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Abstract Interpretation of complex effects and models can be one of the most challenging and

important aspects of quantitative data analysis. The present study tackles this issue for moderation

effects, including random slope effects, for multilevel models. To demonstrate the generalization

of these procedures beyond the basic multilevel model, the multilevel logistic regression model is

used. Amoderation effect may be useful when a researcher would like to assess how a particular re-

lationship differs for different groups or different levels of a moderator variable. When the moder-

ator under consideration is a random effect, a random slope model arises. The random slope model

has various applications; for example, when observations are nested within individuals comprising

a longitudinal design, a random slopes model can be used to assess individual growth trajectories

for the subjects in the study. However, these useful effects may be particularly difficult to interpret

substantively. Therefore, the present study suggests a method combining the traditional aspects of

plotting moderation effects with quantities of interest (QI) computation. Specific suggestions and

examples, including R syntax, for associated data visualizations are provided.
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Introduction

Interpreting results and creating appropriate data visu-

alizations is an important, but often overlooked, part of

the quantitative data analysis process. Although guidance

is available for applied researchers interpreting many of

the more common quantitative models, it is often unclear

how to do so for more complex effects and models. The

present contribution addresses this gap by suggesting a

novel combination of procedures and data visualizations

to interpret moderation effects and random slopes in mul-

tilevel models. Although these procedures are first demon-

strated through a multilevel regression model, they gen-

eralize easily to more complex models; to demonstrate

this point, the procedure is then shown with the multi-

level logistic regression model for binary outcomes. The

present study contributes to the literature by offering con-

crete steps and examples for interpretation of moderation

in complex multilevel models; in addition, there is very lit-

tle literature available to aid researchers in interpreting

random slopes effects and the present study fills this gap.

Multilevel Models

It is common for data to be nested or clustered, such as

when subjects are nested within neighborhoods or obser-

vations are nested within subjects (i.e. longitudinal data).

Ignoring this type of nesting can result in severely inflated

Type I error rates (Snijders & Bosker, 2012) and is not rec-

ommended. Instead, this type of nested data is ideal for

analysis with the multilevel model because predictors can

be included at all levels within the model. For example,

if students are nested within schools, both student-level

and school-level predictors can be added. The multilevel

model is similar to the regression model, but with the addi-

tion of a random effect which allows the outcome to vary

randomly by group membership. The model is described

in more detail below, but for readers unfamiliar with the

multilevel model, there are several helpful introductory

sources including tutorials (see, for example: Kahn, 2011;

Reise & Duan, 1999; Woltman, Feldstain, MacKay, & Rocchi,
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2012) and texts (see, for example: Snijders & Bosker, 2012).

Moderation and Random Slope Effects

Moderation effects exist when a given relationship varies

as a function of a third, moderator variable. Consider a

hypothetical example: perhaps the relationship between

studying habits and academic achievement is moderated

by a student’s level of anxiety such that students with high

anxiety benefit less from studying than students with low

anxiety. In other words, the relationship between studying

and achievement is stronger for students with low anxiety.

Although the scenario just described is hypothetical, this

description serves to demonstrate the nuanced and help-

ful findings possible by examining moderation effects. The

multilevel model with a level-onemoderation effect is (Sni-

jders & Bosker, 2012):

Yij = β0 + β1 ×Xij + β2 ×Mij + β3 ×XijMij + u0j + eij

V ar(u0j) = τ20

V ar(eij) = σ2

Cov(u0j , eij) = 0

(1)

where i represents the level-one unit which is the indi-
vidual; j represents the level-two unit which is the group
membership (e.g., school, hospital, etc.); Y represents the
continuous outcome measure; β0 is the intercept, all other
β are slope coefficients, X is the independent variable,

M is the moderator variable, u0j is the level-two random
effect distributed with mean of zero and estimated vari-

ance τ20 ; and eij is the level-one random effect distributed
with mean of zero and estimated variance σ2

. The inter-

action effect is represented by the product term X times

M , and although both variables are measured at level-one
in the present specification, more generally, the product

term may be constructed as the product of two level-one

variables, two level-two variables or the combination of a

level-one and level-two variable.

Continuing the example just provided, the outcome

measure, academic achievement would be represented by

Y in Equation 1; the independent variable, studying habits,
would be represented by X ; and the moderator variable,
anxiety, would be represented byM .
The significance of the moderation effect can be as-

sessed with a t-test on β3 (Aiken & West, 1991). If the
moderation is significant, the result should be plotted

since there is no other consistent way to ascertain the

nature of the effect (Aiken & West, 1991); however, if

the moderation effect is not significant, researchers must

carefully assess the situation since a non-significant ef-

fect can be the result of no true effect or low power (i.e.

Type II error; Lorah, 2020). Research recommends con-

ducting power analyses for the interaction effect prior to

analysis, mean-centering predictors, considering a main-

effects-only model, and considering information criteria

approaches to guard against the possibility of misleading

interpretation when the moderation effect is not signifi-

cant (Lorah, 2020).

In addition to fixed-effect interaction effects, the mul-

tilevel regression model also allows for an interaction be-

tween a fixed and random effect; this is also referred to

as the random slopes model (Lorah, 2018). For exam-

ple, imagine an investigation of a sample of high school

students nested within schools. The categorical vari-

able, school membership, represents the random effect.

Perhaps this investigation considers a moderation effect

whereby the relationship between a student’s studying

habits and their academic achievement is moderated by

school membership. Notice that this simply represents a

moderation effect between a fixed effect (studying habits)

and a random effect (school membership), which is also

known as a random slope effect. This hypothetical ran-

dom slope effect could be used to demonstrate whether

or not the relationship between studying habits and aca-

demic achievement is different in different schools. The

multilevel model with a random slope effect is (Snijders &

Bosker, 2012):
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Yij = β0 + β1 ×Xij + u0j + u1j ×Xij + eij

V ar(u0j) = τ20

V ar(u1j) = τ21

Cov(u0j , u1j) = τ01

V ar(eij) = σ2

Cov(u0j , eij) = 0

Cov(u1j , eij) = 0

(2)

where all notation is consistent with Equation 1 and u1j
represent level-two residuals.

Multilevel Logistic Regression Models

Procedures suggested in the present study generalize be-

yond the multilevel model to more complex models: this

will be demonstrated with the multilevel logistic regres-

sion model, which is appropriate for nested data with a

binary outcome, such as whether or not a student gradu-

ated from high school. This model uses the logit, or log-

odds, of the probability of the binary outcome taking on

a value of one versus zero (Snijders & Bosker, 2012). Al-

though many researchers interpret the results of logistic

regression models by computing the odds and interpreting

this quantity, methodologists point to the difficulty in truly

conceptualizing the scope of an effect through presenta-

tion of odds (Long, 1997). For this reason, researchers are

recommended to use predicted probabilities (Long, 1997)

to interpret model results, and that is the method used in

the current study.

Multilevel Logistic Regression with Moderation and
Random Slopes

The multilevel logistic regression model with a fixed effect

interaction at level-one can be specified as follows (Sni-

jders & Bosker, 2012):

logit(pij) = β0 + β1 ×Xij + β2 ×Mij + β3 ×XijMij + u0j

where logit (p) = ln

(
p

1− p

)
V ar(u0j) = τ20

(3)

where all notation is consistent with Equation 1 and p
represents the probability of the binary outcome variable

taking on a value of one (versus zero, assuming dummy-

coding). If the outcome beingmodeledwas a binary indica-

tor of whether a student graduated high school or not, then

p in Equation 3 would represent the probability that the
given student graduates high school. Note that the param-

eter eij (individual-level residual) is no longer needed in

Equation 3 (or in Equation 4, shown below) since the prob-

ability (p) of an outcome is being modeled, represented as
an aggregate across participants, rather than the outcome

value itself.

The multilevel logistic regression model can also be es-

timated with a random slope effect and this model is spec-

ified as follows (Snijders & Bosker, 2012):
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logit(pij) = β0 + β1 ×Xij + u0j + u1j ×Xij

where logit (p) = ln

(
p

1− p

)
V ar(u0j) = τ20

V ar(u1j) = τ21

Cov(u0j , u1j) = τ01

(4)

where all notation is consistent with Equations 1 and 2.

Interpretation of Moderation and Random Slopes Ef-
fects

Interpreting moderation and random slopes effects can be

difficult. Typically, to interpret moderation effects, the

simple slopes approach is recommended (Aiken & West,

1991) and involves plotting the relationship between the

independent and dependent variables for certain discrete

values of the moderator variable. This is essentially a

process of computing quantities of interest (QI; Carsey &

Harden, 2014) since the procedure involves computing

model-based predictions of a relevant outcome or QI. The

choice of specific values for the moderator variable is arbi-

trary, but for a categorical moderator, each category may

be plotted and for a continuous moderator, often the mean

(or median) and one standard deviation above and below

the mean are used. The literature provides detailed de-

scriptions of implementing this approach in the multiple

regressionmodel (for example, see Aiken &West, 1991; Jac-

card, Turrisi, & Wan, 1990; Jose, 2013; Lorah &Wong, 2018;

Lorah &Miksza, 2019) including R code for doing so (Caron,

Valois, & Gellen-Kamel, 2020), but it may be unclear how

to generalize this approach for more complicated models,

such as the multilevel model or a logistic regression model

for binary outcomes or to more complicated effects, such

as the random slope effect.

In particular, there is very little literature available to

aid the researcher in interpreting random slopes effects.

The available literature indicates that the effect may be in-

terpreted by using τ21 to indicate the hypothetical value for
specific random slopes, for example, the range in which

95% of the slopes are expected to fall (Lorah, 2018). Al-

though this may be helpful, it may still be difficult for the

reader to gain a sense of the scope of the effect with this in-

terpretation; therefore, the present study builds on this by

suggesting a method for plotting these effects by generaliz-

ing the simple slopes procedure to additional models and

effects.

In order to implement the simple slopes procedure gen-

erally, the researcher will need a way to choose specific,

relevant values of the moderator variable and the model

prediction equation. For example, based on the multilevel

model provided in Equation 1, the prediction equation can

be used to compute predicted values for the outcome, Y :

Yij = β0 +β1 ×Xij +β2 ×Mij +β3 ×XijMij +u0j (5)

where variables are consistent with those defined in Equa-

tion 1 and predicted values of Y represent the QI for this
model. The regression coefficients (the β terms) will be
obtained after estimation, and the values for the predic-

tor variables (X and M , in this case) can be chosen sub-
stantively. The random effect (u0j) is centered around zero
with estimated variance (τ20 ) and so a value of zero would
represent themean level two unit; or a relevant value from

the distribution can be chosen. If additional control vari-

ables are included in the model, a relevant value, such as

the mean, can be chosen. In this way, a predicted value

for Y can be computed for any relevant combination of
predictor variables. This prediction equation can also be

used to create a plot for interpretation of moderation by

substituting a specific value forM and plotting the result-

ing curves (see below for a demonstration), which is also

referred to as the simple slopes procedure.

For the multilevel logistic regression, the prediction

equation is a bit more complicated and can be derived by

solving for p in Equation 3 (Snijders & Bosker, 2012):

p =
eβ0+β1×Xij+β2×Mij+β3×Xij×Mij+u0j

1 + eβ0+β1×Xij+β2×Mij+β3×Xij×Mij+u0j
(6)
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where variables are consistent with those defined in Equa-

tion 1 and the value of p, or the predicted probably of an
event occurring, represents the QI for this model. Simi-

larly, after substituting back in the values of the parameter

estimates based on the model results (β0 − β3), this equa-
tion can be used to compute predicted probabilities (val-

ues of p) for model interpretation. In other words, the pre-
dicted probability represents the probability of success (i.e.

Y = 1) on the outcome variable, given specific values for
the predictor variables (i.e. X andM ). Note that this idea
of providing model-predicted values is a very general and

useful tool for model interpretation that can be applied to

many models.

Research Questions

1. How can the moderation effects within a multilevel

model and multilevel logistic regression model be in-

terpreted substantively through appropriate data visu-

alization?

2. How can the results from research question 1 be gen-

eralized more broadly to more complex effects, such as

the random slopes effect?

Methods

In order to demonstrate interpretation of interaction and

random slopes effects in the multilevel regression model,

hypothetical data are generated and analyzed. Hypotheti-

cal data are used rather than real data so that the reader

can easily replicate the analysis and demonstration and

because the demonstration is not intended to provide any

sort of substantive conclusions, simulated data precludes

any attempt to do so.

Data are simulated for four models: the multilevel

regression with moderation (Equation 1); the multilevel

model with random slopes (Equation 2); the multilevel lo-

gistic regression with moderation (Equation 3); and the

multilevel logistic regression with random slopes (Equa-

tion 4).

For moderation models, data are simulated according

to Equations 1 and 3 with the following properties: total

sample size = 200; number of groups (level-2 units) = 20;

β0 = β1 = β2 = .3; β3 = .2; τ0 = σ = .5; X is nor-

mally distributed with mean 0 and standard deviation 1;

and M is binary with p = .5. In the example interpreta-
tions that follow, X will represent studying habits, where

higher values indicate better studying habits; M will rep-

resent anxiety measured with two categories: low anxiety

and high anxiety; and the outcome measure, Y , will repre-
sent academic achievement where higher values indicate

higher achievement. Note that althoughX is simulated ac-
cording to the normal distribution, real data may not ap-

proximate the normal distribution as precisely, which can

impact results. Data were generated using R (R Core Team,

2021) and models were estimated with the glmer() func-
tion from the lme4 package (Bates, Maechler, Bolker, &

Walker, 2015). All R syntax is included in the appendix.

For the random slopes effect, data are simulated according

to Equations 2 and 4. All quantities are the same as for

the interaction plots, with a few differences. For the multi-

level model with random slopes, number of groups (level-2

units) = 10; β1 = 5; and τ0 = τ1 = σ = 2. For the mul-
tilevel logistic regression with random slopes, number of

groups (level-2 units) = 10; β0 = β1 = 1; and τ0 = τ1 = 1.5.
Otherwise, the process is identical.

For interpretation of model results, providing a mea-

sure of effect size, in addition to the visualizations, is help-

ful. For this purpose, R2
is computed for each of the four

models using the MuMIn package (Barton, 2019) in R (R

Core Team, 2021) with the r.squaredGLMM() function
which computes variance explained in a multilevel model

by partitioning variance (Johnson, 2014). This function

provides both marginal (variance explained by the fixed

effects) and conditional (variance explained by the fixed

and random effects) measures (Barton, 2019) and condi-

tional measures are reported in the present analysis since

interest lies in both the fixed as well as random effects.

Results and Discussion

Results from the simulated data are presented in the con-

text of the hypothetical research questions and variables

introduced previously.

Figure 1

Figure 1 presents the results of a moderation effect in

the context of a multilevel model. Beginning with over-

all model fit, the R2
value for the model is 0.67, indicating

about 67% of the variance in achievement is attributable

to the fixed and random effects in the model. A significant

moderation effect in this example indicates that the rela-

tionship between studying habits and achievement differs

depending on the student’s anxiety levels. The plot fur-

ther clarifies this relationship by indicating that the rela-

tionship between studying habits and achievement is pos-

itive, but stronger for those students with lower anxiety.

Specifically, for a student with high anxiety, each standard

deviation increase in studying habit behavior is related

to about 0.3 standard deviation increase in achievement,

while for students with low anxiety, each standard devia-

tion increase in studying habit behavior is related to about

0.5 standard deviation increase in achievement. These spe-

cific relationships can be found by substituting the specific

coded values for anxiety (i.e. 0 or 1) into the model equa-

tion (Equation 5) through the simple slopes procedure (see

procedure described above, or refer to additional sources
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Figure 1 Moderation plot for multilevel model

such as Aiken & West, 1991). These results may indicate

that studying is most beneficial when the student is not

overwhelmed with anxiety.

Figure 1 also includes observed data where red trian-

gles are employed to represent students with low anxiety

and blue circles are employed to represent students with

high anxiety. The inclusion of observed data in this graphic

can offer various benefits, including a more nuanced pic-

ture of the data; a better sense of the empirical distribution

for each group; and clarification of how much, if at all, the

regression lines representing the model under considera-

tion are extrapolating past observed data. In the present

example, it is clear that there is still quite a bit of variation

within each group, and that the model-based regression

lines do not extrapolate beyond observed values, which is

desirable.

Some of the values included in Figure 1 (as well as Fig-

ures 2-4) are included in Table 1. This is provided to help

clarify what is actually being plotted in the data visualiza-

tion. In addition, the table is provided to demonstrate the

advantages of plotting these results versus just providing a

table for these results. Inspecting the table results in very

little insight into the nature of the interaction effect; par-

ticularly compared with the result displayed in Figure 1.

Figure 2

Generalizing this procedure to the multilevel logistic re-

gression provides the results in Figure 2. Beginning with

overall model fit, R2 = 0.09, indicating about 9% of the
variance in achievement is attributable to the fixed and

random effects in this model. The outcome of interest

is now a binary indicator of graduating versus not grad-

uating. Note that the logistic regression model proceeds

by modeling the probability of the event (i.e. graduation)

rather than the binary event itself. Accordingly, the results

that are plotted are predicted probabilities of graduating.

Figure 2 indicates that students with better studying habits

are generally more likely to graduate, but that this rela-

tionship is moderated by the student’s anxiety such that

students with low anxiety are more likely to benefit from

studying.

Note that the relationship between studying habits and

probability of graduation is non-linear for each group (for

both low and high anxiety students). This is a property of

the model under examination, which employs a logit link

function for describing the relationship between predic-

tors and the probability of a binary outcome (see Equation

3). Substantively, this seems reasonable as well. Figure

2 indicates that for low anxiety students, there are some-

The Quantitative Methods for Psychology 1162

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.18.1.p111


¦ 2022 Vol. 18 no. 1

Figure 2 Moderation plot for multilevel logistic regression

what of diminishing returns as the student approaches the

highest values for studying habits, as the curve flattens a

bit at the highest values ofX . This is substantively reason-
able, as one might expect bigger changes in a relevant out-

come for improving poor studying habits compared with

fine-tuning already fairly good studying habits.

Figure 3

This procedure is also applicable to random slope effects,

as demonstrated in Figure 3. The R2
for this model is 0.90,

indicating a large percentage of the variance in achieve-

ment is explained by the fixed and random effects. Ran-

dom slopes essentially imply that the moderator is the ran-

dom effect. Accordingly, this model is examining whether

the relationship between studying habits and achievement

is moderated by school membership. A significant ran-

dom slope effect indicates that this relationship is differ-

ent in different schools. Figure 3 shows that depending on

the school in which the student is enrolled, studying could

have a stronger or weaker relationship, but that in general,

this relationship is positive. Note that similar to Figure 3,

the observed data is included where each different colored

point represents an observation from a different school

(the schools are identified by their number, from one to

ten, as shown on the legend). Specific schools of substan-

tive interest can thereby be identified in this visualization.

Figure 4

Finally, this method for interpretation of random slopes

may be generalized to the multilevel logistic regression

model. For thismodel,R2 = 0.68, indicating the 68% of the
variance in achievement is explained by the model. Fig-

ure 4 demonstrates that the relationship between study-

ing habits and probability of graduation differs by school

membership. In most schools this relationship is generally

positive, in some schools it is slightly negative, and in one

school there is not a strong relationship at all (the curve

is fairly flat). Note that similar to Figure 2, this visualiza-

tion clarifies the non-linear relationship beingmodeled be-

tween studying habits and the probability of graduation.

Also, similar to Figure 3, a different color for each school

is used to allow investigation of specific schools. For ex-

ample, it appears that the slightly negative relationship be-

tween studying habits and probability of graduation is ob-

served in schools 4 and 5, and so these schools might be in-

teresting to further investigate, since they may be outliers

in this context.

Further Generalizations

Note that there are a wide variety of ways in which these

procedures could be generalized to slightly different mod-

els. For example, the demonstrations were provided with
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Table 1 First 6 rows of data used to create Figures 1-4, respectively

Figure 1 data Figure 2 data
M X QI M X QI

0 −3 −0.6 0 −3 0.354344
1 −3 −0.9 1 −3 0.289051
0 −2.4 −0.42 0 −2.4 0.396517
1 −2.4 −0.6 1 −2.4 0.354344
0 −1.8 −0.24 0 −1.8 0.440286
1 −1.8 −0.3 1 −1.8 0.425558

Figure 3 data
X u0j u1j QI

-3 2.383864 −1.33442 −8.31289
-2.4 2.383864 −1.33442 −6.11354
-1.8 2.383864 −1.33442 −3.91419
-1.2 2.383864 −1.33442 −1.71484
-0.6 2.383864 −1.33442 0.484513
0 2.383864 −1.33442 2.683864

Figure 4 data
X u0j u1j QI

-3 1.62702 −2.10365 0.99737
-2.4 1.62702 −2.10365 0.994912
-1.8 1.62702 −2.10365 0.990181
-1.2 1.62702 −2.10365 0.981135
-0.6 1.62702 −2.10365 0.964057
0 1.62702 −2.10365 0.93258

Note. X represents x-axis; QI represents y-axis; different values ofM are used to create different lines for each mod-

erator (i.e. low anxiety or high anxiety); different values of u0j/u1j are used to create different lines for each group
(i.e. school).

a binary moderator variable. If the moderator were con-

tinuous, relevant values could be chosen, such as the first,

second, and third quartile; or the mean, one standard de-

viation above the mean, and one standard deviation below

the mean. Plotting could then proceed analogously. Alter-

natively, although the independent variable is continuous

in the present demonstration, it is also possible to model

a categorical independent variable, in which case the dis-

crete levels of the variable could each be used in the plot.

Another common scenario in real data might involve

a large number of groups (level-two units). For example,

if the present demonstration included 200 schools, instead

of 10 schools, the plot might be too busy to be truly infor-

mative. In this case, a smaller number of groups could be

randomly selected. Alternatively, specific relevant values

for the slopes could be chosen and then plotted. For ex-

ample, the literature indicates that one way to interpret

random slopes effects is to report the average slope, and

a “high” and “low” value such as the first and third quar-

tile; one standard deviation above and below the mean;

or the values within which 95% of slopes are expected to

fall (Lorah, 2018). Accordingly, rather than plotting the ex-

pected regression lines for specific observed groups (for

example, schools), the plot could be created by plotting the

expected slopes of an explicitly defined high, low, and av-

erage group.

Lastly, the present study describes computation of pre-

dicted outcome values (for the multilevel model) and pre-

dicted probabilities (for the multilevel logistic regression

model). These two outcomes could more generally be

considered quantities of interest (QI) which describes any

model-based quantity that is relevant for model interpre-

tation; use of simulation methods can further provide con-

fidence intervals around these quantities of interest (see

Carsey & Harden, 2014, for detailed instructions for doing

so).

Summary of Analysis Steps

In summary, the present study suggests the following steps

for analyzing and interpreting model results when a mod-

eration or random slope effect is included in a multilevel

model:

1. Specify and estimate model of interest (see R code, part

1b, 2b, 3b, or 4b).
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Figure 3 Random slopes plot for multilevel model

2. Choose specific values for all predictor variables in-

cluded in the model (see R code, part 1c, 2c, 3c, or 4c,

section “values for varying conditions”).

(a) First, choose specific values of substantive interest

for the moderator variable. The simple slopes liter-

ature provides guidance for how to do this, but typi-

cally the mean and a high and low value are chosen

for continuous moderators and each possible value

is chosen for categorical moderators. For example,

in Figure 1, low anxiety and high anxiety were cho-

sen for the moderator values. Or, in the case of

a random slopes model, each group (i.e. level-two

unit) can be used. In the example analysis, all 10

schools are plotted.

(b) Second, choose specific values of substantive inter-

est for the independent variable. For example, con-

sider Figure 1. The independent variable,X (study-
ing habits), is displayed on the x-axis, and this con-
tinuous variable ranges from -3 to +3. When choos-

ing appropriate values for the independent vari-

able, be careful not to extrapolate beyond values

present in the observed data.

(c) Third, choose specific values of substantive inter-

est for any control variables (any additional pre-

dictors). In the example models, there are no

additional control variables, so this step may be

skipped. However, in many applied examples,

there will be additional predictors beyond the mod-

erator (M ) and the independent variable (X). For
these remaining predictors, choose a baseline value

such as a reference group (for categorical predic-

tors), or the mean value (for continuous or cate-

gorical predictors). Since these control variables

may be less substantively interesting than the mod-

erator or independent variables, a single value for

each control variable should be sufficient for the

purposes of computing the appropriate quantity of

interest.

3. Next, compute the quantity of interest (i.e. predicted

values or predicted probabilities) for each of these sets

of predictors from step 2 (see R code, part 1c, 2c, 3c,

or 4c). In the present study, the quantity of interest is

either the predicted outcome value (Equation 5) or the

predicted probability (Equation 6).

4. Create appropriate tables and/or plots of the results

(see R code, par 1d, 2d, 3d, or 4d).

Conclusions

The present study has suggested and demonstrated a rel-

atively straight-forward and accessible method for inter-

preting interaction and random slopes effects in multilevel

models using the concepts of quantities of interest, and
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Figure 4 Random slopes plot for multilevel logistic regression

moderation (or random slopes) plots. The prior demon-

stration has shown that creating these plots results in far

more interpretable results compared with tables or sim-

ply interpreting significance or direction of effects and that

this procedure can be generalized to many other, similar

models and effects. Future research should continue to

pursue these graphical methods of interpretation, perhaps

extending the findings to other more complicated models

and effects. In addition, future applied studies can use

these techniques and instructions to further elucidate the

study results in variousways. In particular, applied studies

that include nesting, such as children nested within fami-

lies or students nested within schools may find multilevel

models and random slopes effects particularly relevant.

Moderation effects could be used to examine demographic

predictors such as the intersection of race and gender or

psychological constructs, such as protective factors for var-

ious outcomes.
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Appendix: R Syntax

R syntax to produce Figure 1: Moderation plot for multilevel model

library(lme4) #lmer function
library(MuMIn)#r.squaredGLMM function

##1a. Simulate data##
######################

#set constants#
set.seed(50)
b0<- .3 #intercept
b1<- .3 #slope for X
b2<- .3 #slope for M
b3<- .2 #slope for X*M
L2sd<-.5 #square root of tau-squared(zero); level-two random effect
L1sd<-.5 #square root of sigma-squared; residual (for linear model only)
N<-200 #total sample size for simulated data
NumGroups<-20 #total level-2 sample size (number of groups)

#generate variables#
X<-rnorm(N) #independent variable
M<-rbinom(N,1,.5) #moderator variable
ID<-rep(seq(from=1,to=NumGroups,by=1),times=N/NumGroups) #group ID number
U0j<-rep(rnorm(NumGroups,mean=0,sd=L2sd),times=N/NumGroups) #values for the u0j random effect
eij<-rnorm(N,mean=0,sd=L1sd) #values for the residual (for linear model only)

##generate Y (continuous)
Y_continuous<-b0+b1*X+b2*M+b3*X*M+U0j+eij

#create data frame to store simulated variables
mydata1<-data.frame(ID=ID,Y=Y_continuous,X=X,M=M)

##1b. Estimate model##
######################

M0<-lmer(Y~X*M+(1|ID),data=mydata1)
r.squaredGLMM(M0)

##1c. Compute QI values for M0 (linear model)##
######################
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#This portion is a loop to find the quantities of interest
#while varying the values of M and X

lbx<- -3 #this is the lower bound of the x-axis for the plot
#recommend choosing a value somewhere around observed min(X)

ubx<- 3 #this is the upper bound of the x-axis for the plot
#recommend choosing a value somewhere around observed max(X)

StepSize<-(ubx-lbx)/10

#values for the varying conditions#
values_M<-c(0,1)
values_X<-seq(from=lbx,to=ubx,by=StepSize)

#num. rows in result (the matrix where QI values will be stored)
ncond<-length(values_M)*length(values_X)

#create a matrix to store the resulting QI values
result<-matrix(ncol=3,nrow=ncond)
colnames(result)<-c("M","X","QI")
result[,1]<-rep(values_M,length.out=ncond)
result[,2]<-rep(values_X,each=length(values_M),length.out=ncond)

#loop to compute actual values of QI#
for(i in 1:(ncond)){
M<-result[i,1]
X<-result[i,2]
result[i,3]<-b0+b1*X+b2*M+b3*X*M
}

FinalResult<-as.data.frame(result)
#display first 6 rows of the data frame
head(FinalResult)

##1d. Plot QI values for M0 (linear model)##
######################

#create data subset for each line#
subset1<-FinalResult[FinalResult$M==0,]
subset2<-FinalResult[FinalResult$M==1,]
color_values=c("blue","red")#one color per factor level
pch_values=c(16,17)#one shape per factor level

#Plot 1#
#line for M=0, then for M=1#
bmp(file="Plot1.bmp")
plot(mydata1$X,mydata1$Y,

col=color_values[factor(mydata1$M)],
pch=pch_values[factor(mydata1$M)],
ylab="Y (Achievement)",xlab="X (Studying Habits)")

lines(x=subset1$X,y=subset1$QI,type="l",col=color_values[1], lwd=3)
lines(x=subset2$X,y=subset2$QI,type="l",col=color_values[2], lwd=3)
text(2,.5,"High Anxiety") #M=0
text(0,1.2,"Low Anxiety") #M=1
legend("topleft",

legend=c("High Anxiety","Low Anxiety"),
pch=pch_values,
col=color_values)

dev.off()

R syntax to produce Figure 2: Moderation plot for multilevel logistic regression

##2a. Simulate data##
######################

#set constants#
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set.seed(50)
b0<- .3 #intercept
b1<- .3 #slope for X
b2<- .3 #slope for M
b3<- .2 #slope for X*M
L2sd<-.5 #square root of tau-squared(zero); level-two random effect
N<-200 #total sample size for simulated data
NumGroups<-20 #total level-2 sample size (number of groups)

#generate variables#
X<-rnorm(N) #independent variable
M<-rbinom(N,1,.5) #moderator variable
ID<-rep(seq(from=1,to=NumGroups,by=1),times=N/NumGroups) #group ID number
U0j<-rep(rnorm(NumGroups,mean=0,sd=L2sd),times=N/NumGroups) #values for the u0j random effect

#generate prob(Y)#
ExpXB<-exp(b0+b1*X+b2*M+b3*X*M+U0j)
ProbY<-ExpXB/(1+ExpXB)

#generate Y (binary)
Y_binary<-rbinom(N,1,ProbY)

#create data frame to store simulated variables
mydata2<-data.frame(ID=ID,Y=Y_binary,X=X,M=M)

##2b. Estimate model##
######################

M1<-glmer(Y~X*M+(1|ID),family=binomial(link="logit"),data=mydata2)
r.squaredGLMM(M1)

##2c. Compute QI values for M1 (logistic model)##
######################

#This portion is a loop to find the quantities of interest
#while varying the values of M and X

lbx<- -3 #this is the lower bound of the x-axis for the plot
#recommend choosing a value somewhere around observed min(X)

ubx<- 3 #this is the upper bound of the x-axis for the plot
#recommend choosing a value somewhere around observed max(X)

StepSize<-(ubx-lbx)/10

#values for the varying conditions#
values_M<-c(0,1)
values_X<-seq(from=lbx,to=ubx,by=StepSize)

#num. rows in result (the matrix where QI values will be stored)
ncond<-length(values_M)*length(values_X)

#create a matrix to store the resulting QI values
result<-matrix(ncol=3,nrow=ncond)
colnames(result)<-c("M","X","QI")
result[,1]<-rep(values_M,length.out=ncond)
result[,2]<-rep(values_X,each=length(values_M),length.out=ncond)

#loop to compute actual values of QI#
for(i in 1:(ncond)){
M<-result[i,1]
X<-result[i,2]
result[i,3]<-exp(b0+b1*X+b2*M+b3*X*M)/(1+exp(b0+b1*X+b2*M+b3*X*M))
}

FinalResult<-as.data.frame(result)
#display first 6 rows of the data frame
head(FinalResult)
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##2d. Plot QI values for M1 (logistic model)##
######################

#create data subset for each line#
subset1<-FinalResult[FinalResult$M==0,]
subset2<-FinalResult[FinalResult$M==1,]
color_values=c("blue","red")#one color per factor level
lty_values=c(2,3)#one line type per factor level

#Plot 2#
#curve for M=0, then for M=1#
bmp(file="Plot2.bmp")
plot(x=subset1$X,y=subset1$QI,type="l",ylim=c(0,1),col=color_values[1],

lty=lty_values[1],
main="Predicted Probabilities",
ylab="Probability of Graduation",xlab="X (Studying Habits)")

lines(x=subset2$X,y=subset2$QI,type="l",col=color_values[2],
lty=lty_values[2])

text(1,.5,"High Anxiety")
text(-1.5,.7,"Low Anxiety")
legend("topleft",

legend=c("High Anxiety","Low Anxiety"),
lty=lty_values,
col=color_values)

dev.off()

R syntax to produce Figure 3: Random slopes plot for multilevel model

##3a. Simulate data##
#######################

#set constants
set.seed(50)
b0<- .3
b1<- 5
L2sd<-2
L2slope<-2
L1sd<-2
N<-200
NumGroups<-10

#generate variables
X<-rnorm(N)
ID<-rep(seq(from=1,to=NumGroups,by=1),times=N/NumGroups)
U0j<-rep(rnorm(NumGroups,mean=0,sd=L2sd),times=N/NumGroups)
U1j<-rep(rnorm(NumGroups,mean=0,sd=L2slope),times=N/NumGroups)
eij<-rnorm(N,mean=0,sd=L1sd)

##generate Y (continuous)
Y_continuous<-b0+b1*X+U1j*X+U0j+eij

#create data frame to store simulated variables
mydata3<-data.frame(ID=ID,Y=Y_continuous,X=X)

##3b. Estimate model##
#######################

M0<-lmer(Y~X+(X|ID),data=mydata3)
r.squaredGLMM(M0)

##3c. Compute QI for M0 (linear model)##
#######################

lbx<- -3 #this is the lower bound of the x-axis for the plot
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#recommend choosing a value somewhere around observed min(X)
ubx<- 3 #this is the upper bound of the x-axis for the plot

#recommend choosing a value somewhere around observed max(X)
StepSize<-(ubx-lbx)/10

#values for the varying conditions
values_X<-seq(from=lbx,to=ubx,by=StepSize)
#ranef() for u0j and u1j values
estimated_u0j<-ranef(M0)$ID[,1]
estimated_u1j<-ranef(M0)$ID[,2]

#num. rows in result
ncond<-length(values_X)*length(estimated_u0j)

#create a matrix to store the resulting QI values
result<-matrix(ncol=4,nrow=ncond)
colnames(result)<-c("X","u0j","u1j","QI")
result[,1]<-rep(values_X,length.out=ncond)
result[,2]<-rep(estimated_u0j,each=length(values_X),length.out=ncond)
result[,3]<-rep(estimated_u1j,each=length(values_X),length.out=ncond)

for(i in 1:(ncond)){
X<-result[i,1]
u0j<-result[i,2]
u1j<-result[i,3]
QI1<-b0+b1*X+X*u1j+u0j
result[i,4]<-QI1
}

FinalResult<-as.data.frame(result)

#display first 6 rows of the data frame
head(FinalResult)

##3d. Plot QI values for M0 (linear model)##
#######################

#create subset for each line
subsets<-list()
for(i in 1:20) {

subsets[[i]]<-
FinalResult[FinalResult$u0j==estimated_u0j[i]&FinalResult$u1j==estimated_u1j[i],]
}

########
#Plot 3#
#curve for each of the 12 groups (level 2 units)
bmp(file="Plot3.bmp")

plot(mydata3$X,mydata3$Y,pch=20,col=factor(mydata3$ID),
ylab="Y (Achievement)",xlab="X (Studying Habits)")

for(i in 1:NumGroups){
lines(x=subsets[[i]]$X,y=subsets[[i]]$QI,type="l",col=i)
}

legend("topleft",
legend=levels(factor(ID)),
pch=20,
col=factor(levels(factor(ID))),
bg="white")

dev.off()

R syntax to produce Figure 4: Random slopes plot for multilevel logistic regression
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##4a. Simulate data##
#######################

#set constants
set.seed(50)
b0<- 1
b1<- 1
L2sd<-1.5
L2slope<-1.5
N<-200
NumGroups<-10

#generate variables
X<-rnorm(N)
ID<-rep(seq(from=1,to=NumGroups,by=1),times=N/NumGroups)
U0j<-rep(rnorm(NumGroups,mean=0,sd=L2sd),times=N/NumGroups)
U1j<-rep(rnorm(NumGroups,mean=0,sd=L2slope),times=N/NumGroups)

#generate prob(Y)
ExpXB<-exp(b0+b1*X+U1j*X+U0j)
ProbY<-ExpXB/(1+ExpXB)

#generate Y
Y_binary<-rbinom(N,1,ProbY)

#create data frame to store simulated variables
mydata4<-data.frame(ID=ID,Y=Y_binary,X=X)

##4b. Estimate model##
#######################

M1<-glmer(Y~X+(X|ID),family=binomial(link="logit"),data=mydata4)
r.squaredGLMM(M1)

##4c. Compute QI for M1 (logistic model)##
#######################

lbx<- -3 #this is the lower bound of the x-axis for the plot
#recommend choosing a value somewhere around observed min(X)

ubx<- 3 #this is the upper bound of the x-axis for the plot
#recommend choosing a value somewhere around observed max(X)

StepSize<-(ubx-lbx)/10

#values for the varying conditions
values_X<-seq(from=lbx,to=ubx,by=StepSize)
#ranef() for u0j and u1j values
estimated_u0j<-ranef(M1)$ID[,1]
estimated_u1j<-ranef(M1)$ID[,2]

#num. rows in result
ncond<-length(values_X)*length(estimated_u0j)

#create a matrix to store the resulting QI values
result<-matrix(ncol=4,nrow=ncond)
colnames(result)<-c("X","u0j","u1j","QI")
result[,1]<-rep(values_X,length.out=ncond)
result[,2]<-rep(estimated_u0j,each=length(values_X),length.out=ncond)
result[,3]<-rep(estimated_u1j,each=length(values_X),length.out=ncond)

for(i in 1:(ncond)){
X<-result[i,1]
u0j<-result[i,2]
u1j<-result[i,3]
QI1<-exp(b0+b1*X+X*u1j+u0j)/(1+exp(b0+b1*X+X*u1j+u0j))
result[i,4]<-QI1
}
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FinalResult<-as.data.frame(result)

#display first 6 rows of the data frame
head(FinalResult)

##4d. Plot QI values for M1 (logistic model)##
#######################

#create subset for each line
subsets<-list()
for(i in 1:12) {

subsets[[i]]<-
FinalResult[FinalResult$u0j==estimated_u0j[i]&FinalResult$u1j==estimated_u1j[i],]
}

########
#Plot 4#

#curve for each of the 20 groups (level 2 units)
bmp(file="Plot4.bmp")
plot(x=subsets[[1]]$X,y=subsets[[2]]$QI,type="l",ylim=c(0,1),

col=factor(levels(factor(ID)))[1],
main="Predicted Probabilities, Random Slopes (Schools)",
ylab="Probability of Graduation",xlab="X (Studying Habits)")

for(i in 2:NumGroups){
lines(x=subsets[[i]]$X,y=subsets[[i]]$QI,type="l",

col=factor(levels(factor(ID)))[i])
}
legend("topleft",

legend=levels(factor(ID)),
col=factor(levels(factor(ID))),
lty=1,
bg="white")

dev.off()
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