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sampling from the posterior distribution of various correlation coefficients that are commonly used
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to estimate Pearson’s, Spearman’s, Gaussian rank, Kendall’s τ , and polychoric correlations. We also
describe an approach based on a region of practical equivalence to evaluate differences and null
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and key advantages of the proposed methods are illustrated in an applied example.
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Introduction
Correlation coefficients lie at the heart of research in the

social–behavioral sciences (Chen, Smithson, & Popovich,

2002; Cohen, Cohen, West, & Aiken, 2013). They quan-

tify the degree of association between variables, where hy-

potheses are often posited as correlational statements such

as “there is a positive association between IQ and educa-

tional attainment.” Themost frequently used variant is the

Pearson product–moment correlation, or Pearson correla-

tion, that quantifies the strength of the linear association

between two variables. Values of 1, -1, and 0, respectively,

imply a perfectly positive, perfectly negative, and no rela-

tionship.

Although they play a leading role in psychological re-

search, there is surprisingly little work done on estimating

common correlation types in a Bayesian framework. To

date, the Pearson correlation has received the bulk of at-

tention (e.g., Wetzels & Wagenmakers, 2012; Mulder, 2016;

Wagenmakers, Verhagen, & Ly, 2016), but research exam-

ining alternative types of correlations is scarce. This is

unsurprising because the Pearson correlation is the most

frequently used measure of association and it is also triv-

ially estimated, say, by following the separation strategy of

Barnard, McCulloch, and Meng (2000) or using the natu-

ral conjugate prior for the covariance matrix in a Gaussian

model (i.e., the inverse-Wishart). Nevertheless, there are

times when researchers would like to estimate a different

type of correlation that may be better suited for their data.

For example, Kendall’s τ is a popular rank-based correla-
tion method, but was not possible to estimate in a Bayesian

framework until only recently (Yuan & Johnson, 2008; van

Doorn, Ly, Marsman, & Wagenmakers, 2018). There are

a variety of reasons for why this is the case, for instance,

due to the lack of an explicit likelihood function and sensi-

ble choices for prior distributions (Yuan & Johnson, 2008).

Furthermore, polychoric correlations, commonly used for

ordinal data, can be challenging to implement and com-

putationally expensive to estimate (e.g., Lawrence, Bing-

ham, Liu, & Nair, 2008). One such approach is the mul-

tivariate probit model (e.g., Albert, 1992; Chib & Green-

berg, 1998), but this requires sampling latent (Gaussian)

data and thresholds, both of which are not straightfor-

ward. These methodological challenges have resulted in

a lack of software for estimating Bayesian correlations.

To overcome these hurdles, we propose the Bayesian

bootstrap (BB, Rubin, 1981) as a simple and flexible ap-

proach to obtain a posterior distribution for a correlation

matrix. This method is attractive in the sense that it avoids

the direct specification of a prior and is straightforward

to implement because it is operationally equivalent to the

classical bootstrap (Efron, 1979). The key difference be-

tween them is that the BB attaches weights to the observed

values from a uniform Dirichlet distribution, as opposed to

the classical bootstrap that resamples the data. The main

benefit of this weighting scheme is that the resulting sam-
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ples can be used to approximate the posterior distribution

of interest under a noninformative prior (Lo, 1987, 1988;

Weng, 1989; Lyddon, Holmes, & Walker, 2019). The moti-

vation behind the BB is nicely summarized in Kim and Lee

(2003),

“To circumvent such complications of the

full Bayesian analysis, we propose Bayesian

bootstrap (BB) procedures which, we believe,

are easily accessible to practitioners and at

the same time are reliable inference proce-

dures...the BB procedures are conceptually

parametric and conceptually simple but retain

the flexibility of nonparametric models. An-

other advantage of the BB procedures is that

it is unnecessary to elicit prior information...”

(p. 1905)

Because the BB is flexible and does not require a prior to be

explicitly specified by the analyst, it can be used to seam-

lessly estimate virtually any correlation matrix, including

Kendall’s τ and polychoric correlations. However, the BB
remains relatively unknown in psychological contexts de-

spite its simple form and utility with respect to simulating

samples from the posterior distribution.

Naturally, a key attraction of the BB is that it shares im-

portant properties with traditional Bayesian inference.The

benefits of adopting Bayesian approaches have been writ-

ten about extensively in the psychological sciences (see

e.g., Vandekerckhove, Rouder, & Kruschke, 2018, and other

articles in that special issue). For instance, analysts com-

monly want to make statements about which parameter

values are themost likely, conditional on the observed data

(Kruschke, Aguinis, & Joo, 2012; Kruschke, 2018), but this

privilege is reserved for Bayesian methods as opposed to

classical inferential techniques. Consequently, adopting a

Bayesian approach necessarily results in a posterior distri-

bution, and thus, statements can be made about the proba-

bility of specific parameter values, or a range of them (Wa-

genmakers, Morey, & Lee, 2016; Wagenmakers et al., 2018).

Moreover, Bayesian inference allows for quantifying ev-

idence in favor of a null hypothesis as opposed to more

classical methods which typically only allow for rejecting

or failing to reject the null hypothesis.

Because the Bayesian bootstrap provides a valid pos-

terior, it can be further employed to compare correla-

tions. The problem of comparing correlations from the

same sample has received ample attention in the litera-

ture (Dunn & Clark, 1969; Steiger, 1980; Meng, Rosenthal,

& Rubin, 1992; Raghunathan, Rosenthal, & Rubin, 1996;

Zou, 2007; Mulder, 2016), and there are three main cases

where comparing correlations is of interest (Krishnamoor-

thy & Xia, 2007): (1) overlapping dependent correlations,

(2) non-overlapping dependent correlations, and (3) inde-

pendent correlations from independent samples. Because

the dependence structure is encoded in the posterior dis-

tribution, the BB can be employed in all of these situations.

Major Contributions
This work includes three major contributions. First, the

Bayesian bootstrap is introduced as a method for approx-

imating posterior distributions for several correlation co-

efficients. Namely, we describe the Bayesian bootstrap

for the Pearson correlation, wherein the Spearman’s and

Gaussian rank correlations naturally arise as special cases.

We further provide formulations to obtain Kendall’s and

polychoric correlation coefficients. We emphasize that

these latter two coefficients, unlike the Spearman’s and

Gaussian rank correlations, cannot be trivially estimated

in a Bayesian framework. Second, an approach is dis-

cussed for comparing two or more correlations, possi-

bly with the region of practical equivalence (ROPE) of

Kruschke (2018). This allows researchers to go beyond

merely estimating correlations tomakingmeaningful com-

parisons among them (e.g., establishing null associations).

Third, to increase the availability of the proposed ap-

proach, Bayesian bootstrapped correlations have been im-

plemented in the R package BBcor. For users who are un-
familiar with R, we have implemented a Shiny app

1
(Chang

et al., 2021). The totality of these contributions places the

Bayesian bootstrap into the toolbox of researcher psychol-

ogists.

Overview
The outline of this article is as follows. We begin by de-

lineating the Bayesian bootstrap procedure for different

correlation types. Here it is shown how estimating cor-

relations with the BB essentially amounts to calculating

weighted correlations. Next, we demonstrate how two

or more correlations can be compared with the result-

ing posterior distribution. We then move on to empir-

ical illustrations of the method using two psychological

datasets. These examples illustrate the utility of the pro-

posedmethod in applied settings. We conclude with a brief

discussion on the Bayesian bootstrap.

The Bayesian Bootstrap
There are at least three ways to view the Bayesian boot-

strap (Kim & Lee, 2003): 1) as an extension of the classical

bootstrap, 2) the limit of the full Bayesian posterior as the

prior becomes completely uninformative (Gasparini, 1995,

Theorem 2), and 3) a distribution that is proportional to

the product of the empirical likelihood and an uninforma-

1
The Shiny app can be accessed at tinyurl.com/2nw33cu8
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tive prior (Rubin, 1981; Owen, 1990; Lazar, 2003; Choud-

huri, 1998). Because in psychology, most analysts are likely

to have at least some familiarity with the classical boot-

strap, we briefly describe this perspective here. Suppose

Y = (y1, . . . , yn) is a random sample from an unknown
distribution F and we are interested in estimating a func-
tional of F , T (F ), say, the expected value of Y . The clas-
sical bootstrap entails resampling the data with replace-

ment to obtain Y ∗1 , . . . , Y
∗
B whereB is the number of boot-

strap samples. Inferences are then drawn on the basis of

T (F ∗i ), where F ∗i is the empirical distribution of the ith re-
sampled dataset. Notice that the empirical distribution can

be expressed as F ∗i =
∑n

j wjδYj
where n(w1, . . . , wn) ∼

Multinomial(n, 1/n, . . . , 1/n). The weights w are discrete,
considered to be known, and denote the proportion a dis-

tinct value of the original data, δYj
, arises in the boot-

strap sample. By instead considering the weights for each

sample to be unknown, continuous, and distributed as

Dirichlet(1, . . . , 1), the resulting empirical distribution F ∗i
takes on a smoother shape (see Figure 1 in Rubin, 1981).

Technical details of the connection between the Bayesian

bootstrap and the usual posterior distribution are given

in the appendix. For comprehensive mathematical treat-

ments of the BB, we refer readers to Lo (1987, 1988), New-

ton and Raftery (1994), and the references therein.

Illustration
To illustrate the process of obtaining a BB posterior, sup-

pose that we have n observations of a random variable Y .
The BB generates a posterior probability for each observa-

tion y1, . . . , yn, where unobserved values have zero poste-
rior probability. Specifically, one BB sample is obtained by

drawing n weights from a uniform Dirichlet distribution
and attaching them to the data. The generated weights can

be interpreted as the probabilities that Y = yi in each sam-
ple (Rubin, 1981). In practice, these weights are easily gen-

erated using draws from an exponential distribution (see

e.g., Devroye, 1986, p. 594). If this process is repeated S
times, then the distribution of all S samples is the BB dis-
tribution of Y . More often, however, we are interested in
estimating the parameter of a distribution, say, the mean.

For each s sample (s = 1, . . . , S), the steps for estimating
the mean of Y are as follows:
1. Draw n exponential variates

z
(s)
i ∼ Exp (1) , i = 1, . . . , n (1)

2. Generate the weights

w
(s)
i =

z
(s)
i∑n

i=1 z
(s)
i

(2)

3. Calculate the weighted sample mean

ȳ(s) =

n∑
i=1

w
(s)
i yi (3)

The empirical distribution of {ȳ(1), . . . , ȳ(S)} is the BB
approximation to the posterior of the mean of Y . A visual
comparison between a BB distribution and an analytical

posterior for this scenario is shown in Figure 1. Note steps

1 and 2 can be merged if a uniform Dirichlet distribution

random number generator is directly available, as is the

case in many programming platforms. Further, a subscript

can be added ȳ
(s)
g (g = 1, . . . , G) in each step to distinguish

means between groups. This opens up the possibility to

obtain a posterior distribution for mean differences (e.g.,

δ(s) = ȳ
(s)
1 − ȳ(s)2 ). In what follows, we demonstrate how

these ideas can be harnessed to estimate and compare a

variety of correlation coefficients.

Pearson, Spearman’s, and Gaussian Rank Correlation
Coefficients
Background

The most popular correlation is the Pearson product-

moment correlation coefficient, or Pearson correlation,

which captures the linear relationship between two vari-

ables. When the data are ordinal, it is common to use the

nonparametic Spearman’s correlation, which is defined as

the Pearson correlation between the ranks of two variables

and describes their monotonic relationship. Although con-

ceptually easy to understand and compute, using Spear-

man’s correlation results in a small loss of statistical ef-

ficiency. A recently proposed alternative is the Gaussian

rank correlation (Boudt, Cornelissen, & Croux, 2012). The

Gaussian rank correlation is defined as the Pearson corre-

lation of the normalized ranks (i.e., their Van der Waer-

den scores). The advantage of normalizing the variables

prior to computing their correlation is that there is a small

gain in statistical efficiency (for Gaussian data) when esti-

mating the monotonic relationship between them. Inter-

estingly, the main difference between the Pearson’s, Spear-

man’s, and Gaussian rank correlations is whether the raw,

ranked, or normalized rank observations are being cor-

related. Hence, only a formulation for the Pearson cor-

relation is needed to obtain any of the three correlation

types. Note that Rubin (1981) described the BB for a

sec:comparingsingle Pearson’s correlation, but did not con-

sider the full correlation matrix or other correlation types.

In a Bayesian framework, the Pearson correlation ma-

trix is traditionally estimated by modeling the covariance

matrixΣ. To this end, the legacy inverse-Wishart prior has
been the de facto standard. Due to its conjugacy, computa-

tion can be relatively efficient and thus it is widely imple-
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Figure 1 Density histogram of 1000 Bayesian bootstrapped means using the steps outlined in (1) – (3). The black line is

the posterior density of the mean resulting from a normal prior with mean equal to zero and standard deviation equal to

10. The sample data (n = 500) was generated from a Normal distribution with mean equal to 10 and standard deviation
equal to 5.

mented in Bayesian software (e.g., Plummer, 2003). How-

ever, the inverse-Wishart prior has been criticized for sev-

eral reasons: the uncertainty for all variances is controlled

by a single degrees of freedom parameter (Barnard et al.,

2000), the marginal distribution for the variances have low

density near zero (Gelman, 2006), and there is an a priori
dependence between the resulting correlations and vari-

ances (Tokuda, Goodrich, Van Mechelen, Gelman, & Tuer-

linckx, 2011). Separation strategies exist to deal with the

dependence between the variances and correlations (e.g.,

Barnard et al., 2000), but suffer from similar problems as

the inverse-Wishart. Alternative distributions exist that

circumvent these issues, such as the LKJ (Lewandowski,

Kurowicka, & Joe, 2009) or matrix-F (Mulder & Pericchi,
2018) prior distributions. Although they are more flexi-

ble than the inverse-Wishart, the incurred expense is that

they are more computationally complex and, additionally,

are not yet widely available in Bayesian software. For in-

stance, the LKJ prior is mostly restricted to programs that

interface with Stan (Carpenter et al., 2017) and do not read-

ily provide the full correlation matrix. The matrix-F prior
has been implemented for a full correlation matrix, but

first requires estimating the partial correlations and thus

the prior cannot be placed directly over the correlationma-

trix (Williams & Mulder, 2019). By instead employing the

Bayesian bootstrap, an approximate posterior for the full

correlation matrix can be obtained painlessly.

Bayesian Bootstrap Steps

We now describe the necessary ingredients for obtaining

Bayesian bootstrapped samples of Pearson, Spearman’s,

and Gaussian rank correlations. Without a loss of gener-

ality, assume Y to be a mean-centered n × p data matrix
with sample covariance matrix S. The Pearson correlation
matrix for Y is given by

R = D−
1
2 SD−

1
2 (4)

S = (n− 1)−1 (Y′Y)

where D−
1
2 is a diagonal matrix containing the inverse

square roots of the diagonal elements of S and each rij el-
ement of R indicates the correlation between the ith and
jth column of Y. The Spearman’s correlation matrix is ob-
tained when each (i, j)th element inY is replaced with its

rank, R(Yij). Similarly, if the elements are replaced with

their Van der Waerden scores, Φ−1
(

R(Yij)
n+1

)
, where Φ−1

denotes the quantile function for a standard normal curve,

then R contains the Gaussian rank correlations.
A simple modification of (4) yields a posterior sample

of R. Mainly, for each s sample, the values drawn from
the uniform Dirichlet distribution are used to center the

columns of Y at their weighted mean, and then further to
obtain a weighted covariance matrix Sw. With this modifi-
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cation, a Bayesian bootstrapped sample for R is obtained

by computing

R(s)w =
(
D

(s)
w

)− 1
2

S
(s)
w

(
D

(s)
w

)− 1
2

(5)

S
(s)
w =

[
1−

n∑
i=1

(
w

(s)
i

)2]−1 (
Y

(s)′
w Y

(s)
w

)
(6)

Y
(s)
w = Y ◦w

(s)
∗ 1′p (7)

where R
(s)
w is a weighted correlation matrix,

(
D

(s)
w

)−1/2
is a diagonal matrix containing the inverse square roots

of the diagonal elements of S
(s)
w , and Y

(s)
w is a weighted

version of the data matrix. The symbol “◦” denotes the
Hadamard product, w

(s)
∗ is an n-dimensional vector with

elements w
(s)
∗,i =

√
w

(s)
i , and 1p is a p-dimensional vec-

tor containing 1’s. If R
(s)
w is computed S times, then the

distribution of {R(1)
w , . . . ,R

(S)
w } is the BB distribution of

R. Similarly, the BB distribution of each rij is the empiri-

cal distribution of {r(1)
w,ij , . . . , r

(S)
w,ij}. Notice that computing

a posterior sample with the BB requires only a few steps

and does not involve explicitly invoking a prior distribu-

tion. In this way, the Bayesian bootstrap provides a seam-

less method for obtaining posterior distributions for the

Pearson, Spearman’s, and Gaussian rank correlation ma-

trices.

Kendall’s Rank Correlation Coefficient
Background

A similar approach can be taken to obtain posterior sam-

ples for Kendall’s rank correlation coefficient (Kendall,

1938), or Kendall’s τ , a widely used measure of association
in nonparametric statistics. Like Spearman’s correlation,

it is a robust measure that captures monotonic relation-

ships between two variables, but has some advantages. It

is asymptoticallymore efficient and has an appealing inter-

pretation. Kendall’s τ can be interpreted as follows. Sup-
pose we have n observations for two random variables X
and Y . A pair of differences (xi − xj) and (yi − yj) is said
to be concordant if they share the same sign and discor-

dant if they do not. Kendall’s τ is obtained by taking the
difference between concordant and discordant pairs and

dividing this quantity by the number of all possible pairs.

When τ = 1 (−1) all pairs of observations are concordant
(discordant).

Despite its popularity, there is a dearth of litera-

ture on Bayesian inference for Kendall’s rank correlation.

The main reason for this is that nonparametric tests in

Bayesian settings have historically been limited by a lack

of prior distributions and an explicit likelihood function

(Yuan & Johnson, 2008) — without which a model can-

not be formulated in a Bayesian framework. Recently, van

Doorn et al. (2018) developed a method for deriving a pos-

terior distribution for Kendall’s τ based on its standardized
test statistic T ∗. However, this method only considers a
single correlation at a time. That is, the full correlationma-

trix is not readily estimated, which, in turn, prevents easily

comparing correlations. In contrast, a Bayesian bootstrap

approach to estimating Kendall’s τ circumvents this con-
cern because it readily estimate the full correlationmatrix.

Bayesian Bootstrap Steps

For the case ofX and Y , Kendall’s τ is defined as

τ =

∑n
1≤i<j≤n sgn (xi − xj) sgn (yi − yj)

k
, (8)

where k = n(n−1)
2 is the number of distinct pairs. The

above is commonly referred to as τA and does not account
for ties. When ties are present, the denominator is adjusted

to correct for this and is defined as

√
(k − tx)(k − ty)

where tx and ty denote the number of ties in X and Y ,
respectively. This version is commonly known as τB and
because this is the version we consider here, we simply re-

fer to it as τ .
A Bayesian bootstrapped sample for Kendall’s rank

correlation between X and Y can be computed by first

drawing values from a uniform Dirichlet distribution and

weighting the numerator to obtain

τ
(s)
w =

n∑
1≤i<j≤n

w
(s)
i w

(s)
j sgn (xi − xj) sgn (yi − yj) . (9)

This expression is nice because the connection to the origi-

nal formulation is clear, but it can be generalized to obtain

the full correlation matrix (Pozzi, Di Matteo, & Aste, 2012,

pp. 15 – 17). Let Z be a k × p matrix where each (l, v)
element is associated to sgn(yvi − yvj ) where l = 1, . . . , k,
v = 1, . . . , p, i = 2, . . . , n, and j = 1, . . . , n − 1, or in
words, a matrix where each element indicates the sign for

the difference of the observation pair (i, j) on variable v.
With this definition of Z, a Bayesian bootstrap sample for
the Kendall’s τ correlation matrix can be obtained as fol-
lows

τ
(s)
w =

(
D

(s)
w

)−1/2
S
(s)
w

(
D

(s)
w

)−1/2
(10)

S
(s)
w = Z(s)′Z

(s)
w (11)

Z
(s)
w = Z ◦w

(s)
∗ 1′p (12)

where τ
(s)
w is the weighted correlation matrix,

(
D

(s)
w

)−1/2
is a diagonal matrix containing the inverse square roots of
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the diagonal elements of S
(s)
w , and Z

(s)
w is a weighted ver-

sion of Z. The k-dimensional vector w
(s)
∗ contains the el-

ements w
(s)
∗,l =

√
w

(s)
i w

(s)
j , and 1p is p-dimensional vec-

tor containing 1’s. When written this way, Kendall’s rank

correlation can be conceptualized as a Pearson correlation

computed with Z. If τ (s)
w is computed S times, then the

distribution of {τ (1)
w , . . . , τ

(S)
w } is the BB distribution of τ .

Like each rw,ij , the BB distribution of each τw,ij is their em-
pirical distribution over all S samples.

Polychoric Correlation Coefficient
Background

An important measure of association in the field of psy-

chometrics is the polychoric correlation coefficient (Ols-

son, 1979; Jöreskog, 1994). Like correlations that describe

monotonic relationships, the polychoric correlation is of-

ten used with ordinal data. The key difference here is

that the ordinal data are considered to be the result of dis-

cretizing continuous variables. Accordingly, the polychoric

correlation captures the linear association between two la-

tent continuous variables underlying the observed ordinal

data. Note that we assume that the joint distribution of

the two latent variables is Gaussian, but other distributions

can be used (e.g., bivariate t, Albert, 1992).
Getting Bayesian estimates of polychoric correlations

can be difficult due to their computational expense. Com-

puting the likelihood requires iteratively sampling from

truncated Gaussian distributions and the covariance ma-

trix is typically restricted to be a correlation matrix for

identifiability reasons (Albert, 1992; Chib & Greenberg,

1998). Further, nuisance parameters, termed thresholds,

must be estimated for each variable. More efficient MCMC

algorithms have been developed, for example, by us-

ing parameter expansion for data augmentation (Talhouk,

Doucet, & Murphy, 2012; Lawrence et al., 2008) or pa-

rameterising the precision matrix of the latent variables

in terms of the Cholesky decomposition (Webb & Forster,

2008), but these techniques introduce computational com-

plexities of their own and remain unavailable in statistical

software (to our knowledge). Thus, for polychoric corre-

lations, the Bayesian bootstrap again provides a relatively

simple solution.

Bayesian Bootstrap Steps

For ease of exposition, we focus on estimating the poly-

choric correlation between two variables, but the follow-

ing can be applied for the entire correlation matrix. Sup-

pose that two ordinal variables X and Y are expressed in
a two-way contingency table with R rows and C columns.
That is, there are R levels in X and C levels in Y . If the
data is collected on n individuals and classified with re-

spect to the rows and columns, then the cell counts, nrc
(r = 1, . . . , R, c = 1, . . . , C) have respective probabili-
ties πrc. The typical estimation approach is then to assume
that the ordinal variables correspond to continuous Gaus-

sian variables ξ and η. The n pairs (ξi, ηi) can likewise be
placed in anR×C contingency table using row thresholds
−∞ = a0 < a1 < · · · < aR−1 < aR = ∞ and column

thresholds −∞ = b0 < b1 < · · · < bC−1 < bC = ∞. The
relationship betweenX and ξ is

xi =


1 if ξi < a1

2 if a1 ≤ ξi < a2
.
.
.

R if aR−1 ≤ ξi

, (13)

and similarly for Y and η.
The polychoric correlation can then be estimated in

two steps (Olsson, 1979). The thresholds are first estimated

as

ar = Φ−1
(∑n

i=1 I(xi ≤ r)
n

)
, r = 1, . . . , R− 1 (14)

bc = Φ−1
(∑n

i=1 I(yi ≤ c)
n

)
, c = 1, . . . , C − 1, (15)

where Φ denotes the bivariate standard normal cumula-
tive density function with correlation ρ and the symbol I(·)
denotes the indicator function. Then, the likelihood of the

sample

R∑
r=1

C∑
c=1

nrc lnπrc (16)

is maximized with respect to ρ. Above, nrc is the number
of observations in the (r, c)th cell of the contingency table
and πrc is the probability that (ξi, ηi) belongs to that cell

πrc = (17)

Φ(ar, bc)− Φ(ar−1, bc)−
Φ(ar, bc−1) + Φ(ar+1, bc+1).

The value of ρ that maximizes the log-likelihood is the esti-
mate for the polychoric correlation betweenX and Y .
A Bayesian bootstrapped sample of the polychoric co-

efficient can be obtained through a reweighting scheme

applied to the R × C contingency table. To obtain the

weighted cell probabilities, the thresholds are first esti-

mated based on the simulated Dirichlet weights (Bailey,

Emad, Zhang, Xie, & Sikali, 2018)
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a
(s)
w,r = Φ−1

(
n∑

i=1

w
(s)
i I(xi ≤ r)

)
(18)

b
(s)
w,c = Φ−1

(
n∑

i=1

w
(s)
i I(yi ≤ c)

)
. (19)

Similarly, the term nrc in (16) is replaced with

n
(s)
w,rc =

n∑
i=1

w
(s)
i I(xi = r)I(yi = c). (20)

The weighted probabilities for each sample π
(s)
w,rc are com-

puted using the expression in (17), but with the weighted

thresholds so that the log-likelihood for each sample is

given by

s∑
i=1

r∑
j=1

n
(s)
w,rc lnπ

(s)
w,rc. (21)

Finally, the Bayesian bootstrapped sample for the poly-

choric correlation, ρ(s), is the one that maximizes (21). If
this procedure is carried out S times, then {ρ(1), . . . , ρ(S)}
is the BB distribution of the polychoric correlation between

X and Y .

Comparing Correlations
Once a set of correlations has been estimated, a common

next step is to make comparisons among them, say, to de-

termine which association is the largest. This can be done

by computing the posterior distribution for comparisons

of interest. The main advantage of doing so is that stan-

dard deviations (analogous to standard errors) are avail-

able in situations where they would otherwise be difficult

to obtain (e.g., the difference between two polychoric cor-

relations with the same matrix). Fortunately, the Bayesian

bootstrapped posterior distribution can be used to make

such comparisons.

Using the Bayesian bootstrap, the posterior can be ob-

tained for linear combinations of correlations by manipu-

lating the posterior samples of the individual correlations.

Say we have estimated a p × p correlation matrix and are
interested in their pairwise differences. Let ρ(s) be a vec-
tor containing the sth sample for the G = p(p − 1)/2 dis-
tinct correlations andC be a matrix of coefficients captur-
ing the pairwise differences. Each element ofC is either a
1,−1, or 0. A posterior sample for these differences can be
obtained by expressing them as a linear combination

δ(s) = Cρ(s) (22)

ρ(s) =


ρ
(s)
1

ρ
(s)
2
.
.
.

ρ
(s)
G

 , C =


1 −1 0 . . . 0
1 0 −1 . . . 0
.
.
.
. . .

. . .
. . .

.

.

.

0 0 . . . 1 −1

 . (23)

The distribution of all {δ(1), . . . , δ(S)} approximates the
posterior distribution for the comparisons between the

correlations in ρ. Now, means, standard deviations, and
credible intervals can be computed directly for the poste-

rior of δ. The subscripts of the G correlations can denote
distinct correlations within the same group, the same cor-

relation for distinct groups, or distinct correlations from

distinct groups. Although we focused on pairwise differ-

ences here, this idea can be extended to more general lin-

ear combinations.

An additional advantage of Bayesian analysis is the

ability to “accept” parameter values that provide support

either for or against a null hypothesis. For instance, if

one wants to conclude that there is no difference between

the magnitude of two correlations, then this can be done

using a formal procedure such as the region of practi-

cal equivalence (ROPE) approach (Kruschke, 2018). The

ROPE approach is similar in spirit to a frequentist ap-

proach wherein a prespecified parameter value is rejected

if it is not covered by a 100(1 − α)% confidence interval.
The difference is that a range of parameter values (i.e., a

ROPE) is stipulated where values in this range are treated

as as equivalent to a null value (e.g., 0). Once this re-

gion is established and the posterior distribution of δ has
been computed, a 100(1 − α)% credible interval (CrI) can
be constructed for each comparison. If the computed in-

terval lies entirely inside the ROPE bounds, then the esti-

mated parameter value is treated as equivalent to the null

value and conversely, if the interval completely excludes

the ROPE, then the null value is rejected. This is because

a 100(1 − α)% CrI contains the 100(1 − α)% most proba-
ble values (assuming a symmetric distribution). Thus, if

the CrI is entirely inside of the ROPE, then we can interpret

the parameter value as being practically equivalent to the

null value and vice versa. A decision is withheld if there is

overlap between the interval and the ROPE. Adopting the

framework described above permits researchers to utilize

the BB to make meaningful comparisons between associ-

ations using a variety of different correlation coefficients

with the goals of either parameter estimation, making de-

cisions about a parameter value, or both.
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Summary
In this section, we described how posterior distributions

for several different correlations can be obtained in a

straightforward manner via the Bayesian bootstrap. The

central theme was that simulating posterior samples for

correlations boils down to repeatedly calculating weighted

correlations where the weights are uniform Dirichlet dis-

tributed. In each iteration of the bootstrap, the result-

ing weighted correlation constitutes a draw from the cor-

relation’s posterior distribution, and when done repeat-

edly, the distribution of the calculated statistics approxi-

mates the posterior of interest. The main advantage of

this method is that posterior inference for correlations can

be done “painlessly”. That is, obtaining BB estimates for

the correlations does not require specifying a prior distri-

bution or complex sampling techniques. Altogether, the

BB provides a powerful tool for approximate Bayesian in-

ference of popular correlation types in social-behavior sci-

ences.

Empirical Application
Below we discuss an empirical example where we illus-

trate how the BBcor2 package can be applied to obtain
and compare Bayesian bootstrapped correlations in prac-

tice. We utilize data that were first analyzed in Šrol, Cavo-

jova, and Mikušková (2021) to compare dependent corre-

lations from the same sample. The data were collected

to study the negative social consequences of Covid-19 re-

lated conspiracy beliefs. Slovakian participants (N = 501)
completed survey items measuring their prejudiced and

discriminatory views against three social outgroups asso-

ciated with the pandemic in Slovakia. Specifically, data

were collected on negative feelings, social distance, and

discriminatory views towards Chinese, Roma, and Italian

people. Further, measurements were taken on the de-

gree of belief in general Covid-19 conspiracies (e.g., “Covid-

19 is a biological weapon intended to eliminate the over-

crowded human population”) and Chinese-specific Covid-

19 conspiracies (e.g., “the Chinese created [SARS-CoV-2] as

a biological weapon which then got out of hand”). As part

of the analysis in this study, the three measures of prej-

udice and discrimination were each correlated with the

measures of conspiracy belief, yielding six correlations per

outgroup. The resulting correlations were then compared

using Steiger’s z-test (Steiger, 1980). For example, the cor-
relation between negative feelings towards Italians and

general Covid-19 conspiracy beliefs was compared to the

correlation between negative feeling towards Italians and

Chinese-specific Covid-19 conspiracies.

There are two details to note here. First, the z-test used

to compare correlations makes the assumption that the un-

derlying data are Gaussian. Second, failing to reject the

null hypothesis does not provide support in favor of no

difference (i.e., absence of evidence is not evidence of ab-

sence). Thus, it may be desirable to use a method of com-

parison that accommodates a measure of association more

appropriate for Likert-type data, such as the data collected

(e.g., Kendall’s τ ), and that allows for statements in favor of
the null hypothesis. This can easily be accomplished with

the Bayesian bootstrap methodology outlined in this arti-

cle.

Calculating the correlations
We assume the reader to have some familiarity with the R

programming language (R Core Team, 2021). To begin, the

BBcor package must be installed and loaded, and the data
must be read into R.

# install and load BBcor
install.packages("BBcor")
library(BBcor)
# read in data set
data("srol2021")
str(srol2021)
> ’data.frame’: 501 obs. of 11 variables:
> $ neg_feelings_china : int 100 96 75 50...
> $ social_distance_china : num 7 7 5.33...
> $ discrimination_china : int 7 7 5 3 1 6...
> $ neg_feelings_italy : int 67 50 55 50...
> . . .
> $ discrimination_roma : int 7 5 3 3 1 7...
> $ china_Covid_conspiracy : num 2.5 4.25...
> $ generic_Covid_conspiracy: num 2.62 3.25...

The Bayesian bootstrapped Kendall’s τ correlation ma-
trix for this data is trivially obtained via the bbcor func-
tion:

bb_tau <- bbcor(srol2021, method = "kendall",
iter = 1000, cores = 1)

bb_summary <- summary(bb_tau,
ci = 0.9, decimals = 2)

Here, the bbcor function samples the posterior for
the correlation matrix, and takes as arguments the data,

the desired correlation type, the number of samples to

draw, and the number of cores to use when parallel com-

puting is employed. Printing the returned object outputs

the mean correlation matrix. Running summary on the
returned object and specifying the desired credible inter-

val returns a data frame summarising the posterior with

means, standard deviations, and bounds for the credible

intervals. For instance, previewing the summary object

with head(bb_summary) prints the results seen in List-
ing 1.

2
The BBcor package can be downloaded from CRAN or from https://github.com/donaldRwilliams/BBcor.
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Listing 1 Results of head(bb_summary)

> Relation Post.mean Post.sd Cred.lb Cred.ub
> 1 neg_feelings_china--social_distance_china 0.16 0.03 0.10 0.21
> 2 neg_feelings_china--discrimination_china 0.19 0.03 0.13 0.24
> 3 social_distance_china--discrimination_china 0.15 0.04 0.09 0.20
> 4 neg_feelings_china--neg_feelings_italy 0.43 0.03 0.38 0.49
> 5 social_distance_china--neg_feelings_italy 0.06 0.04 0.00 0.11
> 6 discrimination_china--neg_feelings_italy 0.17 0.03 0.11 0.22

Depending on the precision of of measurements be-

ing considered, it can be desirable to obtain more than

two decimal points (Cousineau, 2020). This can easily be

done by adjusting the decimals setting in the summary
method. The posterior means for the correlations and

respective intervals can easily be visualized using syntax

from the ggplot2 library (Wickham, 2016). For exam-
ple, if we subset the data to only include the prejudice and

discrimination measures for China and the two conspiracy

theory variables, then the following code returns a plot for

the ten resulting correlations which can be seen in Figure

2:

library(ggplot2)
bb_tau_china <- bbcor(Covid_china_subset,

method = "kendall")
plot(bb_tau_china) + theme_bw()

Analyzing comparisons
The Bayesian bootstrapped correlations can be compared

using the compare function. The correlations to be com-
pared can be specified either using a character string or

by providing a contrast matrix as detailed in section Com-
paring Correlations. For example, if the focus is on com-
paring the correlation between negative feelings towards

China and belief in China-specific Covid-19 conspiracies to

the correlation between negative feelings towards China

and belief in generic Covid-19 conspiracies, then one can

specify the following,

comparison <- "
neg_feelings_china--china_Covid_conspiracy >
neg_feelings_china--generic_Covid_conspiracy"

compare(comparison, obj = bb_tau_china)

which yields a summary of the comparison when printed.

> Call:
> lin_comb.bbcor(lin_comb = lin_comb, obj = obj,

ci = ci, rope = rope,
> contrast = contrast)
> ------
> Combinations:
> C1: neg_feelings_china--china_Covid_conspiracy

> neg_feelings_china--generic_Covid_conspiracy
> ------
> Posterior Summary:
>
> Post.mean Post.sd Cred.lb Cred.ub Prless Prgreat

> C1 0.12 0.03 0.07 0.17 0 1
> ------
> Note:
> Prless: Posterior probability less than zero
> Prgreat: Posterior probability greater than zero

Above, the comparison object is a string

that states the comparison to be made is that

neg_feelings_china-china_Covid_conspiracy
is greater than neg_feelings_china-generic_
Covid_conspiracy. This string is passed along to the
compare function along with the name of the object con-
taining the correlations. The output displays several sum-

mary statistics for the posterior of this comparison such

as the mean difference, standard deviation, credible inter-

val bounds, and the proportion of posterior mass that is

greater or less than zero. In this case, the difference be-

tween the two correlations is 0.12, 90% CrI [0.07, 0.17], and

the entirety of the posterior mass is above zero.

Often, analysts are interested in making more than one

comparison. For example, Šrol et al. (2021) repeated the

same comparison as above for each country (China, Roma,

and Italy) and for each measure of prejudice and discrim-

ination. Thus, there were three comparisons made per

country. To avoid tediously typing long character strings,

it can be useful to specify a contrast matrix to encode the

comparisons of interest. For the subset of variables for

China, we must specify a 3 × 10 matrix corresponding to
the three comparisons and ten unique correlations. Addi-

tionally, a region of practical equivalence (ROPE) may be

stipulated as above, say [-0.10, 0.10]. In R, the analogous

code is written as follows

contrast_vec <- c(0, 0, 0, 1, 0, 0, -1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, -1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, -1, 0 )

contrast_mat <- matrix(constrast_vec, nrow = 3,
ncol = 10, byrow = TRUE)

compare(obj =bb_tau_china, contrast =contrast_mat,
> ci = 0.9, rope = c(-0.10, 0.10))
> ------
> Call:
> lin_comb.bbcor(lin_comb = lin_comb, obj = obj,
> ci = ci, rope = rope, contrast = contrast)
> ------
> Combinations:
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Figure 2 Output of theplotmethod for Bayesian bootstrapped (BB) correlations obtainedwith thebbcor function. The
red dots indicate BB posterior means for the correlations and the bars denote their respective BB 90% credible intervals.

> C1: C1
> C2: C2
> C3: C3
> ------
> Posterior Summary:
>
> ROPE: [ -0.1 , 0.1 ]
>
> Post.mean Post.sd Cred.lb Cred.ub Pr.in
> C1 0.12 0.03 0.07 0.17 0.2762
> C2 0.06 0.03 0.02 0.11 0.9162
> C3 0.11 0.03 0.06 0.16 0.3544
> ------
> Note:
> Pr.in: Posterior probability in ROPE

In this output, there are three rows of summary

statistics, corresponding to the three comparisons spec-

ified in contrast_mat. The column Pr.in contains
the proportion of the posterior mass contained in the

ROPE. These combinations can also be visualized via

a plotting method. If the compare object is saved

into an object named china_comparison, then calling
plot(china_comparison) produces the plot in Fig-
ure 3. As can be seen, the intervals for all combinations

overlap with the ROPE and thus the evidence is ambiguous

as to whether these correlations differ. This is a slightly

different conclusion than the original analysis where the

null hypothesis of no difference was rejected for all three

combinations at an α = 0.05 level. The results for these
comparisons, along with the ones for Italy and Roma can

be seen in Table 1.

Recall that the original analysis computed Pearson’s

correlations, for which there are many tests to probe

the difference between two correlations (Diedenhofen &

Musch, 2015). The data, however, were measured us-

ing ordinal scales. As such, a measure of association like

Kendall’s τ may be more useful than a linear association,
but this introduces a separate problem due to the lack of

a standard error for the difference between two Kendall’s

τ ’s. In our example above, the BB methodology was used
overcome this issue as we trivially estimated and com-

pared the Kendall’s τ estimates.
Numerically, the computed correlations and their com-

parisons were similar to the original, but the resulting in-

terpretations differed. With respect to the magnitude of

the associations, some correlations were roughly the same

as their Pearson’s counterparts, but the majority were

slightly weaker, with the differences between the Pearson’s

and Kendall’s τ values ranging from 0.01 to 0.08. Despite
these discrepancies, the estimates for the magnitude of the

differences were approximately equal between the Pear-

son and Kendall’s correlations. On the other hand, the in-

terpretation of results between the z-test and the ROPE ap-
proach diverged. For example, the original analysis failed

to reject the null hypothesis for all three comparisons in-

volving Italy. Again, this does not allow statements to be

made in support of equality between both correlations. In

contrast, the 90% intervals for all three comparisons were

trapped completely between [-0.1, 0.1] and under this de-

cision rule, we can conclude that there is evidence to sup-

port the respective correlations as practically equivalent.

The credible intervals for the remaining comparisons all

overlapped with the ROPE and thus there is no decisive ev-

idence for or against equality of the correlations. This also

differed from the original analysis in that the majority of
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Figure 3 Output from plotting comparisons with the compare function. The histograms represent BB posterior samples
for the comparisons, black dots indicate the BB mean, and blue bars denote BB 90% CrIs. The dotted black lines capture

the bounds for the ROPE of [-0.1, 0.1].

these tests were rejected.

Discussion
In this article we aimed to show how the Bayesian boot-

strap can be applied to obtain Bayesian posteriors for cor-

relation coefficients. We began with a concise introduc-

tion to the Bayesian bootstrap and provided formulations

to obtain Bayesian bootstrapped versions of the Pearson,

Spearman’s, Gaussian rank, Kendall’s, and polychoric cor-

relation coefficients. The main advantage of the BB is that

it considerably simplifies obtaining the posterior for the

full correlation matrix. A method for comparing correla-

tions was then introduced based on the region of practical

equivalence (ROPE) approach (Kruschke & Liddell, 2018).

In an empirical application, we demonstrate how a typi-

cal analysis of correlations may be carried out using the

BBcor package. We supplied R code to 1) estimate and vi-
sualize posterior estimates for the correlations discussed

in the paper and 2) compare correlations using the ROPE

approach and visualize the posterior for their difference.

Consequently, this example also serves as a tutorial for

readers who wish to implement the methodology outlined

in this article.

The methods we proposed in this paper contribute to

two bodies of literature. The majority of work in psychol-

ogy examining correlations within a Bayesian framework

has focused on hypothesis testingwith the Bayes factor and

thus attention is typically restricted to estimating one or

two correlations at a time instead of the full correlation

matrix. A complementary view in psychology has called

for an increased focus on parameter estimation (Kruschke

& Liddell, 2018; Rouder, Haaf, & Vandekerckhove, 2018).

Introducing the BB for correlations adds to the literature

on Bayesian inference of correlations with a focus on pa-

rameter estimation because it is a flexible method capable

of estimating the full correlationmatrix for a variety of cor-

relation types, and can easily be extended beyond those

examined in this paper. Second, a considerable amount

of work has been done examining methods for comparing

correlations, but this work is focused almost exclusively

on the Pearson correlation. By providing a framework

wherein a variety of correlations may be compared, the

present article also adds to this literature. This is especially

valuable for correlations involving ordinal data because of

their ubiquity in the social-behavioral sciences.

In our view, the BB is a valuable tool that is best applied

when the goal at hand is explicitly parameter estimation

as opposed to Bayesian hypothesis testing. Much work at

the intersection of psychology and Bayesian statistics has

held an eye towards the Bayes factor (BF) for the latter
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Table 1 Bayesian bootstrapped posterior mean estimates and 90% credible intervals (brackets) for Kendall’s τ correla-
tions between measures of discrimination and prejudice and belief in conspiracy theories.

China-specific covid-19 CTs Generic covid-19 CTs Mean Difference

Negative Feelings (China) 0.14 [ 0.09, 0.19 ] 0.02 [−0.03, 0.07 ] 0.12 [ 0.70, 0.17 ]

Social Distance (China) 0.25 [ 0.19, 0.30 ] 0.19 [ 0.14, 0.24 ] 0.06 [ 0.02, 0.11 ]

Discrimination (China) 0.15 [ 0.19, 0.20 ] 0.04 [−0.02, 0.09 ] 0.11 [ 0.06, 0.16 ]

Negative Feelings (Italy) 0.07 [ 0.02, 0.12 ] 0.06 [ 0.00, 0.11 ] 0.01 [−0.03, 0.06 ]

Social Distance (Italy) 0.22 [ 0.17, 0.28 ] 0.19 [ 0.14, 0.24 ] 0.04 [−0.01, 0.08 ]

Discrimination (Italy) 0.15 [ 0.10, 0.21 ] 0.13 [ 0.07, 0.18 ] 0.02 [−0.03, 0.07 ]

Negative Feelings (Roma) 0.06 [ 0.01, 0.12 ] 0.14 [ 0.08, 0.19 ] −0.07 [−0.12,−0.03 ]

Social Distance (Roma) 0.14 [ 0.08, 0.19 ] 0.14 [ 0.08, 0.19 ] 0.00 [−0.05, 0.04 ]

Discrimination (Roma) 0.16 [ 0.10, 0.22 ] 0.22 [ 0.16, 0.27 ] −0.06 [−0.11,−0.01 ]

purpose. Although BFs can be derived using the BB pos-

terior (Newton & Raftery, 1994), it is suboptimal because it

depends upon the harmonic mean; a method long known

to be problematic (Diciccio, Kass, Raftery, & Wasserman,

1997; Lenk, 2009). If one wants to use the BB to make a de-

cision with respect to a null parameter value, then we view

the ROPE approach as a reasonable way of doing so. More-

over, one may want to use an alternative, informed prior

when testing a hypothesis. This is challenging with the

Bayesian bootstrap because many hyperparameters must

be introduced in order to accomplish this (e.g., Poirier,

2011). Thus, the BB shines in the exploratory stages of re-

search because it employs an uninformative prior and can

be used to quickly estimate the posterior for the full corre-

lation matrix.

It is important to keep in mind certain aspects of the BB

in practice. Practitioners should be wary of applying the

BB to small samples (e.g, n = 10), as the resulting credible
intervals may be more narrow than those obtained, say,

with an MCMC Bayesian analysis. The width of the inter-

vals are crucial when using the ROPE approach as overly

narrow intervals may result in overconfident inferences.

This may be due to the questionable assumption pointed

out by Rubin (1981) that values for unobserved data re-

ceive no prior, and hence, no posterior, support (but see

Hjort, 1991). Thus, if a sample does not include obser-

vations from the tails of the population under study (as

might often be the case in small samples), then the vari-

ance of the BB posteriormay be underestimated. However,

as n increases, credible intervals based on the BB posterior
will converge on those obtained using traditional Bayesian

techniques (assuming a uniform prior).

Further the BB diverges from traditional Bayesian

methods in some important ways. Most notably, no prior

is explicitly elicited by the analyst. Although the subjec-

tive choice of specifying a prior can be seen as a core

component of Bayesian inference (Savage, 1954), it is of-

ten desirable to eliminate this subjectivity in prior spec-

ification (Berger, 2006; Ghosh, 2011). It is interesting to

note that Bayesianmethods are often favored because they

are more consistent with the likelihood principle (Berger

& Wolpert, 1988): all the evidence in a sample that is rel-

evant to model parameters is contained in the likelihood

function. But the BB violates this principle because the esti-

mation of parameters relies on aggregating datasets which

were not observed. An advantageous difference of the BB

lies in the computational speed. Many common methods

for Bayesian inference are based on MCMC sampling. Be-

cause these draws are serially dependent, many samples

are typically required for a consistent estimate of the pos-

terior. On the other hand, samples drawn using the BB are

independent and thus fewer of them are required. Despite

these differences, the BB is a reliable procedure for obtain-

ing a valid posterior distribution.

Conclusion
We discussed a generic and simple approach to obtain-

ing posterior distributions via the Bayesian bootstrap (BB)

for a variety of correlation coefficients. It is generic be-

cause it can be applied broadly to different measures of

associations and simple because it amounts to calculating

weighted correlations. We further discussed a flexible ap-

proach to comparing correlations, or linear combinations

thereof. Altogether, the BB provides a powerful tool for ap-

proximate Bayesian inference of popular correlation types

in the social-behavior sciences.
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Appendix
Following Rubin (1981), let d = (d1, . . . , dK)′ be the vector of allK possible distinct values in x = (x1, . . . , xn)′ and let
θ = (θ1, . . . , θK)′ be a vector of probabilities associated with d such that

p(xi = dk|θ) = θk, i = 1 . . . , n; k = 1, . . . ,K, (24)

and the sum of all probabilities equal one. If x is an i.i.d. sample from (24) and nk is the number of values in x equal to
dk , then the prior for θ under the Bayesian bootstrap is the so called Haldane prior (Haldane, 1932)

p (θ) ∝
K∏

k=1

θ−1k , (25)

and corresponds to the improper prior Dirichlet distribution Dir(α) with α = (0, . . . , 0). When this prior is combined
with a multinomial likelihood, it yields a posterior for θ which follows the Dirichlet distribution withα = (1, . . . , 1), that
is,

p(θ|x) ∝ p(x|θ)p(θ) (26)

∝
K∏

k=1

θnk

k

K∏
k=1

θ−1k

∝
K∏

k=1

θnk−1
k .

A BB prior distribution (using αi = 0.1) and a corresponding posterior distribution are plotted in Figure 4. As can be
seen, the prior mass is mostly placed over probabilities near zero and one. In the limit, as all αi → 0, there is zero mass
placed over θ’s for unobserved data. The posterior distribution places mass uniformly on [0, 1] which indicates that any
combination of θ’s for the observed values is equally likely.
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Figure 4 Ternary plots of the prior (left) and posterior (right) distributions for the parameter θ under the Bayesian
bootstrap for three observations.
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