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Abstract Histograms and Pearson’s coefficient of variation are among the most popular summary

statistics. Researchers use histograms to judge the shape of quantitative data distribution by vi-

sual inspection. The coefficient of variation is taken as an estimator of relative variability of these

data. We explore properties of histograms and coefficient of variation by examples in R, thus offer-

ing better alternatives: density plots and Eisenhauer’s relative dispersion coefficient. Hypothetical

examples developed in R are applied to create histograms and density plots, and to compute coeffi-

cient of variation and relative dispersion coefficient. These hypothetical examples clearly show that

these two traditional approaches are flawed. Histograms do not necessarily reflect the distribution

of probabilities and the Pearson’s coefficient of variation is not invariant with linear transforma-

tions and is not a measure of relative variability, for it is a ratio between a measure of absolute

variability (standard deviation) and a measure of central position (mean). Potential alternatives

are explained and applied for contrast. With the use of modern computers and R language it is easy

to apply density plots, which are able to approximate the theoretical probability distribution. In

addition, Eisenhauer’s relative dispersion coefficient is suggested as a suitable estimator of relative

variability, including sample size correction for lower and upper bounds.
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Introduction
Researchers frequently have to describe the distribution of

a quantitative variable. The usual approach is to build a

graph to better visualize the variable distribution shape.

Then, for communication, summary statistics are intended

to reflect data dispersion of a whole dataset. The most tra-

ditional graphic representation is a histogram (Wikipedia,

2021) and, amongst the measurements of relative variabil-

ity, the most used is the coefficient of variation, also known

as coefficient of variability and coefficient of relative vari-

ation (Martin & Gray, 1971), introduced by Pearson more

than one hundred and twenty years ago in his seminal pa-

per (Pearson, 1896). In this same paper, a density plot was

described with the name “variation curve”. Since its con-

struction required differential calculus, which was prac-

tically impossible at the time, Pearson himself mentioned

that polygons could be used in practice and that one should

always imagine an underlying continuous curve.

Nowadays, density plots could be widespread but, un-

til today, researchers adhere to versions of polygonal rep-

resentations such as histograms. Histograms are taken to

determine if a given distribution is normal or at least sym-

metrical, if it has a positive or negative asymmetry, or if

it has an unimodal or polimodal shape. Histograms are

graphs with bars in which the so-called continuous (mean-

ing at interval or ratio measurement level) variable of in-

terest is represented in the horizontal axis divided in arbi-

trary class intervals, called bins, and the bar heights cor-

respond to countings, frequency or density in the vertical
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axis (Boels, Bakker, Dooren, & Drijvers, 2019; Lakshmanan,

2014). To find the best bin width is a challenge, and many

rules are proposed, starting from what is known as the

Sturges’ rule (Scott, 2009), which is adopted as default by

R hist function. The correct way to represent a histogram
is to draw contiguous bars to show the continuity of the

variable of interest.

While density plots were technically impractical during

Pearson’s lifetime, the easy calculation of the coefficient

of variation was spread and taken as an estimator of rel-

ative variability. The drawback is that it did not seem to

be Pearson’s intention. Instead, he was dealing with asso-

ciated anthropometric measures and solving the problem

of comparison of variability in groups with different body

sizes, as is the case of females and males. Along the pro-

cess of group comparison, Pearson rewrote linear regres-

sions replacing the usual correlation coefficient with coef-

ficients of variation (CV ) by dividing each group standard
deviation by its respectivemean. Since both standard devi-

ation and mean have the same unit measure, CV becomes
devoid of unit measure, thus simplifying the calculation.

This application designed by Pearson was a mere artifice

to eliminate measure units for the solution of evolutionary

issues and not intended to develop an estimator of relative

variability.

In addition, the meaning of relative variability is taken

as an intuitive notion, therefore not clearly defined. In

the words of Lewontin (1966), “Systematists and quantita-

tive biologists in general are often interested in something

they call ‘relative variation’ or ‘intrinsic variation’ of some

character.” Similarly to this author, many other examples

are provided, with somewhat vague or completely absent

definition, such as “A variety of situations exist in socio-

logical research in which we are interested in the relative

dispersion of a dataset rather than in the particular val-

ues taken by the data.” (Martin & Gray, 1971). Heath and

Borowski (2013), who propose a non-parametric measure,

express that “The concept is generally considered intuitive,

and techniques for measuring variability are rarely given

a second thought, despite well established pathological is-

sues”.

Here we conceive relative variability as a coefficient

able to reflect the intrinsic variation of any data distri-

bution that could not be mislead by unit measures. For

instance, stature and total body mass are two anthropo-

metric measurements usually taken, respectively, in me-

ters and kilograms. Assume that human young males are

1.75 m tall with standard deviation of 0.10 m and weight

around 75 kg with standard deviation of 10 kg and one in-

tends to determine which phenomenon has higher intrin-

sic variability. Even worse is to think in terms of vari-

ance, which is standard deviation squared, respectivelly

calculated in this example as 0.01 m
2
(squared meters are

conceivable) and 100 kg
2
(which is confusing). It is clear

that standard deviation alone cannot answer this ques-

tion because it carries the original unit measures in such

a way that, being the numbers in kg an order of magni-

tude greater than that in m, weight has higher values of

standard deviation. Despite its name, standard deviation is

not a standardized measure; standard deviation and vari-

ance are absolute measures of variability. In order to com-

pare measurements of diverse phenomena a measure of

intrinsic relative variability, free of measurement units, is

required.

Among other issues, coefficient of variation has diffi-

cult interpretation, as mentioned by Kvålseth (2017), who

summarizes that

“[the coefficient of variation] (V) lacks a sim-

ple, intuitive, or meaningful interpretation im-

portant for assigning qualitative or commonly

understood meaning to values of V. The stan-

dard deviation, and hence V, consisting of

squaring and summing deviations and taking

the square root, ‘may appear a little artificial’

and, when compared to the mean deviation,

‘the standard deviation is so abstract that its

values are more difficult to interpret’.”

This paper is a brief communication to show that these

two traditional approaches are flawed. Contrary to the

general belief, histograms are not reliable for visual judge-

ment of a distribution shape and Pearson’s coefficient of

variation does not measure relative variability. We suggest

and justify, respectively, the use of density plots and Eisen-

hauer’s relative dispersion coefficient (Eisenhauer, 1993),

thus offering a definition of relative variability to distin-

guish it from the concept of variance.

Method
A series of hypothetical examples were developed to show

properties of histograms, density plots, coefficient of varia-

tion, and relative dispersion coefficient. All examples were

implemented in R and appear in appendices.

Results
Histograms and density plots
Histograms are designed to express occurrence countings

of a continuous quantitative variable in certain class inter-

vals (known as bins). For instance, if a collection of statures

(h, in centimeters) is

h = {162, 169, 172, 173, 175, 180, 185}

and bins are divided in 10 cm intervals, there are 2 in-
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Figure 1 Examples of histograms (A to E) and corresponding density plot (F). All figures were generated from the same

values of x={1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,9,9,10,10,11,11} (modified from Behrens and Yu, 2003).

Listing 1 R instructions to generate Figure 1.

x <- c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10,10,11,11)
hist(x, main = "A", breaks = seq( 0, 12, 1 ), freq = FALSE, ylim = c(0,0.25))
hist(x, main = "B", breaks = seq(-1.5, 12, 1.5), freq = FALSE, ylim = c(0,0.25))
hist(x, main = "C", breaks = seq(-0.5, 12, 1.5), freq = FALSE, ylim = c(0,0.25))
hist(x, main = "D", breaks = seq(-2.0, 12, 2.0), freq = FALSE, ylim = c(0,0.25))
hist(x, main = "E", breaks = seq(-2.0, 12, 1.9), freq = FALSE, ylim = c(0,0.25))
plot(density(x), main = "F", xlab = "x")

dividuals in the first (160 ≤ h < 170), 3 individuals in the
second (170 ≤ h < 180) and 2 others in the third interval
(180 ≤ h < 190) resulting in a histogram with three bars,
with respective absolute frequencies of 2, 3 and 2 or, al-

ternatively, expressed with relative frequencies of 28.6%,

42.8% and 28.6%, thus suggesting a symmetrical distribu-

tion.

To show what may be wrong, we recall an example

from Behrens and Yu (2003) in Figure 1.

All histograms in Figure 1 were obtained from xwhich
has symmetrical distribution with mean equals to 6, as

clearly shown by the density plot (Figure 1F). However, Fig-

ures 1B and 1C and Figures 1D and 1E are horizontal flips

of each other; 1B and 1C applied the same bin size (1.5)

and only the starting number was changed (-1.5 and -0.5,

respectively), while 1D and 1E started from the same num-

ber (-2.0) but differ by a small change in the bin size (2.0

and 1.9, respectively).

Histograms and density plots can be easily created. The

listing given in Listing 1 provides a small R script which

replicates Figure 1 (amore complete replication of Figure 1

is in the Appendix).

Another example creates histograms with a collection

of 800 hypothetical measures of cardiac frequency (Fig-

ure 2). Figure 2A is the default histogram generated by

R. The R documentation says that it applies Sturges’ for-

mula (Plan-Space, 2021) in which the number of classes is

k = dlog2ne+1 (brackets is ceiling function), which should
result in 11, but additional corrections seem to be per-

formed resulting in 14 bins, thus generating a histogram

with empty bins. Interestingly, the density plot in Figure 2F

suggests that the distribution is approximately normal, but

the choice of 6 bins produced an almost uniform distribu-

tion (2D)while the choice of 7 bins produced a right skewed

distribution (2B), this skewness disappears at 8 bins (2E),

and there is a discontinuity in the middle of the distribu-

tion at 9 bins (2C). The code to replicate Figure 2 is in the

Appendix.

Finally, it is arguable that density plots also depend

on parametrization, especially of kernel smoothing (which

creates a continuous line if there is discontinuity of data

values) and bandwidth (the analogous of bin width of his-

tograms) which would affect the curve shape. It is par-

tially true, but it is not as critical as it happens to be with

histograms, at least with the help of R functions. There is

some wisdom in R implementations and their defaults are
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Figure 2 Examples of histograms (A to E) and corresponding density plot (F) generated from 800 measurements of car-

diac frequency (beats per minute). Histogram in A is the R hist function default. To the density plot in F (solid line) it was
added mean (vertical line) and a normal distribution for reference (dashed line).

usually good choices. Even so, in Figure 3, lines were plot-

ted with all combinations of available smoothing kernels

and rules to choose bandwidth, showing that any subjec-

tive judgement of simmetry and general shape of data dis-

tribution would be barely affected.

Density plots and histograms: inferential statistics
The examples above show that histograms are more sensi-

tive to parameters than density plots. In order to join this

graph view with inferential statistics, some analytical tests

and bootstrapping applied on a single sample is shown in

the Appendix. The analytical tests (output in the appendix)

show evidence that this sample was obtained from heights

normally distributed in the population (which is the cor-

rect answer). The bootstrapping results are shown in Fig-

ures 4 and 5. Bootstrapping is a statistical method based on

resampling with reposition for robust estimation of confi-

dence intervals, which is independent of sample size and

variable distribution (Efron, 2007). Figure 4 shows the area

containing 95% of all simulated density plots, and Figure 5

shows the area containing 95% of all simulated frequency

polygons. In both cases the theoretical normal correspond-

ing to the population is inside these 95% intervals. The

analytical and bootstrapping tests are coherent (see ap-

pendix for details).

Pearson’s coefficient of variation and Eisenhauer’s rel-
ative dispersion coefficient
The main goal for relative variability coefficients is to as-

sess how disperse a given phenomenon is, especially when

it is interesting to compare groups subjected to different

conditions. Researchers have to know if the data spread is

large or small, for which the well known Pearson’s coeffi-

cient of variation is computed by

CV =
s

x̄

where s is the standard deviation and x̄ is the mean of the
a variable of interest.

Eisenhauer (1993) proposed another relative disper-

sion coefficient given by

CRD =
s

r/2

where r/2 is half of data range of a variable of interest.
Although it seems crude, Eisenhauer showed that

CRD is coherent with what should be expected from a

good measurement of relative dispersion. Since Eisen-

hauer’s original work may be obscured by mathematics,

here we intend to rescue, divulge and explore some conse-

quences of CRD.
His example is with temperatures recorded along 12

months in Celsius degrees

C = {6.7, 6.7, 7.8, 6.9, 13.2, 14.7,

18.3, 17.0, 15.1, 12.3, 7.2, 5.5}

converted to Fahrenheit by F = C ·1.8+32, thus resulting
in

F = {44.06, 44.06, 46.04, 44.42, 55.76, 58.46,

64.94, 62.60, 59.18, 54.14, 44.96, 41.90}
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Figure 3 Examples of density plots with several parametrizations using native density function available in R. The
total of 35 plotted gray lines resulted from the combination of one of the seven smoothing kernels available (gaussian,

epanechnikov, rectangular, triangular, biweight, cosine, and optcosine) and one of five rules to compute bandwidth with

functions provided by R documentation (bw.nrd0, bw.nrd, bw.ucv, bw.bcv, and bw.SJ). The thicker black line is the R
default of the density function (default is gaussian, bw.nrd0). Data are real values of statures of male students of admin-
istration collected for a class example in 2008.

The coefficients compute:

CVCelsius = 0.422

CVFahrenheit = 0.161

CRDCelsius = CRDFahrenheit = 0.722

It is observed that CV values are different after unit mea-
sure transformation.

Density plots and CRD

In order to assess any distribution, its shape and disper-

sion matter. The area below any probability distribution

function is 1 (or 100%) under the curve. By far, the most

famous of all probability distribution functions is the nor-

mal curve, illustrated in Figure 6. These are two hypothet-

ical distributions represented here only to make the point

that the greater the relative dispersion, the lower andmore

spreaded is the corresponding distribution.

In order to jointly illustrate the use of graphs and

coefficients of relative variability, we intend to know

which group has greater relative dispersion by observ-

ing the number of falls among elderly people stratified by

sex (Eisenhauer, 1993) in Figure 7.

It may be difficult to decide which group has greater

relative dispersion by the dot plots (Figure 7, left pan-

els) . Female values are more extreme, although in lesser

amounts. Male values are more concentrated but the cen-

tral values are smaller. Thus, coefficients may be handy

for this decision. In this trick example, however, mean

and standard deviation of both groups are equal (6.00

and 2.83, respectively), therefore, coincidental CV s can-
not help one’s decision. Ranges differ (female: 10, male: 6),

computing CRDfemales = 0.566 and CRDmales = 0.943.
Following the rule of Figure 6, CRD is coherent with the

respective density plots (Figure 7, right panels) since the

curve for males is lower and more spreaded than that of

females.

Another issue can be exposed by showing the density

plots of temperature distribution in Figure 8. Following

the same rule of Figure 6, the curve for Fahrenheit de-

grees is lower and more spreaded, thus the relative dis-

persion should be greater for Fahrenheit. Let us recall

that CVCelsius = 0.422, CVFahrenheit = 0.161, and
CRDCelsius = CRDFahrenheit = 0.722; therefore, CV
seems to be backwards and CRD is perhaps mistakenly

suggesting equal relative dispersions.

In order to removemeasure units andmake the correct

graph comparison, we must standardize both variables.

This known process is a simple subtraction of average and

division by standard deviation of all values to obtain corre-

sponding z-scores (which is a dimensionless number). As
such:

zCi =
Ci − C̄

sC

zFi
=

Fi − F̄

sF

where Ci and Fi are values in Celsius or Fahrenheit de-

grees, C̄ and F̄ are averages and sC are sF are standard
deviation of respective temperatures.

Figure 9 shows the two distributions of temperature af-

ter standardization, which are identical with equal relative
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Figure 4 Bootstrapping (100,000 resamplings) based on density plots. A simulated sample (n = 100) of stature measures
was obtained from a large population with mean=1.75 m and standard deviation=0.10 m. The thin dashed lines delimit

a HDI 95% band. Sample density plot appears in thick black line and coincides with the median of these intervals. Theo-

retical normal corresponding to the population appears in dashed gray line and is entirely inside the band. Left panel is

linear y-scale and right panel is log y-scale to assess curve tails.

Listing 2 Result of the correction for unequal group size

Group mean sd r n CV CVc CRD CRDc
Female 170.667 4.467 18.000 30.000 0.026 0.005 0.496 0.310
Male 177.800 11.302 43.000 10.000 0.064 0.021 0.526 0.093

dispersion, as predicted byCRD. It is to say thatCRD has
another advantage, obtaining the relative variability as if

the data were standardized, even when CRD is computed
with raw values.

Corrections for unequal group sizes
Figure 10 (data in the Appendix) shows yet other hypothet-

ical samples of women’s and men’s statures, in which the

sample sizes are unequal (30 women and 10men in this ex-

ample). It was already seen that visual inspection of abso-

lute values is not a proper assessment; in this case, it would

suggest greater relative dispersion for men (Figure 10, left

panel). It was also shown that visual inspection must ob-

serve distributions of standardized variables, now suggest-

ing greater relative dispersion for women (lower andmore

spreaded solid line in Figure 10, right panel). Thus, it is

necessary to verify which coefficient better reflects this in-

tuitive perception to analyze what is the meaning of rela-

tive variability.

Furthermore, there are corrections taking into account

datasets of different sizes, for which Kirby (1974)

CVc =
s/x̄√
n− 1

and Eisenhauer (1993)

CRDc =
2s/r −

√
2/(n− 1)√

n/(n− 1)−
√

2/(n− 1)

where CVc and CRDc are respective coefficients cor-

rected by sample sizes n. These corrections provide val-
ues ranging between 0 and 1, a much more convenient

number for researcher’s judgement of relative variability

amount. CV has upper bound
√
n− 1 and lower bound 0.

CRD has the upper bound
√
n/(n− 1) and lower bound√

2/(n− 1) expressed in the denominator.
For the current example it computes the output shown

in Listing 2.

Here, CV and CRD are numerically backwards, sug-

gesting greater relative variability for the male group.

However, the proposed correction for CVc could not fix its

measure and onlyCRDc corroborates our graphic percep-

tion of greater relative variability for the female group (in

this toy example these differences are not statistically sig-

nificant).

Discussion
Figure 1 illustrates some histogram problems. How can

one be sure of a distribution when a histogram may show

symmetrical or asymmetrical appearances or even flip the
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Figure 5 Bootstrapping (100,000 resamplings) based on histograms / polygonal curves. A simulated sample (n = 100)
of stature measures was obtained from a large population with mean=1.75 m and standard deviation=0.10 m. The thin

dashed lines delimit a HDI 95% band. Original polygonal curve appears in thick black line. Theoretical normal corre-

sponding to the population appears in dashed gray line and is entirely inside the band.
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bars’ order, only by changing bin sizes or the starting num-

ber to define the interval of classes? If one is not convinced

by this caricatural example because it is a particular case

with a small sample of values, Figure 2 shows similar be-

havior with 800 measurements. In essence, a histogram

is not trustworthy for it is too sensitive to small modifi-

cations of its parameters. Moreover, histograms cannot

be assumed as estimators of the probability density func-

tion. Histograms, however, remain popular among re-

searchers, being mistakenly recommended as means to as-

sess normality and to exclude outliers that may be disturb-

ing the analysis (Shreffler & Huecker, 2021) or as one of

the best approaches to exploratory data analysis (Nuzzo,

2019). Serious problems of histograms are often not rec-

ognized or addressed despite criticisms dating from 20

years ago (Farnsworth, 2000; Behrens & Yu, 2003). They

cannot be applied to assess normality, but many didacti-

cal books in basic statistics persist in showing histograms

without any criticism (Farnsworth, 2000). The final conclu-

sion of this last author emphasizes that “the examples of

this article (and indeed the experiences of many of us with

other data sets, real or simulated) show that any histogram

should be viewed with caution.”

In addition, there is the concept that a histogram can

be useful with the right parametrization, as stated in “Bin

width/bin number is a tuning parameter that should be

experimented with to find the right balance to allow in-

teresting features to emerge from the data” (Nuzzo, 2019).

Figure 6 Examples of two normal, hypothetical distributions. The areas under the curves are equal to 1. The left curve

has smaller standard deviation than the other curve. Therefore, the second curve exhibits a more spreaded shape and a

lower peak.
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Figure 7 Number of falls among elderly women and men. Left panels: stacked dot plots; right panels: density plots.

Modified from hypothetical data of Eisenhauer (1993).

However, the main problem with histograms is that they

are too sensitive to parametrization, which may unpre-

dictably change their shapes, thus a researcher cannot be

sure when he or she hits the right combination when ex-

ploring a new data set. Conversely, although density plots

depend mainly on several kernel functions available, this

parametrization hardly changes the shape perception of

the data distribution (Figure 3).

Finally, for the examples of Figures 1 and 2, which ap-

plied integer numbers, a possible solution could be to use

the smallest unit in the x-axis. However, for the measure-

ment of heights shown in Figure 3, which are provided as

fractionary numbers, the impossibility of definition of the

smallest unit make clear that this cannot be a general solu-

tion.

A special case can be found in questionnaires com-

posed by schemes of ranks such as Likert items. Each

item can be regarded as an ordinal variable (Jamieson,

2004), thus simple countings of responses of each rank

can be used to provide a graphic representation, which

is not a histogram. On the other hand, the summation of

responses from a collection of individual Likert items re-

sults in a Likert scale score that corresponds to an inter-

val variable (Carifio & Perla, 2008). Since these scores are

Figure 8 Density plots of temperature distributions in Celsius (dashed line) and Fahrenheit (solid line) degrees.
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Figure 9 Standardized density plots of temperature distributions in Celsius (left panel) and Fahrenheit (right panel)

degrees.

Figure 10 Density plots of female’s and male’s statures. Left panel: non-standard distributions; right panel: standard

distributions.

expressed as integers from questionnaires whose clinical

cutoffs are also integers established to classify patient’s sta-

tuses, one may argue that a histogram should be a more

convenient representation to separate groups with differ-

ent diagnoses. This is similar to the situation shown in Fig-

ure 2, in which cardiac frequency was expressed in inte-

gers. Histograms, therefore, are not a solution for there is

no guarantee that the cutoff will fall between bars and the

heights of histogrambarsmay be an illusion affected by the

bin sizes, while a dashed vertical line can always be plotted

on a density plot. Another argument is that the smooth-

ing of a density plot over integer values may be artificial

and perhaps disturbing but, as observed in Figure 2F, small

bumps are coincident with concentrations of repeated val-

ues. Consequently, these ocasional spikes should be seen

as a more reliable expression of data distribution of inte-

ger values, provided the researcher became used to them.

Still, it is not only the cutoff that concerns a researcher, but

also the observation of the general shape of a distribution

below and above any cutoff, for which histograms are not

a general solution.

One may argue that density plots impose difficulties to

their interpretation and that there are two prices to pay.

First, one needs a software able to compute its curve. The

counterargument is that there is no more excuse to avoid

them with modern computers. For instance, being all 800

values of heart frequency in the variable bpm, a single line

in R

plot(density(bpm))

replicates the probability density curve of Figure 2F.

The second issue is communication. R density func-
tion computes kernel density estimates, a non-parametric

way to estimate the probability density function of a ran-

dom variable. Readers must be aware that the values at

the ordinates (y axis) are not countings nor proportions,
rather the numbers computed to leave unity area under

the curve.
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On the other hand, it is documented that histograms

are falsely easy to interpret; there is plenty of studies show-

ing misinterpretations of histograms, even after educa-

tional attempts (Boels et al., 2019). It seems that arguing

in favor of better communication with histograms has no

unanimous support in the specialized literature.

Applied statistics must equally resort to the use of

graphs and calculations as it was long ago proposed

by Anscombe 1973, thus it is a surprising realization that

after almost five decades it seems not to be a consensus

among researchers. In some complex situations, graphs

are an essential tool to find patterns (Revell, Schliep,

Valderrama, & Richardson, 2018). On the grounds of de-

scriptive statistics, from which every analysis must begin,

some indexes can be necessary to corroborate researchers’

impressions. For that reason, in this text we have decided

to pair graph observations and coefficients of relative vari-

ability.

Graphs, therefore, are part of the analysis and not

a mere accessory. However, both histograms and den-

sity plots share a common weakness, for they are not in-

ferential statistics. They only portray the shape of data

from a given sample, the analogous of a mean point es-

timate without a confidence interval to include the true

population value (here replaced by a whole curve with an

interval band). Graphs alone can lead to confusion when

there is no adequate statistical context (Cook & Weisberg,

1999), are somewhat subjective, and should require in-

ferential statistics to support their better communication.

To link the current discussion with inferential procedures,

a R script is proposed (Figures 4 and 5, the Appendix)

to perform analytical and bootstrapping inferential tests,

in which density plots and histograms were successfully

tested. The initial seed was chosen to create a favorable

situation for the histograms for the sake of comparison. By

changing the initial seed (the Appendix) we observed that

density plots are weaker to establish interval estimates in

its extremes, performing better with bigger samples (not

shown). Histograms cannot be demonized since the esti-

mate from polygon-based bootstrapping was adequate to

test the underlying populational distribution, although be-

ing a less elegant procedure than that of density plots, in

addition to the arguable certainty that this polygon can

capture the general shape of the populational distribution

to start. There are better ways to build a starting polygon

of frequencies by essentially wiggling the initial value and

bin widths (Keating & Scott, 1999). We argue that it is a

convoluted process that ultimately represents an interpo-

lation of the histogram approaching the polygonal curve to

a density plot, thus it seems reasonable to prefer, and test

with, the latter.

Being density plots elected as a safest guide for one’s

intuition, Figure 7 shows that CRD is superior to CV to
reflect fall dispersion of elderly females andmales. Correc-

tions are not necessary for this example because the sam-

ple sizes are equal.

Figures 8 and 9 were designed to show that CV is mis-
leading with a mere linear transformation, falsely indicat-

ing greater relative variability of Celsius for the very same

measures in Fahrenheit. In order to study the temperature

phenomenon, a good relative dispersion coefficient should

not be influenced by the adoptedmeasurement unit. It was

shown thatCRD assesses variability of standardized vari-
ables, which makes sense; the intention is to compare vari-

ability in relative terms, therefore it seems reasonable to

get rid of measurement units and find a coefficient that be-

haves in agreement with standardized distributions. This

example of temperature is not a special case, except for a

linear transformation that involves a subtraction and a di-

vision. CV may behave correctly when only division (or
multiplication) is involved. Perhaps multiplicative cases

are more usual, thus leading to the persistence in the belief

thatCV measures relative variability. The point is that, for
this example, it does not (Eisenhauer, 1993).

Standardization, contrary to the beliefs and informa-

tion available in many statistical books, does not change

the distribution shape (compare Figures 8 and 9). It is writ-

ten elsewhere that standardization makes any distribution

normal or more symmetric (Sardanelli & Leo, 2009; Fung,

2019). This is false. A standard normal distribution uses

z-scores because it was obtained from a non-standard nor-
mal distribution. The reverse thinking, that any z-score
refers to a normal distribution, is the cause of such con-

fusion: any distribution can be standardized to remove

unit measure and be treated in z, preserving its original
shape. CRD is a measure of relative variability, reflect-

ing the dispersion of data in terms of standard deviations

normalized by range (Figure 9). However, standard devia-

tions and range change together in the same amount, thus

allowing comparison of datasets from different groups.

It is easy to understand what CV ’s problem is. Assume
a marksman hitting a target with rings scoring 12, 6 and

3 points (Figure 11A). Then, another marksman hits the

same places of another target of equal size at the same dis-

tance, with rings labeled as 10, 4 and 1 points (Figure 11B

with same values, subtracting 2). In two more cases, Fig-

ure 11C is threefold the values of 11A and 11D is 11C mi-

nus 2. The average of points for each target are 7, 5, 21

and 19 points, respectively, and the standard deviations

(an absolute measure of dispersion) are sdA = sdB =
4.58 points and sdC = sdD = 13.75 points. Consequently,
CVc provides three different values: CVcA = CVcC =
0.46, CVcB = 0.65, and CVcD = 0.51 (observe that CV
only preserves values when the transformation is multi-
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Figure 11 Target examples for the calculation of CVc and CRDc: three shots in the same positions with targets of the

same size but varying points. A: reference target; B=A-2; C=3A; D=3A-2.
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plicative). It contradicts the intuition since all marksmen

are equally skilled and their shots should have the same

relative dispersion. For all cases, Eisenhauer’s proposal

supplies CRDc = 0.08 (R script in the Appendix).
A possible cause for weirdness of CV is its mixing of

standard deviation (a variability measure) with mean (a

location measure). CRD, on the other hand, is a ratio
between standard deviation and range, both measures of

variability (which vary accordingly). CV has problems

with negative and positive values in the same dataset, it

lacks an upper bound, it is not meaningful, it is sensitive to

outliers and, in accordance with this example, is severely

affected by mean values (Kvålseth, 2017). There is a num-

ber of studies showing other CV problems because mean
and standard deviation do not change independently and,

therefore, the ratio between them cannot be used with-

out consequences (Bedeian & Mossholder, 2000; Sørensen,

2002; Pélabon, Hilde, Einum, & Gamelon, 2020). For in-

stance, if the variable distribution is chi-squared, then

CV is only function of the degrees of freedom (Ospina

& Marmolejo-Ramos, 2019) for mean is always equal and

variance is twice the degrees of freedom. Our example and

many others in the literature show thatCV is not always a
good measure of relative variability.

In fact, we dare say that CV does not measure relative
variability as generally accepted and we emphasize that

its creator was merely solving a regression problem, not

intending to create such a quantification (Pearson, 1896).

The inverse of CV (x̄/s), on the other hand, approaches z-
score, which has plenty of applications; z-score is a scaled
value minus the inverse of CV (zi = xi/s − 1/CV ).
If z-score is merely a scaling of a set of observed values,
which no one advocates as relative variability, its inverse

also should not be understood as such.

Finally, corrections provided by lower and upper

bounds seek to guarantee values for CVc and CRDc vary-

ing from 0 to 1 since it was shown that CV has an upper
bound of

√
n− 1 and a lower bound of 0 (Kirby, 1974). In

fact, Eisenhauer’s finding (1993) was somewhat expressed

by Kirby, who departed from standardized range, which is

twice the reciprocal of Eisenhauer’s CRDc and applies n
instead of n − 1. However, this correction does not solve
CV issues (e.g., example of Figure 10).
It is possible to show by simulation that the shape of
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distribution of CV is equal to the distribution of stan-

dard deviations of randomized data distorted by a certain

amount according to z-scores but preserving the original
mean, while CRD is stable and can compensate for these
distortions, thus always providing the same value.

In conclusion, a histogram, as traditional as it may be,

is misleading, and Pearson’s coefficient of variation is not

an estimator of relative variability. We support the use of

density plots and Eisenhauer’s coefficient of relative dis-

persion. Density plots are more stable to reflect data distri-

butions in agreement with CRDc, which in turn is robust

to linear transformations and is not mistaken for measure-

ment units, average bias, lack of standardization or sam-

ple sizes. These two descriptive approaches are coherent,

better tools to visualize statistical distributions and could

become the first choice in scientific publications.
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Pélabon, C., Hilde, C. H., Einum, S., & Gamelon, M. (2020).

On the use of the coefficient of variation to quan-

tify and compare trait variation. Evolution Letters, 4.
doi:10.1002/evl3.171

Plan-Space. (2021). How does r calculate histogram break
points? Accessed in December 22, 2021. Retrieved
from https://planspace.org/20141225-how%5C_does%

5C_r%5C_calculate%5C_histogram%5C_break%5C_

points/

Revell, L. J., Schliep, K., Valderrama, E., & Richardson, J. E.

(2018). Graphs in phylogenetic comparative analysis:

The Quantitative Methods for Psychology 1022

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.18.1.p091
https://dx.doi.org/10.1080/00031305.1973.10478966
https://dx.doi.org/10.1080/00031305.1973.10478966
https://dx.doi.org/10.1177/109442810033005
https://dx.doi.org/10.1177/109442810033005
https://dx.doi.org/10.1016/j.edurev.2019.100291
https://dx.doi.org/10.1016/j.edurev.2019.100291
https://dx.doi.org/10.1111/j.1365-2923.2008.03172.x
https://dx.doi.org/10.1080/00031305.1999.10474426
https://dx.doi.org/10.1214/aos/1176344552
https://dx.doi.org/10.1214/aos/1176344552
https://dx.doi.org/10.1111/j.1467-9639.1993.tb00263.x
https://dx.doi.org/10.1111/j.1467-9639.1993.tb00263.x
https://dx.doi.org/10.1111/1467-9639.00031
https://junkcharts.typepad.com/numbersruleyourworld/2019/11/
https://junkcharts.typepad.com/numbersruleyourworld/2019/11/
https://dx.doi.org/10.1371/journal.pone.0084074
https://dx.doi.org/10.1371/journal.pone.0084074
https://dx.doi.org/10.1111/j.1365-2929.2004.02012.x
https://dx.doi.org/10.1111/j.1365-2929.2004.02012.x
https://dx.doi.org/10.1029/WR010i002p00220
https://dx.doi.org/10.1029/WR010i002p00220
https://dx.doi.org/10.1080/02664763.2016.1174195
https://dx.doi.org/10.1007/s10557-014-6529-6
https://dx.doi.org/10.1007/s10557-014-6529-6
https://dx.doi.org/10.2307/sysbio/15.2.141
https://dx.doi.org/10.2307/sysbio/15.2.141
https://dx.doi.org/10.2307/2093089
https://dx.doi.org/10.1002/pmrj.12145
https://dx.doi.org/10.1002/pmrj.12145
https://dx.doi.org/10.3389/fams.2019.00043
https://dx.doi.org/10.3389/fams.2019.00043
https://dx.doi.org/10.1098/rsta.1896.0007
https://dx.doi.org/10.1098/rsta.1896.0007
https://dx.doi.org/10.1002/evl3.171
https://planspace.org/20141225-how%5C_does%5C_r%5C_calculate%5C_histogram%5C_break%5C_points/
https://planspace.org/20141225-how%5C_does%5C_r%5C_calculate%5C_histogram%5C_break%5C_points/
https://planspace.org/20141225-how%5C_does%5C_r%5C_calculate%5C_histogram%5C_break%5C_points/


¦ 2022 Vol. 18 no. 1

Anscombe’s quartet revisited.Methods in Ecology and
Evolution, 9. doi:10.1111/2041-210X.13067

Sardanelli, F., & Leo, G. D. (2009). Biostatistics for radiolo-
gists : Planning, performing, and writing a radiologic
study (Paperback). Springer.

Scott, D. W. (2009). Sturges’ rule.Wiley Interdisciplinary Re-
views: Computational Statistics, 1. doi:10.1002/wics.35

Shreffler, J., & Huecker, M. R. (2021). Exploratory data anal-
ysis: Frequencies, descriptive statistics, histograms,

and boxplots. Accessed October 26, 2021. Retrieved
from https://pubmed.ncbi.nlm.nih.gov/32491502/

Sørensen, J. B. (2002). The use and misuse of the coefficient

of variation in organizational demography research.

Sociological Methods and Research, 30. doi:10 . 1177 /
0049124102030004001

Wikipedia. (2021). Histogram. Accessed October 21, 2021.
Retrieved from https : / / en . wikipedia . org / wiki /

Histogram

Appendix: R scripts for the figures.
R script for Figure 1
This R script can replicate all histograms and the density plot shown in Figure 1. It is based on an example from Behrens

and Yu (2003). All histograms are generated from the same values of

x = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11}

layout(matrix(1:6,nrow=2,ncol=3))

x <- c(1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,9,9,10,10,11,11)

hist(x,main="A",breaks=seq( 0,12,1 ),freq=FALSE,ylim=c(0,0.25),axes=FALSE)
axis(2,las=1)
axis(1,at=seq( 0,12,1 ),las=2)

hist(x,main="D",breaks=seq(-2.0,12,2.0),freq=FALSE,ylim=c(0,0.25),axes=FALSE)
axis(2,las=1)
axis(1,at=seq(-2.0,12,2.0),las=2)

hist(x,main="B",breaks=seq(-1.5,12,1.5),freq=FALSE,ylim=c(0,0.25),axes=FALSE)
axis(2,las=1)
axis(1,at=seq(-1.5,12,1.5),las=2)

hist(x,main="E",breaks=seq(-2.0,12,1.9),freq=FALSE,ylim=c(0,0.25),axes=FALSE)
axis(2,las=1)
axis(1,at=seq(-2.0,12,1.9),las=2)

hist(x,main="C",breaks=seq(-0.5,12,1.5),freq=FALSE,ylim=c(0,0.25),axes=FALSE)
axis(2,las=1)
axis(1,at=seq(-0.5,12,1.5),las=2)

plot(density(x),main="F",xlab="x",axes=FALSE)
axis(2,las=1)
axis(1,at=seq(0,12,2),las=2)

par(mfrow=c(1,1))

R script for Figure 2
This R script can replicate all histograms and the density plot shown in Figure 2 from a collection of 800 hypothetical

measures of cardiac frequency (bpm).

layout(matrix(1:6,nrow=2,ncol=3))

bpm <- c(72, 74, 70, 70, 69, 71, 72, 71, 69, 74, 71, 71, 70, 73, 69, 68,
68, 71, 71, 72, 70, 69, 73, 69, 71, 70, 72, 73, 70, 72, 67, 72,
67, 68, 69, 72, 70, 70, 70, 71, 74, 67, 69, 71, 71, 73, 71, 71,
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70, 71, 69, 69, 68, 72, 70, 68, 70, 70, 72, 74, 71, 70, 69, 70,
70, 69, 68, 71, 70, 71, 72, 67, 70, 67, 70, 69, 72, 71, 71, 71,
71, 72, 71, 71, 67, 68, 73, 68, 71, 71, 71, 71, 69, 70, 68, 71,
70, 70, 68, 72, 67, 69, 74, 69, 71, 70, 73, 68, 69, 71, 71, 70,
71, 68, 71, 73, 68, 72, 70, 70, 71, 71, 72, 67, 72, 71, 71, 70,
69, 70, 68, 72, 71, 72, 70, 70, 70, 69, 70, 69, 72, 72, 72, 70,
67, 69, 72, 71, 71, 70, 72, 73, 70, 72, 73, 70, 69, 71, 67, 68,
72, 71, 68, 71, 70, 68, 70, 71, 68, 68, 69, 73, 71, 71, 74, 72,
70, 72, 70, 67, 69, 70, 68, 71, 72, 72, 69, 73, 68, 71, 68, 72,
69, 73, 73, 71, 71, 71, 68, 69, 69, 69, 73, 72, 71, 69, 72, 71,
72, 69, 67, 69, 71, 70, 73, 70, 69, 68, 71, 71, 70, 72, 69, 69,
70, 68, 72, 71, 68, 70, 70, 71, 70, 73, 70, 71, 70, 70, 71, 71,
67, 70, 70, 72, 70, 72, 71, 69, 72, 72, 74, 72, 70, 70, 70, 69,
70, 71, 71, 72, 69, 70, 71, 68, 71, 71, 68, 73, 69, 72, 69, 68,
69, 71, 72, 71, 73, 70, 74, 70, 71, 68, 71, 72, 69, 70, 71, 69,
70, 70, 69, 69, 68, 69, 70, 70, 69, 72, 68, 69, 71, 68, 67, 68,
72, 70, 70, 72, 74, 70, 68, 70, 73, 72, 68, 70, 74, 68, 73, 71,
69, 70, 68, 73, 70, 73, 68, 72, 70, 73, 72, 70, 69, 73, 73, 70,
70, 70, 70, 69, 67, 72, 70, 69, 71, 71, 71, 68, 71, 68, 68, 73,
72, 71, 71, 73, 71, 70, 70, 73, 74, 70, 68, 71, 72, 72, 72, 71,
70, 70, 73, 72, 72, 72, 72, 70, 71, 70, 69, 68, 70, 71, 72, 71,
72, 72, 71, 68, 67, 72, 73, 70, 71, 70, 72, 70, 69, 68, 69, 72,
71, 72, 70, 71, 74, 70, 73, 70, 71, 72, 68, 69, 71, 70, 68, 73,
71, 72, 70, 71, 71, 68, 71, 70, 71, 68, 73, 74, 69, 69, 70, 70,
68, 69, 68, 72, 69, 69, 71, 72, 71, 70, 71, 72, 68, 71, 71, 73,
68, 71, 72, 74, 72, 73, 67, 72, 73, 70, 73, 74, 69, 70, 68, 68,
70, 68, 71, 73, 67, 69, 72, 69, 72, 70, 72, 72, 68, 68, 68, 71,
72, 74, 68, 71, 69, 71, 71, 69, 72, 71, 73, 71, 70, 71, 68, 73,
70, 70, 69, 74, 67, 69, 74, 69, 72, 70, 71, 72, 70, 70, 71, 72,
68, 68, 69, 70, 72, 71, 71, 71, 68, 67, 72, 73, 69, 70, 69, 71,
72, 69, 72, 72, 73, 71, 71, 72, 72, 68, 69, 71, 70, 68, 71, 70,
72, 69, 68, 74, 67, 72, 72, 72, 71, 72, 73, 72, 74, 70, 69, 70,
68, 67, 72, 70, 69, 69, 72, 70, 70, 71, 71, 70, 68, 69, 69, 70,
72, 71, 67, 71, 70, 70, 71, 69, 73, 68, 69, 72, 73, 72, 70, 67,
72, 73, 70, 70, 72, 72, 72, 74, 69, 71, 70, 74, 74, 70, 74, 71,
70, 69, 69, 69, 67, 71, 71, 72, 71, 71, 72, 71, 71, 70, 68, 71,
70, 68, 71, 69, 69, 67, 72, 71, 69, 73, 67, 71, 74, 69, 70, 70,
67, 70, 73, 71, 68, 69, 71, 70, 70, 70, 72, 71, 72, 68, 70, 73,
72, 69, 69, 70, 71, 73, 72, 71, 68, 71, 70, 71, 73, 68, 67, 71,
69, 71, 70, 69, 71, 70, 70, 73, 69, 72, 68, 70, 71, 70, 70, 71,
70, 74, 68, 72, 68, 67, 70, 70, 71, 72, 71, 69, 71, 72, 71, 73,
70, 70, 69, 70, 70, 74, 70, 71, 71, 72, 72, 73, 74, 67, 71, 71,
68, 71, 68, 74, 68, 70, 70, 70, 71, 70, 69, 72, 68, 70, 68, 70,
70, 72, 69, 70, 67, 69, 71, 72, 69, 73, 68, 71, 69, 71, 72, 71,
70, 72, 69, 70, 70, 69, 71, 71, 69, 71, 69, 71, 70, 70, 69, 71,
71, 67, 72, 68, 73, 72, 70, 67, 72, 68, 69, 68, 68, 70, 72, 70,
71, 70, 68, 69, 68, 70, 68, 70, 71, 71, 68, 70, 68, 72, 70, 70)

hist(bpm, freq=FALSE, breaks = "Sturges",
main="A: R default", ylim=c(0,0.45),
xlab="Cardiac bpm", ylab="Relative frequency", col="darkgray")

bins <- seq(from=min(bpm),to=max(bpm),by=(max(bpm)-min(bpm))/6)
hist(bpm, freq=FALSE, breaks=bins,

main="D: 6 bins", ylim=c(0,0.45),
xlab="Cardiac bpm", ylab="Relative frequency", col="darkgray")

bins <- seq(from=min(bpm),to=max(bpm),by=(max(bpm)-min(bpm))/7)
hist(bpm, freq=FALSE, breaks=bins,

main="B: 7 bins", ylim=c(0,0.45),
xlab="Cardiac bpm", ylab="Relative frequency", col="darkgray")

bins <- seq(from=min(bpm),to=max(bpm),by=(max(bpm)-min(bpm))/8)
hist(bpm, freq=FALSE, breaks=bins,

main="E: 8 bins", ylim=c(0,0.45),
xlab="Cardiac bpm", ylab="Relative frequency", col="darkgray")
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bins <- seq(from=min(bpm),to=max(bpm),by=(max(bpm)-min(bpm))/9)
hist(bpm, freq=FALSE, breaks=bins,

main="C: 9 bins", ylim=c(0,0.45),
xlab="Cardiac bpm", ylab="Relative frequency", col="darkgray")

d <- density(bpm)
plot(d,

main="F: Density plot",
xlab="Cardiac bpm", ylab="Density",
axes=FALSE,
col="black", lwd=2)

axis(side=1)
axis(side=2)
m <- mean(bpm)
sd <- sd(bpm)
segments(m,0,m,max(d$y),lty=2)
y <- dnorm(d$x,m,sd)
lines(d$x,y,lty=2,lwd=1,col="black")

par(mfrow=c(1,1))

R script for Figures 4 and 5
The following R script simulates a sample of 100 stature values obtained from a large population with mean of 1.75 m

and standard deviation of 0.10 m. A textual output shows the results of some analytical tests:

• unimodality test applying diptest::dip.test,
• simmetry test applying lawstat::symmetry.test,
• tests applying fitdistrplus::fitdist and EnvStats::gofTest to verify possible adherence to the following distributions:
normal, gamma, log-normal, and t with 5 degrees of freedom.

The textual output results in:

-------------------
Unimodality test:

Hartigans’ dip test for unimodality / multimodality

data: heights
D = 0.029798, p-value = 0.8005
alternative hypothesis: non-unimodal, i.e., at least bimodal

-------------------
Simmetry test:

m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)

data: heights
Test statistic = -0.074365, p-value = 0.956
alternative hypothesis: the distribution is asymmetric.
sample estimates:
bootstrap optimal m

14

-------------------
Possible distributions:

Alternative: True cdf does not equal the
Normal Distribution. : p-value = 0.9876221

Alternative: True cdf does not equal the
Gamma Distribution. : p-value = >= 0.10

Alternative: True cdf does not equal the
Lognormal Distribution. : p-value = 0.8903768
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Alternative: True cdf does not equal the
Student’s t(df = 5, ncp = 0)
Distribution. : p-value = 0

Then, 100,000 resamplings are performed, creating density plots and polygon plots (equal to histograms) from which

the high density intervals (HDI) of 95% are computed. The resulting graphs are shown in Figure 4 (density plot-based

bootstrapping) and Figure 5 (histogram-based bootstrapping). The initial random seedwas set to recreate the exact Figure

shown here, but other experiments can be tried with different seeds and other bootstrapping sizes (B). In the current

example these tests show evidence that the population distribution is unimodal, symmetric and could be normal, gamma

or log-normal. Since gamma and log-normal are both asymmetric and t distribution null hypothesis was rejected, by

exclusion, the analytical tests suggest that this sample was obtained from heights normally distributed in the population

(which is the correct answer). The bootstrapping procedures are coherent for they show the theoretical normal inside

the HDI 95% bands for the density plots and histograms-based simulations. This seed was convenient to generate a well-

behaved sample. Other seeds may create samples showing small parts of the theoretical normal not contained inside the

bands.

This is the R script:

# s <- round(runif(1)*1000)
# cat("\nseed:",s,"\n")
# set.seed(s)
set.seed(1)

B <- 1e5
n <- 100
mean <- 1.75
sd <- 0.10

# sample
heights <- rnorm(n,mean,sd)

cat("\n----------------------")
cat("\nAnalytical tests")
cat("\n----------------------\n")

cat("\n-------------------\nUnimodality test:\n")
print(test.uni <- diptest::dip.test(heights))

cat("\n-------------------\nSimmetry test:\n")
print(test.sym <- lawstat::symmetry.test(heights))

cat("\n-------------------\nPossible distributions:\n\n")
fit_norm <- fitdistrplus::fitdist(heights, "norm")
gof.norm <- EnvStats::gofTest(heights, distribution ="norm")
cat("Alternative:",gof.norm$alternative,": p-value = ",

gof.norm$p.value,"\n")
fit_gamma<- fitdistrplus::fitdist(heights, "gamma")
gof.gamma <- EnvStats::gofTest(heights, distribution ="gamma",

test="proucl.ad.gamma" )
cat("Alternative:",gof.gamma$alternative,": p-value = ",

gof.gamma$p.value,"\n")
fit_lnorm <- fitdistrplus::fitdist(heights, "lnorm")
gof.lnorm <- EnvStats::gofTest(heights, distribution ="lnorm")
cat("Alternative:",gof.lnorm$alternative,": p-value = ",

gof.lnorm$p.value,"\n")
gof.t5 <- EnvStats::gofTest(heights, distribution = "t",

param.list=list(df=5),
test="chisq")

cat("Alternative:",gof.t5$alternative,": p-value = ",gof.t5$p.value,"\n")

cat("\n----------------------")
cat("\nComputing bootstrapping with ",B," resamples")
cat("\n----------------------\n")
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minx <- mean(heights)-3*sd(heights)
maxx <- mean(heights)+3*sd(heights)
columns <- 200
dt_densplot <- data.frame(matrix(ncol=columns,nrow=0))
for (b in 1:B)
{

if (b%%1000==0)
{
cat(".")

}
x2 <- sample(heights,length(heights),replace=TRUE)
dens <- density(x2,n=columns,from=minx,to=maxx)
if (b==1)
{
namesdens <- dens$x
names(dt_densplot) <- namesdens

}
dt_tmp <- data.frame(matrix(data=dens$y,ncol=columns,nrow=1))
names(dt_tmp) <- namesdens
dt_densplot <- rbind(dt_densplot,dt_tmp)

}
# HDI computation
dt_ic95dens <- data.frame(as.numeric(namesdens))
names(dt_ic95dens) <- "x"
dt_ic95dens$median <- NA
dt_ic95dens$hdiLL <- NA
dt_ic95dens$hdiUL <- NA
dt_ic95dens$normal <- dnorm(dt_ic95dens$x,mean=1.75,sd=0.10)
for (c.aux in 1:nrow(dt_ic95dens))
{

column <- which(names(dt_densplot)==dt_ic95dens$x[c.aux])
y <- as.numeric(unlist(dt_densplot[column]))
dt_ic95dens$median[c.aux] <- median(y)
hint <- HDInterval::hdi(y,credMass=0.95)[1:2]
dt_ic95dens$hdiLL[c.aux] <- hint[1]
dt_ic95dens$hdiUL[c.aux] <- hint[2]

}
maxy <- max(dt_ic95dens[,2:4])
dens <- density(heights,n=columns,from=minx,to=maxx)

testnames <- c("p(uni)",
"p(sym)",
"p(norm)",
"p(gamma)",
"p(lnorm)",
"p(t(5))"
)

p.values <- c(test.uni$p.value,
test.sym$p.value,
gof.norm$p.value,
gof.gamma$p.value,
gof.lnorm$p.value,
gof.t5$p.value)

p.values.txt <- as.character(round(as.numeric(p.values),3))
for (p.aux in 1:length(p.values.txt))
{

txt <- FALSE
if (is.na(p.values.txt[p.aux]))
{
p.values.txt[p.aux] <- paste0(testnames[p.aux],p.values[p.aux])
txt <- TRUE

}
if (p.values.txt[p.aux]=="0")
{
p.values.txt[p.aux] <- paste0(testnames[p.aux],"<0.001")
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txt <- TRUE
}
if(!txt)
{
p.values.txt[p.aux] <- paste0(testnames[p.aux],"=",p.values.txt[p.aux])

}
}

# pdf("../figures/fig_inferential_density.pdf", width=14, height=6)

layout(matrix(1:2,nrow=1,ncol=2))

plot(dens,
main="",
xlab="Height (m)", ylab="",
cex.lab=1.7,
lwd=4,ylim=c(0,maxy),
axes=FALSE)

title(ylab="Density", line=2.5, cex.lab=1.7)
axis(1, cex.axis=1.5)
axis(2, cex.axis=1.5)
# lines(dt_ic95dens$x,dt_ic95dens$median,lwd=3,col="white")
# lines(dt_ic95dens$x,dt_ic95dens$median,lwd=1.5,col="blue")
lines(dt_ic95dens$x,dt_ic95dens$hdiLL,col="black",lty=2)
lines(dt_ic95dens$x,dt_ic95dens$hdiUL,col="black",lty=2)
lines(dt_ic95dens$x,dt_ic95dens$normal,col="darkgray",lty=2,lwd=3)
legend ("topleft",

p.values.txt,
lty=0,
lwd=0,
cex=1.2, bty="n", bg="transparent")

plot(dens,
main="",
xlab="Height (m)",ylab="",
cex.lab=1.7,
lwd=4,ylim=c(1e-3,maxy),log="y",
axes=FALSE)

title(ylab="log (Density)", line=2.5, cex.lab=1.7)
axis(1, cex.axis=1.5)
axis(2, cex.axis=1.5)
# lines(dt_ic95dens$x,dt_ic95dens$median,lwd=3,col="white")
# lines(dt_ic95dens$x,dt_ic95dens$median,lwd=1.5,col="blue")
lines(dt_ic95dens$x,dt_ic95dens$hdiLL,col="black",lty=2)
lines(dt_ic95dens$x,dt_ic95dens$hdiUL,col="black",lty=2)
lines(dt_ic95dens$x,dt_ic95dens$normal,col="darkgray",lty=2,lwd=3)
legend ("topright",

c("density", "HDI 95%", "normal"),
lty=c(1,2,2),
lwd=c(4,1,3),
col=c("black","black","darkgray"),
cex=1.2, bty="n", bg="transparent")

par(mfrow=c(1,1))

# dev.off()

h.org <- hist(heights, breaks = "Sturges", plot=FALSE)
columns <- length(h.org$mids)
dt_histplot <- data.frame(matrix(ncol=columns,nrow=0))
for (b in 1:B)
{

if (b%%1000==0)
{
cat(".")

}
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x2 <- sample(heights,length(heights),replace=TRUE)
h <- hist(x2, breaks=h.org$breaks, plot=FALSE)
if (b==1)
{
nameshist <- h$mids
names(dt_histplot) <- nameshist

}
dt_tmp <- data.frame(matrix(data=h$density,ncol=columns,nrow=1))
names(dt_tmp) <- nameshist
dt_histplot <- rbind(dt_histplot,dt_tmp)

}
# HDI computation
dt_ic95hist <- data.frame(as.numeric(nameshist))
names(dt_ic95hist) <- "x"
dt_ic95hist$median <- NA
dt_ic95hist$hdiLL <- NA
dt_ic95hist$hdiUL <- NA
nx <- seq(min(heights),max(heights),length.out=1000)
ny <- dnorm(nx,mean=1.75,sd=0.10)
for (c.aux in 1:nrow(dt_ic95hist))
{

column <- which(names(dt_histplot)==dt_ic95hist$x[c.aux])
y <- as.numeric(unlist(dt_histplot[column]))
dt_ic95hist$median[c.aux] <- median(y)
hint <- HDInterval::hdi(y,credMass=0.95)[1:2]
dt_ic95hist$hdiLL[c.aux] <- hint[1]
dt_ic95hist$hdiUL[c.aux] <- hint[2]

}

# pdf("../figures/fig_inferential_histogram.pdf", width=7, height=6)

h <- hist(heights, breaks = h.org$breaks, plot=FALSE)
maxy <- max(dt_ic95hist[,2:4])
h <- hist(heights, freq=FALSE,

breaks = h.org$breaks,
ylim=c(0,maxy),
main="Statures of male administration students",
xlab="Height (m)", ylab="",
cex.lab=1.7, col="white",
axes=FALSE)

title(ylab="log (Density)", line=2.5, cex.lab=1.7)
axis(1, cex.axis=1.5)
axis(2, cex.axis=1.5)
lines(h$mids,h$density,lwd=4)
points(h$mids,h$density,pch=21,col="black",bg="black")
# lines(dt_ic95hist$x,dt_ic95hist$median,lwd=3,col="white")
# lines(dt_ic95hist$x,dt_ic95hist$median,lwd=1.5,col="blue")
lines(dt_ic95hist$x,dt_ic95hist$hdiLL,col="black",lty=2)
lines(dt_ic95hist$x,dt_ic95hist$hdiUL,col="black",lty=2)
lines(nx,ny,col="darkgray",lty=2,lwd=3)
legend ("topright",

c("density", "HDI 95%", "normal"),
lty=c(1,2,2),
lwd=c(4,1,3),
col=c("black","black","darkgray"),
cex=1.2, bty="n", bg="transparent")

# dev.off()

# openxlsx::write.xlsx(dt_ic95dens,"simulated_dens.xlsx")
# openxlsx::write.xlsx(dt_ic95hist,"simulated_hist.xlsx")

cat("\n")
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R script for Figure 10
This R script can replicate Figure 10 from hypothetical sample data (statures in cm) from two groups (males and females),

showing the density plots obtained from absolute and standardized values.

layout(matrix(1:2,nrow=1,ncol=2))

Male <- c(154, 171, 175, 172, 179, 186, 185, 180, 179, 197)
Female <- c(166, 174, 166, 169, 173, 171, 174, 180, 175, 168,

168, 171, 169, 170, 172, 170, 162, 168, 172, 171,
169, 175, 163, 179, 163, 177, 173, 175, 171, 166)

nM <- length(Male)
nF <- length(Female)
for (g in 1:2)
{

if (g==1)
{
dFem <- density(Female)
dMasc <- density(Male)

}
if (g==2)
{
dFem <- density(scale(Female))
dMasc <- density(scale(Male))

}
xmin <- min(dFem$x, dMasc$x)
xmax <- max(dFem$x, dMasc$x)
ymin <- min(dFem$y, dMasc$y)
ymax <- max(dFem$y, dMasc$y)
plot(dFem, main="",

xlim=c(xmin,xmax),
ylim=c(ymin,ymax*1.5),
xlab=ifelse(g==1,"Stature (cm)","z score"), axes=FALSE)

axis(1)
axis(2)
lines(dMasc,lty=2)
if (g==1)
{
rug(jitter(Female),side=3)
rug(jitter(Male),side=1)

}
if (g==2)
{
legend("topright",c("M (n=10)","F (n=30)"),

cex=0.8, lty=c(2,1), box.lwd=0, bg="transparent")
}

}

par(mfrow=c(1,1))

R script for Figure 11
This R script compute mean, standard deviation, range, CV , CVc, CRD, and CRDc using the values of Figure 11.

t.org <- c(12,6,3)
target <- list()
target <- c(target,list(t.org))
target <- c(target,list(t.org-2))
target <- c(target,list(t.org*3))
target <- c(target,list(t.org*3-2))
# pdf("fig_densitytargets.pdf",width=6,height=5)
layout(matrix(1:4,nrow=2,ncol=2,byrow=TRUE))
for (t in 1:length(target))
{
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m <- mean(target[[t]])
s <- sd(target[[t]])
r <- max(target[[t]])-min(target[[t]])
n <- length(target[[t]])
CV <- s/m
CRD <- 2*s/r
CVc <- (s/m)/sqrt(n-1)
CRDc <- (2*s/r - sqrt(2/(n-1)))/(sqrt(n/(n-1))-sqrt(2/(n-1)))
cat("\nTarget",intToUtf8(64+t),"-",target[[t]],"\n")
cat("\tmean = ",m,"\n",sep="")
cat("\ts.d. = ",s,"\n",sep="")
cat("\trange = ",r,"\n",sep="")
cat("\tn = ",n,"\n",sep="")
cat("\tCV = ",CV,"\n",sep="")
cat("\tCVc = ",CVc,"\n",sep="")
cat("\tCRD = ",CRD,"\n",sep="")
cat("\tCRDc = ",CRDc,"\n",sep="")
d <- density(target[[t]])
plot(d, main=paste0("Target ",t),

xlab="Ring values", axes=FALSE)
axis(1, labels=target[[t]], at=target[[t]])
axis(2)

}
par(mfrow=c(1,1))
# dev.off()

Open practices
The Open Data badge was earned because the data of the experiment(s) are available on the journal’s web site.
The Open Material badge was earned because supplementary material(s) are available on the journal’s web site.
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