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Abstract When researchers carry out a null hypothesis significance test, it is tempting to assume

that a statistically significant result lowers Prob(H0), the probability of the null hypothesis being

true. Technically, such a statement is meaningless for various reasons: e.g., the null hypothesis

does not have a probability associated with it. However, it is possible to relax certain assumptions

to compute the posterior probability Prob(H0) under repeated sampling. We show in a step-by-step

guide that the intuitively appealing belief, that Prob(H0) is low when significant results have been

obtained under repeated sampling, is in general incorrect and depends greatly on: (a) the prior

probability of the null being true; (b) type-I error rate, (c) type-II error rate, and (d) replication of a

result. Through step-by-step simulations using open-source code in the R System of Statistical Com-

puting, we show that uncertainty about the null hypothesis being true often remains high despite

a significant result. To help the reader develop intuitions about this common misconception, we

provide a Shiny app (https://danielschad.shinyapps.io/probnull/). We expect that this tutorial will

help researchers better understand and judge results from null hypothesis significance tests.
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Introduction
Null hypothesis significance testing (NHST), as it is prac-

tised in all areas of science, involves a fairly straightfor-

ward procedure. We begin by positing a null hypothe-

sis H0, usually a point null hypothesis that a parameter

µ has a specific value: H0 : µ = µ0. Then we col-

lect data, compute the sample mean x̄, and estimate the
standard error SE from the sample standard deviation

s and sample size n by computing SE = s/
√
n. Next,

we compute some statistic such as the observed t-statistic,

tobserved = (x̄ − µ0)/SE. If the absolute value of the ob-
served t-statistic is larger than the absolute value of some

critical t-value, we reject the null hypothesis. Usually we

also compute the p-value, which is the probability of ob-

taining the observed t-statistic, or a value more extreme,

assuming that the null hypothesis is true. Conventionally,

when the p-value is less than 0.05, we reject the null hy-
pothesis. A common phrasing is to say that we have a “sta-

tistically significant” result, and that the effect of interest

is “reliable.” As is well known, an issue that is of great im-

portance here is false and true discovery rates (Betancourt,

2018).

The false discovery rate is the probability of incorrectly

rejecting the null when the null is in fact true; this is re-

ferred to as type-I error rate. To make a decision on the

null hypothesis, conventionally a decision threshold ofα =
0.05 is used. If the test’s assumptions are satisfied within
the population being examined, then as a result, the type-I

error rate will match α.
The true discovery rate is the probability of correctly

rejecting the null when µ has some specific point value that
is not the null value µ0; this is usually called power. The

quantity (1-power) is called type-II error rate, often written

as β; it is the probability of incorrectly accepting the null
when it is false with some specific value for µ, i.e., when
the true µ is some specific point value other than µ0.

It is well-known that power needs to be high in order

to draw inferences correctly from a statistically significant

result (Button et al., 2013); when power is low, statistically
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Figure 1 Prior and posterior probability of the null hypothesis. a) An illustration of how our belief in the null

hypothesis—expressed as a probability distribution—might hypothetically shift once we see a statistically significant re-

sult. The vertical lines show the 95% credible intervals. b) Prior probability of the null hypothesis being true, expressed

as a Beta(60,6) distribution.
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significant results are guaranteed to be overestimates and
can even have the wrong sign (Gelman & Carlin, 2014), and

they are likely to be unreplicable (Vasishth, Mertzen, Jäger,

& Gelman, 2018). In other words, a significant result under

low power is never “reliable” in any sense of the word.
Researchers sometimes assume that a significant result

reduces the probability of the null hypothesis being true to
a low value. For example, a survey by Tam et al., 2018 re-

ports this widespread misunderstanding of the p-value by

medical doctors. As they put it:

Many respondents conceptualised the P value

as numerically indicating the natural probabil-

ity of some phenomenon— for instance, a 95%

or 5% chance of the truth or falsity of a hypoth-

esis in the real world.

A second example comes from Doherty, Benson, and

Higham, 2002. On page 376, Table 2, they state that “[the

p-value] is the probability that the null hypothesis is true.”

A third example comes from a textbookwritten formedical

researchers (Harris & Taylor, 2003). On their page 24, they

write: “The P value is used when we wish to see how likely

it is that a hypothesis is true”; and on page 26, they write:

“The P value gives the probability that the null hypothesis

is true.”

Here, we investigate the posterior probability of the

null hypothesis being true under different possible as-

sumptions. Specifically, we consider cases where power

is low, medium, or high, and when type-I error rate is 0.05,

0.01, or 0.005. Moreover, we look at how replication stud-

ies affect the posterior probability of the null hypothesis.

Intuitively, it does seem obvious that rejecting the null

hypothesis after finding a significant result leads us to be-

lieve that the posterior probability of the null hypothe-

sis being true is low. We will show in this paper that

this intuitive belief is in general wrong (see also Button

et al., 2013; Bayarri, Benjamin, Berger, & Sellke, 2016;

Colquhoun, 2014; Ioannidis, 2005), but that instead, given a

significant result, the posterior probability for the null hy-

pothesis widely varies between rather small values (when

statistical power is high, greater than 0.80, and type-I error

rate is low, 0.005 - two extreme situations that are rarely

or never realized) and larger values (when power is low or

type-I error rate is higher, 0.05).

Note that, technically, talking about “the probability

that the null hypothesis is true” is meaningless in the NHST

framework. Probability mass functions can only be associ-

ated with discrete outcomes that constitute a random vari-

able. An example from everyday life would be the prob-

ability of catching a train when running late: there are

two possible outcomes, either one gets the train or not,

and each outcome has a probability associated with it. By

contrast, the null hypothesis is not a random variable and

therefore cannot have a probability associated with the

two possible outcomes of being true or false. The null hy-

pothesis is either true or it is false.

However, in order to talk about the probability of the

null hypothesis being true or false, we can assume for the

moment that the null hypothesis is a randomvariable. Sup-
pose that before running the experiment, we begin with
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the assumption that the null hypothesis is believed to be

true with some probability θprior. Once we get a signifi-
cant result, the probability of the null being true should

(intuitively) fall to some low value θposterior.
But these point values θprior and θposterior only partly

characterize our beliefs. Before running the experiment,

we surely have some uncertainty about the probability

θprior that the null is true. For example, the null may be
true at the outset with probability somewhere between 85

and 95%. Thus, the prior probability of the null being true

has a probability distribution associated with it, it cannot
be just a point value. Explicitly capturing this uncertainty
in a distribution, which we do here, goes beyond previous

treatments of this topic (Button et al., 2013; Bayarri et al.,

2016; Colquhoun, 2014; Ioannidis, 2005). Still relying on

intuition, we might say that a statistically significant re-

sult should shift this probability distribution to some low

range, say 10-20%. Such a hypothetical situation is visual-

ized in Figure 1a.

To summarize, strictly speaking, the null hypothesis is

either true or false, it has no probability distribution asso-

ciated with it. So, one cannot even talk about the proba-

bility of the null hypothesis being true. Nevertheless, it is

possible to relax this strict stipulation and ask ourselves:

how strongly do we believe that the null is true before and

after we do a significance test? A domain expert working

in a particular field should be able to state, as a probability

distribution, his or her a priori confidence level in a partic-

ular null hypothesis. In practice, elicitation from an expert

might be required (O’Hagan et al., 2006; Oakley & O’Hagan,

2010).

Bayes’ rule allows us to calculate this posterior proba-

bility of the null hypothesis being true. Bayes’ rule states

that, given a vector of data y, we can derive the probability
density function of a parameter or a vector of parameters θ
given data, f(θ | y), by multiplying the likelihood function
of the data, f(y | θ), with the prior probability of the pa-
rameter(s), f(θ), and dividing by the marginal likelihood
of the data, f(y):

f(θ | y) =
f(y | θ)f(θ)

f(y)
(1)

The marginal likelihood of the data can be computed

by integrating out the parameter(s) θ:

f(y) =

∫
f(y | θ)f(θ) dθ (2)

As McElreath, 2016 mentions, Bayes’ rule can be used

to work out the posterior probability of the null being true

given a significant effect under repeated sampling (Button

et al., 2013; Bayarri et al., 2016; Colquhoun, 2014; Ioanni-

dis, 2005). This is what we turn to next. Before we can

carry out this computation, we have to decide on the prior

probability of the null hypothesis being true; this is not too

difficult to determine for specific research questions. We

could start by eliciting from a researcher their prior be-

lief about the probability of some particular null hypoth-

esis being true: Prob(H0 true). Given such a prior prob-
ability for the null hypothesis, we then stipulate a type-I

error rate, Prob(sig|H0 true) = α and a type-II error rate,
Prob(not sig|H0 false) = β. (When we write H0 false,
we mean that the null is false with some specific value for

the parameter µ). Once we have these numbers, Bayes’
rule allows us to computeProb(H0 true|sig), the posterior
probability of the null being true given a significant result

under repeated sampling. In otherwords, Bayes’ rule helps

us quantify the extent to which our prior belief should shift

in the light of the long-run probability of obtaining a statis-

tically significant result:

Prob(H0 true|sig) =
Prob(sig|H0 true)× Prob(H0 true)

Prob(sig)
(3)

The denominator Prob(sig) is the marginal probabil-
ity of obtaining a significant effect under repeated sam-

pling, and is straightforward to compute using the law

of total probability (Kolmogorov, 2018). This law states

that the probability of a random variable Z, Prob(Z),
given another random variable A, isProb(Z|A)Prob(A)+
Prob(Z|¬A)Prob(¬A). Translating this to our particular
question, the event Z is the significant effect we obtained
under repeated sampling, and the event A is the null hy-
pothesis being true or false.

Prob(sig) =Prob(sig|H0 true)Prob(H0 true)

+ Prob(sig|H0 false)Prob(H0 false)

=α× Prob(H0 true) + (1− β)× (1− Prob(H0 true))

=α× θ + (1− β)× (1− θ)
(4)

The last line above arises because Prob(sig|H0 true) = α
(type-I error rate), Prob(sig|H0false) = 1 − β (power),
and Prob(H0 true) = θ (the prior probability of the null
being true).

Taken together, we can compute the probability for the

null hypothesis given a significant effect as:

Prob(H0 true|sig) = α× θ

(α× θ + (1− β)× (1− θ))
(5)

Thus, Prob(H0 true|sig) is really a function of three
quantities:

1. The false discovery rate, or type-I error rate α.
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2. The true discovery rate, or power (1 − β), where β is
type-II error rate.

3. The prior probability of null being true (θ).
We will now compute, under different assumptions,

the posterior probability of the null being true given a sig-

nificant effect. Before we can do this, we have to decide on

a prior probability of the null hypothesis being true. What

is a reasonable prior distribution to start with? In a recent

paper, Benjamin et al., 2018 write the following: “Predic-

tion markets and analyses of replication results both sug-

gest that for psychology experiments, the prior odds of H1

relative to H0 may be only about 1:10. A similar number

has been suggested in cancer clinical trials, and the num-

ber is likely to be much lower in preclinical biomedical re-

search.” A prior odds of 1:10 of the alternative being true

relative to the null means that the probability of the null

being true is about 90%. We take this estimate as a start-

ing point; belowwewill also consider alternative scenarios

where the probability of the null being true is lower.

For now, we will assume that the null hypothesis H0

has the high prior probability of 90% of being true. Just as

a coin has heads and tails as possible outcomes, the null

hypothesis can have two possible outcomes, true or false,

each with some probability. Thus, we can now talk about

the probability θ of the null hypothesis being true. We can
model this by assuming that a success or failure is gener-

ated from a Bernoulli process that has probability of suc-

cess θ:

H0 ∼ Bernoulli(θ) (6)

Because our prior belief that the null is true will come

with some uncertainty (it is not merely a point value), we

can model this prior belief through a Beta distribution. We

chose a Beta distribution here because the prior on a prob-

ability parameter is usually a Beta distribution (for exam-

ple, consider the classic Beta-Binomial conjugate case in

Bayesian statistics). For example, a prior Beta(60, 6) on
θ expresses the assumption that the prior probability of
the null being true is between 0.83 and 0.97 with proba-

bility 95% (approximately), with mean probability approx-

imately 0.90. The lower and upper bounds of the 95% cred-

ible interval can be computed using the inverse cumulative

distribution function of the Beta distribution. We simply

solve the integrals for the lower and upper bounds:

∫ lower

−∞
f(x)dx =

∫ lower

−∞

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 dx

= 0.025

(7)

and

∫ upper

−∞
f(x)dx =

∫ upper

−∞

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 dx

= 0.975

(8)

Themean can be computed from the fact that a random

variableX that is generated from a Beta distribution with
parameters a and b has expectation:

E[X] =
a

a+ b
(9)

Given the a and b parameters, the expectation is:

E[X] =
a

a+ b
=

60

60 + 6
= 0.9 (10)

Figure 1b visualizes this prior probability of the null

hypothesis being true.

Given this prior probability density function Beta(60,6)

for θ, we are now in a position to investigate how the pos-
terior probability of the null being true changes under dif-

ferent assumptions. We can use Monte Carlo sampling to

compute the posterior probability of H0 being true given

significant results under repeated sampling:

1. Fix α (type-I error rate) and β (type-II error rate).
2. Do 100,000 times:

(a) Sample one value θ from the Beta(60,6) distribu-

tion.

(b) Compute the posterior probability of θ given α, β,
and the sampled value of θ from the prior distribu-
tion Beta(60,6):

α× θ

(α× θ + (1− β)× (1− θ))
(11)

(c) Store this posterior probability of the null hypothe-

sis being true.

3. Plot the distribution of the stored probabilities, or dis-

play summary statistics such as the mean and the 95%

credible interval.

There are two interesting cases. The first is when sta-

tistical power is low (30%); we will show that in this case,

it simply doesn’t matter much whether we get a signifi-

cant result or not. The posterior probability of the null

being true will not change substantially; this is regardless

of whether type-I error rate is 0.05 or some lower value

like 0.005, as recommended by Benjamin et al., 2018. Note

that here, when we say that the posterior probability of the

null doesn’t change substantially, we are not talking about

the mean of the posterior probability; rather, we are more

interested in the 95% credible interval, which represents

the uncertainty of the posterior probability. Thus, even if

the mean of the posterior distribution is numerically lower

than the mean of the prior distribution, if the uncertainty
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Figure 2 Probabilities for the Null-hypothesis, P (H0) = θ. Prior probability (blue) and posterior probabilities given a
significant effect (grey) at a type-I error rate thresholdα of 0.05, 0.01, and 0.005. This is shown for a situation of low statis-
tical Power of 30% (type-II error rate β = 70%) andwith a high prior probability for the null hypothesis (θ ∼ Beta(60, 6);
blue).
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associated with the posterior distribution is high, the prior-

to-posterior change inmean probability is not really mean-

ingful.

The other case is where statistical power is high (90%);

here, the posterior probability of the null being true will

change considerably once we have a significant result un-

der repeated sampling, especially if we follow the recom-

mendation of Benjamin et al., 2018 to lower type-I error

rate to 0.005.

Anticipating ourmain conclusion, when the prior prob-

ability of the null being true is low, the only situation

where a statistically significant effect under repeated sam-

pling can shift our belief substantially against the null hy-

pothesis being true is when statistical power is high. When

power is low, it simply doesn’t matter whether you lower

the type-I error rate to 0.005, as suggested by Benjamin et

al., 2018 and others.

Null hypothesis significance testing only makes sense

if power is high; in all other situations, the researcher is

wasting their time computing p-values. When power is

low, the intuition, that a significant result will lead to a low

posterior probability of the null hypothesis being true, is

an illusion.

Case 1: Investigating the posterior probability of the
null hypothesis being true when power is low (type-II
error rate 0.70) and the prior probability of the null hy-
pothesis is high (Mean Prob(H0)=.90)
We first look at the posterior probability for different situa-

tions: As a first case, we investigate the posterior probabil-

ity of the null hypothesis being true when the prior prob-

ability of the null hypothesis is high (Mean Prob(H0)=.90)

and when power is low (type-II error rate 0.70). We inves-

tigate several scenarios by using different type-I error rates

(α = 0.05, 0.01 and 0.005).
Scenario 1: Low power (0.30), type-I error rate 0.05 Let
type-I error rate be α = 0.05 and type-II error rate be
β = 0.70. So, we have power at 1 − β = 0.30. Such low
power is by no means an uncommon situation in areas like

cognitive psychology, psycholinguistics, and linguistics; ex-

amples from psycholinguistics are discussed in Jäger, En-

gelmann, and Vasishth, 2017; Jäger, Mertzen, Van Dyke,

and Vasishth, 2020; Vasishth et al., 2018; Vasishth, Yadav,

Schad, and Nicenboim, 2022. In these examples, power is

quite low, even for repeatedmeasures designs, where stim-

uli are repeatedly presented to an individual.

Figure 2 shows the prior and posterior distributions.
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Figure 3 Visualization of the probability distribution associated with type-II error rate β corresponding to low power
(β ∼ Beta(10, 4), mean power E[1 − β] = 30%), medium power (β ∼ Beta(8, 8), mean power E[1 − β] = 50%), and
high power (β ∼ Beta(2, 20), mean power E[1− β] = 90%) . Recall that Power is 1-type-II error rate.
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The prior distribution is plotted in blue. Figure 2 shows

that getting a significant result hardly shifts our belief re-

garding the null. This should be very surprising to re-

searchers who believe that a significant result shifts their

belief about the null hypothesis being true to a low value.

Next, consider what happens when we reduce type-I error

rate to 0.01, which is lower than the traditional 0.05.

Scenario 2: Low power (0.30), type-I error rate 0.01
Many researchers (Benjamin et al., 2018) have suggested

that lowering type-I error rate will resolve many of the

problems with NHST. Let’s start by investigating what

changes when we decrease type-I error rate to 0.01 (re-
searchers like Benjamin et al., 2018 have proposed 0.005

as a threshold for type-I error rate; we turn to this proposal

below). Type-II error rate is held constant at 0.70.

Figure 2 shows that lowering type-I error rate does shift

our posterior probability of the null being true a bit more

but not enough to have any substantial effect on our be-

liefs. It seems unreasonable to discard a null hypothesis

if the posterior probability of it being true lies between 14

and 48%.

This result highlights a problem that has been dis-

cussed before, namely that p-values may be a valuable way

to quantify information, but should not be used to per-

form decisions on the null versus the alternative hypothe-

ses (Amrhein, Trafimow, & Greenland, 2019). Such deci-

sions can be highly problematic if the posterior probability

for the null hypothesis is still quite high after a significant

result.

Case 2: Incorporating uncertainty about type-II error
rate
So far, we have been assuming a point value as represent-

ing power. However, power is really a function that de-

pends (inter alia) on the magnitude of the true (unknown)

effect. Power therefore also has some uncertainty associ-

ated with it, because we do not know the magnitude of the

true effect, and we do not know the true standard devia-

tion. We can introduce uncertainty about power (or equiv-

alently, uncertainty about type-II error rate) into the pic-

ture by setting our prior on β ∼ Beta(10, 4), so that the
type-II error rate is around 70%. Different levels of power

(1-type-II error rate) are visualized in Figure 3, and the low

power situation of 30% is shown in the bottom row of the

figure.

Scenario 3: Low power, type-I error rate 0.05 Incor-
porating the uncertainty about type-II error rate (equiva-

lently, power) increases the uncertainty about the poste-
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Figure 4 Probabilities for the null hypothesis, P (H0) = θ, considering uncertainty about power. Prior probability (blue)
and posterior probabilities given a significant effect (grey) at a type-I error rate α of 0.05 (upper panels), 0.01 (middle
panels), and 0.005 (lower panels). This is shown for situations of low statistical Power, β ∼ Beta(10, 4) (mean type-II
error rate of about β = 70%, mean Power of about 30%), medium statistical Power, β ∼ Beta(8, 8) (mean type-II error
rate of β = 50%, mean Power of 50%), and high statistical Power, β ∼ Beta(2, 20) (mean type-II error rate of about
β = 10%, mean Power of about 90%), and for situations with a high (left panels), medium (middle panels), and low (right
panels) prior probability for the null hypothesis.
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rior probability of the null quite a bit. Compare Figure 2

(α = 0.05) and Figure 4a (low power). Figure 4a shows
that the posterior of the null being true now lies between

40 and 90% (as opposed to 45 and 82% in Figure 2).

Scenario 4: Type-I error rate 0.01 Having incorporated
uncertainty into type-II error rate, consider nowwhat hap-

pens if we lower type-I error rate to 0.01, from 0.05. Fig-

ure 4d shows (cf. low power) that now the posterior dis-

tribution for the null hypothesis shifts to the left quite a

bit more, but with wide uncertainty (10-60%). Even with a

low type-I error rate of 0.01, we should be quite unhappy

rejecting the null if the posterior probability of the null be-

ing true is between the wide range of 10 and 60%.

Scenario 5: Type-I error rate 0.005 Next, consider what
happens if we lower type-I error rate to 0.005. This is the

suggestion from Benjamin et al., 2018. Perhaps surpris-

ingly, Figure 4g shows that now the posterior distribution

for the null hypothesis does not shift much compared to

Scenario 4 (see Fig. 4d): the range is 6 to 45% (compare

with the range 10-60% in scenario 4). Thus, when power

is low, there is simply no point in engaging in null hypoth-

esis significance testing. Simply lowering the threshold of

type-I error rate to 0.005 will not change much regarding

our belief in the null hypothesis.
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Case 3: Investigating the posterior probability of the
null hypothesis being true when power is high
As a second case, we investigate the posterior probability

of the null hypothesis being true when power is high. We

consider the case where power is around 90%. We will

still assume a high prior probability for the null (Mean

Prob(H0) = .90). We will consider three scenarios: type-I

error rate at 0.05, 0.01, and 0.005.

Scenario 6: High power (0.90), type-I error rate 0.05
First consider a situation where we have high power and

type-I error rate is at the conventional 0.05 value. The

question here is: in high power situations, does a signifi-

cant effect shift our belief in any substantial manner away

from the null, with type-I error rate at the conventional

value of 0.05? The prior on type-II error rate is shown in

Figure 3. The mean type-II error rate is 10%, implying a

mean for the power distribution to be 90%. Perhaps sur-

prisingly, Figure 4a shows that even under high power, our

posterior probability of the null being true does not shift

dramatically: the probability lies between 20 and 60%.

Simulation 7: High power (mean 0.90), type-I error rate
0.01 Next, we reduce type-I error rate to 0.01. Figure 4d
shows that when power is high and type-I error rate is set

at 0.01, we get a big shift in posterior probability of the null

being true: the range is 5-25%.

Simulation 8: High power (mean 0.90), type-I error rate
0.005 Next, in this high-power situation, we reduce type-
I error rate to 0.005. Figure 4g shows that when power

is high and type-I error rate is set at 0.005, we get a de-

cisive shift in posterior probability of the null being true:

the range is now 2-13%.

Cases 3 and 4: Prior probability for the null is medium
or low
Next, we consider cases where the prior probability for the

null is medium or low.

Low prior probability for the null: Mean Prob(H0)=.10
One possible objection to the above analyses is that the

prior probability for the null hypothesis could often be

much smaller than an average of 90%. Indeed, in some

situations, the null hypothesis may be very unlikely. We

here simulate a situation where the prior probability for

the null is an average of 10% (θ ∼ Beta(3, 8)). For this
situation, Figures 4c,f, and i show that the posterior proba-

bility for the null is always decisively low. Even for a con-

ventional type-I error rate of α = 0.05 in a low-powered
study, the posterior probability for the null ranges from 1

to 25%, which is quite low, and when turning to smaller α
levels or higher power, the effect is decisive.

However, this is of course not very informative, as

we started out assuming that the null hypothesis was un-

likely to be correct in the first place. Thus, we haven’t

learned much; a statistical significance test would just con-

firm what we already believed with high certainty before

we carried out the test.

Medium prior probability for the null: Mean
Prob(H0)=.50 Now consider the case where the prior

probability for the null being true lies at an average of 50%

(e.g., θ ∼ Beta(15, 15)). Here, we don’t know whether the
null or the alternative hypothesis is true a priori, and both

outcomes seem equally likely. In this situation, when we

use a conventional type-I error rate level of α = 0.05 in a
low-powered study, a significant effect will bring our pos-

terior probability for the null only to a range of 6-40%, and

will thus leave us with much uncertainty after obtaining a

significant effect.

However, either using a stricter type-I error rate level

(e.g., α = 0.005) or running a high-powered study each
suffices to yield informative results: For a high-powered

study and α = 0.05, a significant result will (under our
assumptions) bring the posterior probability to 2-10% (Fig-

ure 4b), which is quite informative. And for a type-I error

rate level of α = 0.005 a significant effect brings decisive
evidence against the null for all the levels of power that

we investigated (Figure 4h), with a posterior probabilty of

0.7-6% even for low-powered studies. This suggests that

when the prior probabilities of the null and the alternative

hypotheses are each at 50%, then either high power or a

strict type-I error rate of α = 0.005 will yield informative
outcomes once a significant effect is observed.

How the posterior probability changes with replication
studies
One topic that is often brought up when discussing the

trustworthiness of research findings is replication. Indeed,

it is widely accepted that replicating a research finding or

effect in an independent sample provides a lot of support

for it. In the present framework, we can quantify how

much support this provides. Specifically, in Bayesian anal-

yses it is possible to use the posterior from one analysis or

data set as the prior for the next analysis/data set, i.e., for

a replication study. The posterior of the second study then

incorporates all the knowledge obtained from both results,

and thus this yields an intuitive way to accumulate knowl-

edge across studies.

Here, we followed this procedure by investigating how

the posterior probability for the null hypothesis changes

when a study is replicated with the identical experimental

design (i.e., same power, 1 − β) and with the same signifi-
cance level (α error). Figure 5 at the end displays the pos-
terior probability for the null hypothesis after an original

study showed a significant result (Figure 5a, d, g; these re-

sults are identical to Figure 4). These posteriors are then
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each used as a prior for a replication study. The posterior

distributions from the replication studies are shown in Fig-

ure 5b, e, h. They show that if the original and a replication

study both showed a significant effect, then the posterior

probability for the null hypothesis is quite low for most de-

signs and significance levels. More precisely, the posterior

probability for the null is lowwhen either statistical power

is high or when the type-I error rate is small (α = .01 or
α = .005). However, interestingly, when power is low and
α = .05, even replicating an original effect yields a pos-
terior probability of the null hypothesis ranging between

0.067 and 0.79. Thus, although the effect was replicated
the posterior probability for the null is still far from deci-

sive. This shows that low power studies really do not pro-

vide a lot of evidence for a null hypothesis, even when per-

forming a replication study.

The picture looks more or less similar when a second

replication study is conducted and turns out significant

(see Figure 5c, f, i). The main difference is that the poste-

rior probability for the null hypothesis is now even smaller

for all studied scenarios. Interestingly, for a situation of

low power and an α-level of .05, even a second significant
replication result does not bring down the posterior prob-

ability for the null substantially. Instead, in this situation

the posterior probability still ranges between 0.0071 and
0.67. Thus, with low power studies, even three significant
results in a row are not very informative concerning the

null hypothesis. When using medium/high power studies

or stricter significance thresholds (α = .01 or α = .005),
three significant results are decisive.

As an important qualification, replications are only go-

ing to yield unbiased results if there is no publication bias,

i.e., if failed replications are also made public (Vasishth et

al., 2018). Within psycholinguistics, we are aware of at

least one case where a failed replication was never made

public. Due to publication bias, estimates from replications

could end up being biased, and could lead to misleading

posterior probabilities of the null hypothesis.

Discussion
In summary, we analyzed the posterior probability for

the null given a significant effect. We provide a shiny

app (https://danielschad.shinyapps.io/probnull/) that al-

lows the user to compute the posterior distribution for dif-

ferent choices of prior, type-I and type-II error rates. For

psychology and preclinical biomedical research, the prior

odds of H1 relative to H0 are estimated to be about 1:10

(Benjamin et al., 2018), reflecting a high prior probability

of the null of 90%. Indeed, in science, making obvious pre-

dictions may not be a valuable endeavour (Lykken, 1968),

since obvious predictionsmay be derived from or be in line

with many theoretical positions or may result from many

different influential factors. Instead, testing provocative

predictions, that is, predictions that no one would bet on

(e.g., with a prior probability for the null hypothesis of

90%), is what generates progress in scientific understand-

ing, if the data forces scientists to change their thinking.

For this common and standard situation in psychology

and other areas, where the null hypothesis is unlikely a pri-

ori, when power is low, the posterior probability of the null

being true doesn’t change in anymeaningful way after see-

ing a significant result, even if we change type-I error rate

to 0.005. This result is in line with prior suggestions that p-

values should not be used to make decisions on the null or

alternative hypothesis (Amrhein et al., 2019). What shifts

our belief in a meaningful way is reducing type-I error rate

to say 0.005 (as suggested by Benjamin et al., 2018 and oth-

ers), as well as running a high powered study, followed
by a high-powered replication. Only this combination of

high power and small type-I error rate yields informative

results.

One might object here that we set the prior probabil-

ity of the null hypothesis being true at an unreasonably

high value. This objection has some merit; although typi-

cally the prior probability for the null may lie at 10%, there

may well be some situations where the null is unlikely to

be true a priori. In this situation, our results show that a

significant effect does indicate a very low posterior prob-

ability of the null. This is the case across a range of type-I

error rate levels (α of 0.05, 0.01, 0.005) and for different
levels of power (Figure 4c+f+i). Even for low power stud-

ies with α = 0.05 the posterior probability is between 1
and 25%, which is quite low. So yes, if the prior proba-

bility of the null being true is already low, even with rela-

tively low power and the standard type-I error rate level of

0.05, we are entitled to changing our belief quite strongly

against the null once we have a significant effect. An ob-

vious issue here is that if we already don’t believe in the

null before we do the statistical test, why bother to try to

reject the null hypothesis? Even if we were satisfied with

rejecting a null hypothesis we don’t believe in in the first

place, running low power studies is always a bad idea be-

cause of type M and S error.
1
As Gelman and Carlin, 2014

and many others before them have pointed out, significant

effects from low power studies will have exaggerated es-

timates of effects and could have the wrong sign of the ef-

fect. The probability of the null hypothesis being true is not

the only important issue in a statistical test; accurate esti-

1
Significant results have a higher chance of publication, i.e., published research goes through a significance filter. In this situation, low-power stud-

ies will only turn out significant when the effect is very large by chance, leading to type M(agnitude) error, i.e., an overestimation of effect sizes in the

published literature. Moreover, some published effects will have the wrong sign, indicative of type S(ign) error.
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mation of the parameter of interest and quantifying our

uncertainty about that estimate are equally important.

Replication of results is generally viewed as strong evi-

dence against the null hypothesis and for the robustness of

an effect. In Bayesian analysis, results from several repli-

cation studies can easily be combined by using the poste-

rior from one study as the prior for the next. Using this

approach, we could quantify how a succession of signifi-

cant results in identical replication studies can bring down

the posterior probability for the null, when the prior for

the null is high. Our results showed that when using either

high-power studies or low type-I error rate levels (α = .01
or α = .005), a significant replication makes the null hy-
pothesis very unlikely. However, interestingly, when us-

ing a low-power design (with average power of 30%) and
α = .05, then even three studies with a significant ef-
fect (i.e., one original studies and two replications) still

do not provide decisive evidence against the null hypoth-

esis (the posterior probability of the null ranges between

0.0071 and 0.67). Thus, our results support the general
view that replications provide key information about the

null hypothesis, but also show that this does not hold true

for low power studies with conventional type-I α error lev-
els.

Last, we note that results from empirical studies usu-

ally have more than one possible explanation (Lykken,

1968). Therefore, new, surprising and unlikely predictions

should be generated by a theory and tested experimentally,

and alternative explanations should be ruled out ("strong

inference" Platt, 1964). In any case, a discovery, especially

a surprising discovery, should not be claimed based on a

single p-value.

In summary, we investigated the intuitive belief held by

some researchers that finding a significant effect reduces

the posterior probability of the null hypothesis to a low

value. We show that this intuition is not true in general.

The common situation in psychology and other areas is

that the null hypothesis is a priori quite likely to be true. In

such a situation, contrary to intuition, finding a significant

effect leaves us with much posterior uncertainty about the

null hypothesis being true. Obtaining a reasonable reduc-

tion in uncertainty is thus another reason to adopt the re-

cent recommendation by Benjamin et al., 2018 to change

type-I error rate to α = 0.005. Furthermore, conducting
high power studies is an obvious but neglected remedy.

Otherwise, the results will be indecisive, even when repli-

cation studies are performed.

Our key result is that the posterior probability for the

null given a significant effect varies widely across settings

involving different type-I and type-II error rates and dif-

ferent prior probabilities for the null. The intuition that

frequentist p-values may provide a shortcut to this infor-

mation is in general misleading.

In conclusion, the most conservative way to proceed is:

1. Assume conservatively that the null hypothesis has a

relatively high probability of being true.

2. Set alpha at 0.005 (Benjamin et al., 2018).

3. Run as high-powered a study as possible. This requires

planning sample sizes in advance (Vasishth et al., 2022).

4. Replicate your result once at least to make sure you can

get similar ballpark estimates - Gelman and Hill, 2007

call this the “secret weapon”.

5. Optionally: Understand the design properties of your

experiment under hypothetical repeated sampling

(Gelman & Carlin, 2014).

6. Optionally: To gain a better understanding of your in-

ferences, compute (and perhaps also report) the pos-

terior probability of the null hypothesis by using the

Shiny app that we developed here or by using the for-

mulas shown in the present work, and/or conduct for-

mal Bayes factor analyses (Schad, Nicenboim, Bürkner,

Betancourt, & Vasishth, 2022).
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J., Robinson, E. S., & Munafò, M. R. (2013). Power fail-

ure:Why small sample size undermines the reliability

of neuroscience. Nature Reviews Neuroscience, 14(5),
365–376. doi:10.1038/nrn3475

Colquhoun, D. (2014). An investigation of the false discov-

ery rate and the misinterpretation of p-values. Royal
Society Open Science, 1(3), 140216. doi:10.1098/rsos.
140216

Doherty, U. B., Benson, P. E., & Higham, S. M. (2002).

Fluoride-releasing elastomeric ligatures assessed

with the in situ caries model. The European Journal of
Orthodontics, 24(4), 371–378. doi:10.1093/ejo/24.4.371

Gelman, A., & Hill, J. (2007). Data analysis using regres-
sion and multilevel/hierarchical models. Cambridge,
UK: Cambridge University Press.

Gelman, A., & Carlin, J. (2014). Beyond power calculations:

Assessing Type S (sign) and Type M (magnitude) er-

rors. Perspectives on Psychological Science, 9(6), 641–
651. doi:10.1177/1745691614551642

Harris, M., & Taylor, G. (2003).Medical statistics made easy.
doi:10.3109/9780203502778

Ioannidis, J. P. (2005). Why most published research find-

ings are false. PLoS Medicine, 2(8), e124. doi:10.1371/
journal.pmed.0020124
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Figure 5 Probabilities for the null hypothesis, P (H0) = θ, for different number of significant replication studies. Left
panels: One study yields a significant result. Middle panels: After an original study turned out significant, one replication

study with identical experimental design and significance level was also significant. Right panels: One original and two

replication studies with identical designs and significance levels yielded significant results. Shown are the prior prob-

ability (blue) and posterior probabilities given a significant effect (grey) at a type-I error rate α of 0.05 (upper panels),
0.01 (middle panels), and 0.005 (lower panels). The priors for replication studies are defined as the posterior from the
previous study. Quantities are shown for situations of low statistical Power, β ∼ Beta(10, 4) (mean type-II error rate
of about β = 70%, mean Power of about 30%), medium statistical Power, β ∼ Beta(8, 8) (mean type-II error rate of
β = 50%, mean Power of 50%), and high statistical Power, β ∼ Beta(2, 20) (mean type-II error rate of about β = 10%,
mean Power of about 90%).
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