.124 (0.061)

β5 (male) 0.916 (0.121) 0.920 (0.121) 0.922 (0.121) 0.929 (0.122)

β6 (age) 0.258 (0.058) 0.250 (0.058) 0.240 (0.058) 0.230 (0.058)

β7 (nTotal) 0.116 (0.035) 0.105 (0.036) 0.077 (0.037) 0.072 (0.036)

α10 (Intercept) 4.137 (0.027) 4.957 (0.066) 4.406 (0.070) 4.366 (0.072)

α11 (nPrevS) −0.114 (0.005) −0.371 (0.020) −0.240 (0.016) −0.248 (0.017)
α20 (Intercept) - 3.640 (0.048) 3.465 (0.056) 3.368 (0.052)

α21 (nPrevS) - −0.068 (0.006) −0.052 (0.006) −0.053 (0.006)
α30 (Intercept) - - 5.659 (0.121) 5.752 (0.139)

α31 (nPrevS) - - −0.637 (0.041) −0.652 (0.042)
α40 (Intercept) - - - 4.555 (0.141)

α41 (nPrevS) - - - −0.051 (0.020)
α2 (memory1) −0.227 (0.046) −0.262 (0.046) −0.238 (0.045) −0.252 (0.044)
α3 (memory2) −0.481 (0.035) −0.479 (0.036) −0.457 (0.036) −0.457 (0.035)
α4 (aveSATS) −0.074 (0.013) −0.078 (0.013) −0.078 (0.013) −0.076 (0.013)
α5 (male) 0.024 (0.028) 0.011 (0.028) 0.008 (0.027) 0.018 (0.027)

α6 (age) −0.012 (0.013) 0.011 (0.013) 0.017 (0.013) 0.023 (0.013)

α7 (nTotal) −0.060 (0.007) −0.029 (0.007) −0.023 (0.007) −0.021 (0.006)
log(σt) −0.505 (0.012) −0.605 (0.013) −0.639 (0.013) −0.637 (0.013)
log(σu) 0.944 (0.027) 0.943 (0.027) 0.908 (0.030) 0.910 (0.030)

log(σv) −0.620 (0.026) −0.880 (0.043) −0.931 (0.048) −1.116 (0.064)
γ∗
2 - 0.307 (0.138) −0.090 (0.167) −0.211 (0.147)

γ∗
3 - - −1.063 (0.258) −1.204 (0.277)

γ∗
4 - - - −2.084 (0.268)
Max. log-lik. −12,767 −12,596 −12,547 −12,510
AIC 25,496 25,144 25,036 24,952

# of Params 19 24 29 34

tion on the fitted 4-cluster model.

We first consider our primary question of interest, i.e.,

the effect of repeat exposures on test score. The 95% CIs

for β11, β21, β31, and β41 (the effects of nPrevS for clusters
1–4) are [0.013, 0.135], [−0.005, 0.077], [0.013, 0.425] and
[0.566, 1.044], respectively. The CI for effect of nPrevS in
cluster 4 does not overlap with the corresponding CIs for

clusters 1-3. These findings suggest that the effect of repeat

exposures on test scores is positive in each subpopulation

and that these effects differ across some subpopulations.

The 95% CIs formany of the estimated intercepts do not

overlap. Specifically, the CI for β10, [−1.458, −0.694], does
not overlap with the CI for β20 or β30 ([0.106, 0.972] and
[−0.431, 0.655], respectively). And the CI for β40 ([−2.510,
−0.582]) does not overlap with that for β20 or β30. These
results suggest distinct mean initial CRT scores among the

clusters.

Focusing now on our second response variable, time to

completion, the 95% CIs for the estimated effects of nPrevS

are [−0.281, −0.215], [−0.065, −0.041], [−0.734, −0.570],
and [−0.090, −0.012] in clusters 1–4, respectively. These
CIs are mostly non-overlapping, suggesting that effect of

nPrevS on completion time differs across all clusters.

None of the 95% CIs for the estimated intercepts over-

laps except for those in the first and fourth clusters, sug-

gesting distinct mean initial completion times among the

clusters. The CIs for the estimated intercepts are [4.23,

4.51], [3.27, 3.47], [5.48, 6.02], and [4.28, 4.83] for clusters 1-

4, respectively.

We now turn to the interpretation of the clusters. We

ground our interpretations within the mindware instanti-

ation continuum; see Stanovich, Toplak, and West (2008).

Mindware refers to the ability to deploy various men-

tal tools to improve problem-solving and decision-making.
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Problems with mindware can impair one’s performance.

Specifically, a mindware gap refers to lacking the afore-

mentioned tools, while contaminated mindware refers to

having faulty such tools. Accordingly, all other factors be-

ing equal, we view low and high initial scores as indicative

of low and high levels of numeracy, respectively. Likewise,

we view low and high initial completion times as indicative

of low and high levels of reflectiveness, respectively. Mind-

ware levels can relate to both latent variables: low mind-

ware levels can correspond to lower numeracy (producing

lower test scores) and can prevent subjects from reflection

(leading to lower completion times). In principle, we ex-

pect the scores of individuals who are highly reflective to

increase over time. However, we cannot always observe

such increases due to the serious ceiling effect (the max-

imum score achievable was 3) and the fact that subjects

may have seen the test answers prior to participating in

the study. With these considerations in mind, we interpret

the subpopulations represented in the 4-cluster model as

follows:

Cluster 1. The first cluster consists of subjects who are
less numerate and moderately reflective. In other words,

these subjects have low mindware levels, which prevents

them from scoring highly and limits their ability to im-

prove with time. They score relatively low initially (low es-

timated intercept, β̂10) and only slightly higher over time.
They spend an average amount of time on their first test

(middling estimated intercept, α̂10) and spend less and less

time on each subsequent test (middling estimated effect of

nPrevS, α̂11). Cluster 1 has an estimated cluster probabil-

ity of 0.448 (95% CI [0.374, 0.521]).

Cluster 2. The second cluster corresponds to peo-

ple who are more numerate than average or who have
seen the test before and remember the answers. In other

words, these subjects likely possess higher mindware lev-

els, which allows them to score highly and respond quickly.

They score moderately high initially (moderately high es-

timated intercept, β̂20). Since their initial scores are so
close to the maximum of 3, they are unable to increase

their scores substantially over time (the estimated effect

of nPrevS, β̂21, is not significantly different from 0). Sub-
jects in this cluster spend a relatively low amount of time

on their first test (low estimated intercept, α̂20) and slightly

less time on subsequent tests (slightly negative estimated

effect of nPrevS, α̂21). However, we cannot infer that sub-
jects in this group are less reflective than average; to make

such a statement, we would need to administer a new test

without such a severe ceiling effect—one that would chal-

lenge the highly numerate subjects and allow the subset

of highly reflective subjects (i.e., subjects with higher com-

pletion times) the possibility of achieving higher scores, on

average, than their less reflective counterparts. Cluster 2

has an estimated cluster probability of 0.362 (95%CI [0.276,

0.449]), implying that clusters 1 and 2 are the largest sub-

populations.

Cluster 3. The third cluster represents subjects who
are less numerate but more reflective than average. In

other words, these subjects possess moderately developed

mindware, as seen by their initially moderately high scores

(moderately high estimated intercept, β̂30) and only slight
score improvements over time (low estimated effect of

nPrevS, β̂31). They spend a relatively high amount of
time on their first test (high estimated intercept, α̂30) but

much less time on each subsequent test (low estimated ef-

fect of nPrevS, α̂31). With an estimated cluster probabil-

ity of 0.134 (95% CI [0.062, 0.206]), this subpopulation is the

smallest.

Cluster 4. The fourth cluster consists of subjects who
are the least numerate but the most reflective. Thus, like

subjects in cluster 3, they possess moderately developed

mindware, expressed in this case by higher levels of re-

flectiveness that counteract the lower levels of numeracy.

Specifically, they score very low initially (very low esti-

mated intercept, β̂40) and increase their scores over time
much more dramatically than other subjects (very high es-

timated effect of nPrevS, β̂41). They spend a relatively
high amount of time on their first test (high estimated in-

tercept, α̂40) and slightly less time on each subsequent test

(near-zero estimated effect of nPrevS, α̂41). With an es-

timated cluster probability of 0.056 (95% CI [0.024, 0.087]),

this subpopulation is one of the smallest.

The interpretation of these four clusters is consistent

with the patterns evident in Figure 6 and the observation

by Meyer et al. (2018) that the improvement in test scores

over time is driven by a small minority of subjects. In con-

trast, our other models appear to blend heterogeneous re-

sponse patterns, resulting in substantially higher AIC val-

ues.

Additional results

In this section, we report on the effects of predictors other

than nPrevS on CRT score and time to completion. We fo-

cus our discussion on the interpretation of the effects in the

1-cluster model. However, our overall conclusions apply to

the effects in the multi-cluster models as well.

The estimated effect of the faulty memory indicator,

memory, is strongly negative (95% CI [−1.711, −0.919]).
That is, subjects who incorrectly self-reported their prior
number of exposures were more likely to score lower on
the CRT. The estimated effect of the goodmemory indicator

was also significant (95% CI [0.080, 0.688]), similarly sug-

gesting that subjects who correctly self-reported their prior
number of exposures were more likely to score higher on
the CRT. These results are consistent with the observation
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of Meyer et al. (2018) that, among subjects who are known

to have seen all three CRT questions previously (because

they have taken the test at least once before), average CRT

score increases with the number of CRT questions they re-
port having seen.
We found aveSATS to have a very influential, positive

effect on CRT score (95% CI [0.990, 1.230] for β4), reaffirm-
ing the commonly reported finding in the literature that

CRT and SAT scores are positively correlated and useful

predictors of one another, e.g., Frederick (2005). While this

association exists, Stanovich et al. (2016) has shown that

rationality and intelligence are distinct. That is, they are

characterized by different cognitive processes and predict

different outcomes and traits. We also found aveSATS to
have a weak, negative effect on time to completion (95% CI

[−0.010,−0.049] for α4).

Moreover, we found that nTotal was an important
predictor for both response variables (95% CI [0.047, 0.185]

for β7, and 95% CI [−0.074, −0.046] for α7 in the 1-cluster

model). Those who choose to take the test many times may

be more motivated (both in terms of answering the ques-

tions correctly and in terms of earning money), which may

lead to higher test scores and less time spent taken to com-

plete the test.

Finally, we find a large, positive effect of male on CRT
score (95% CI [0.678, 1.152] for β5), a moderate-to-weak
positive effect of age on CRT score (95% CI [0.145, 0.373]
for β6), and insignificant effects of male (95% CI [−0.031,
0.079] for α5) and age (95% CI [−0.037, 0.013] for α6) on

time to completion. These findings are consistent with the

effects of sex and age on CRT test scores that have been re-

ported in the literature (Zhang, Highouse, & Rada, 2016).

Model assessment

As an informal check of the fit of our 1- and 4-cluster mod-

els, we compare the empirical distributions of CRT scores

and times to completion at nPrevS=1 to the estimated dis-
tributions of the score and time responses using parameter

estimates from our fitted models (listed in Table 4). See Ap-

pendix D for the relevant plots and further details. The

empirical and estimated distributions of CRT scores cor-

respond reasonably well, and the empirical and estimated

distributions of completion times correspond very closely.

Discussion
We expect that our models provide more trustworthy esti-

mates and associated standard errors of the effect of test

exposure (and the other covariates) on CRT score and time

to completion than the original models used by Meyer et

al. (2018). Our rationale is that 1) our models more ap-

propriately account for the repeated measures within in-

dividual, using information from all exposures rather than

simply the difference between final and initial scores; 2)

we consider the two response variables jointly, thus us-

ing the information in all the available data to estimate

the model parameters; 3) we make more defensible distri-

butional assumptions with the aid of our novel visualiza-

tions (see the data visualization section)—namely, we treat

the CRT score response as conditionally binomial rather

than marginally normal; and 4) our approach allows for

the presence of subpopulations. Our findings suggest that,

contrary to the conclusions of Meyer et al. (2018), the CRT’s

predictive validity is sometimes weakened upon repeated

exposure, e.g., in the case of individuals in the subpopula-

tions represented by clusters 3 and 4 in our 3- and 4-cluster

models.

Our work is also a contribution to the understanding

of two important components of rationality: numeracy

and reflectiveness. In particular, our models have nice

interpretations in terms of these constructs. Our fitted 1-

clustermodel shows that, in the overall population, numer-

acy and reflectiveness are negatively correlated. However,

when considering subpopulations (via our fitted 3-cluster

model), we find no evidence of correlation between these

constructs.

From a statistical perspective, our proposedmethod for

parameter estimation based on AGQ is another contribu-

tion. Based on preliminary simulation studies, our method

is efficient and provides accurate estimates of the parame-

ters in both the 1- and multi-cluster models.

An alternative estimation method that we consid-

ered was the EM algorithm, using Gaussian quadrature

methods—rather than Monte Carlo methods, as proposed

by Kondo et al. (2017)—in the E-step. We expected that

this algorithm, which transforms the problem of maximiz-

ing the log-likelihood into a series of smaller maximization

problems, would result in fewer convergence issues and

be less sensitive to starting values. However, to obtain ac-

curate approximations to the integrals in the E-step using

Gauss-Hermite quadrature, a prohibitively large number

of quadrature points were required. AGQ, suggested by

Hall and Wang (2005), was similarly computationally bur-

densome since the integrands in the E-step are not propor-

tional to the posterior distribution of the random effects—

the key requirement for the efficiency of this method. In

the end, direct maximization of the log-likelihood (which

does involve an integrand that is proportional to the pos-

terior distribution of the random effects) using AGQ and

carefully chosen starting values was the most efficient and

effective estimation method we examined.

Regarding our choice to assume that the random ef-

fects are normally distributed, our review of the relevant

literature provides some alleviation of concerns about the

ramifications of misspecifying these distributions. In the
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linear mixed model setting, Butler and Louis (1992) and

Verbeke and Lesaffre (1997) demonstrated that incorrectly

specifying the distribution of the random effects has a neg-

ligible effect on the fixed-effect estimates. Likewise, in

the generalized linear mixed model setting, McCulloch and

Neuhaus (2011) conclude that “most aspects of statistical

inference are highly robust to [assuming a normal distri-

bution for the random effects]”. An exception is the case

where the true random effects distribution depends on the

predictors—see Heagerty and Zeger (2000). In the end, we

justify our choice of distributions for the random effects

by assessing the appropriateness of the implied marginal

distributions of the responses.

Caution is required in terms of the generalizability of

our results. Though MTurk participants are generally re-

garded as reasonably representative of the population (see

Appendix A), our decision to include only observations

with self-reported SAT scores (see Supporting Information)

is presumably representative of more educated American

adults.

We have numerous ideas for further work in this area.

One involves extending our bivariate longitudinal model

by treating CRT score as conditionally multinomial rather

than binomial. This approach was used by Campitelli and

Gerrans (2013), who expanded the categories of incorrect

CRT responses to distinguish between wrong “intuitive”

answers (for example, the “$0.10” answer on the Bat &

Ball problem, or “24 days” on the Lilypads problem) and

wrong “idiosyncratic” answers (wrong answers other than

the “intuitive” ones). Adopting this approach in the bi-

variate longitudinal model context may prove informative,

though would be evenmore computationally burdensome.

Overall, our novel approach in modelling the CRT data

allows us to rigorously address key questions of interest

in the cognitive psychology and psychometric literature.

In addition, our explicit incorporation of numeracy and

reflectiveness in our models paves the way for future re-

search in this area.
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Appendix A: MTurk Reliability
Paolacci, Chandler, and Ipeirotis (2010) assess the quality of Mechanical Turk (MTurk) participant samples by comparing

MTurk samples to university/college student laboratory samples and Internet samples. They proposed various criteria

with which to judge the representativeness of MTurk samples as well as the overall quality of the data the samples pro-

duce. This work involved looking at demographic factors (e.g., age, sex, race, and education) and statistical properties of

the samples (e.g., coverage error, non-response error, subject motivation, and experimenter effects). Past surveys found

that 70-80% of MTurks were from the U.S. More women than men participated (65% vs. 35%). The sample mean and

median ages were 36 and 33, respectively, which are slightly lower than those of both the U.S. population and typical

Internet users. All MTurk participants must have a U.S. bank account. Paolacci et al. (2010) summarize, “Our demo-

graphic data suggests that Mechanical Turk workers are at least as representative of the U.S. population as traditional

subject pools, with sex, race, age and education of Internet samples all matching the population more closely than college

undergraduate samples and Internet samples in general. . . ”.

MTurks are thus thought to be an inexpensive, relatively high quality source of data for psychological experiments.

For this reason, we are comfortable with treating our MTurk sample as representative of a relatively well-educated

American population for the purpose of our analyses.

Appendix B: CRT Questions
The following questions comprise the CRT:

(1) A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost? cents

(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

minutes

(3) In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the

entire lake, how long would it take for the patch to cover half of the lake? days

Modified versions of these questions were given in the other series that we excluded in our analysis.

Appendix C: Details of the AGQ Algorithm
We first define the logarithm of the joint density of our response variables and random effects as

gUi,Vi
(ui, vi) = log

{
fYi,Ti|Ui,Vi

(yi, ti | ui, vi)fUi,Vi
(ui, vi)

}
.

We then maximize gUi,Vi
(ui, vi) by computing (ûi, v̂i) such that ∇gUi,Vi

(ûi, v̂i) = 0. Using a Laplace approximation of
gUi,Vi

(ui, vi) around (ûi, v̂i), we can show that exp {gUi,Vi
(ui, vi)}—and hence the posterior distribution of (Ui, Vi)—is

approximately proportional to a normal density with mean µAi = (ûi, v̂i) and varianceΣAi =
{
∇2gUi,Vi(ûi, v̂i)

}−1
.

Let φ(·;µAi,ΣAi) be the density of a bivariate normal random variable with mean µAi and variance-covariance

matrixΣAi. DefiningBi = (Ui, Vi), we next rewrite the marginal density of (Yi,Ti) as

fYi,Ti
(yi, ti)

=
x

fYi,Ti|Bi
(yi, ti | bi)fBi

(bi) dbi

=
x {

fYi,Ti|Bi
(yi, ti | bi)fBi

(bi)

φ(bi;µAi,ΣAi)

}
φ(bi;µAi,ΣAi) dbi.
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The Laplace approximation result implies that the term {·} is approximately constant with respect to bi. Consequently,

we can use Gauss-Hermite quadrature with relatively few quadrature points to evaluate this integral with high accuracy.

In particular, substituting bi = Σ
1/2
Ai z∗i + µAi, we can write

fYi,Ti
(yi, ti)

=
x fYi,Ti|Bi

(yi, ti | bi) fBi
(bi)

exp(−||z∗i ||2)
|ΣAi|1/2 exp(−||z∗i ||2) dz∗i .

Defining S, k, bik, andWk as in the “Estimation” section and lettingRi = Σ
−1/2
Ai ,

fYi,Ti
(yi, ti)

≈ |Ri|−1
∑
k∈S

fYi,Ti|Bi
(yi, ti | bik) fBi (bik)Wk.

The AGQ approximation to the log-likelihood function is then

`[AGQ](ψ) =

ni∑
i=1

[
−log|Ri|+ log

{∑
k∈S

fYi,Ti|Bi
(yi, ti | bik)fBi

(bik)Wk

}]
.

Appendix D: Model Assessment
To provide an informal check of our 1- and 4-cluster model fit, Figure 7 displays both the empirical CRT score and time to

completion responses, along with their respective estimated marginal distributions under the two models. Specifically,

we computed the estimated distributions for each individual (using eachmodel’s parameter estimates) and then averaged

these distributions over all individuals.

For the score response, we estimate the probabilities of each CRT score using the estimated parameters and the ob-

served predictor values, restricted to nPrevS = 1. Since the marginal distribution of Yij does not have a closed form,
we use Gauss-Hermite quadrature with 100 quadrature points to approximate the four probabilities. The bars on the left-

most plot correspond to the empirical probability of each CRT score, while the purple and red horizontal lines correspond

to the probabilities estimated using our 1- and 4-cluster models, respectively.

For time to completion, the marginal distribution has a closed form, namely

Tij ∼ N(µij , σ
2
v + σ2

t ),

where

µij = x′ijα.
The histogram on the right reflects the empirical distribution of time to completion. The purple and red curves are the

estimated marginal distributions of completion time based on our 1- and 4-cluster models, respectively.
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Figure 7 Empirical and estimated distributions of CRT score (left) and time to completion (right) at nPrevS = 1 (1-
cluster model estimate in purple; 4-cluster model estimate in red). The estimated CRT score distributions based on the 1-

and 4-cluster models are close to identical, i.e., the purple and red lines overlap.
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