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Abstract Many tools exist for power analyses focused on R2
Model (the variance explained by

all the predictors together) but tools for estimating power for coefficients often require compli-

cated inputs that are neither intuitive nor simple to estimate. Further compounding this issue is

the recognition that power to detect effects for all predictors in a model tends to be substantially

lower than power to detect individual effects. In short, most available power analysis approaches

ignore the probability of detecting all effects and focus on probability of detecting individual ef-

fects. The consequences of this are designs that are underpowered to detect effects. The present

work presents tools for addressing these issues via simulation approaches provided by the pwr2ppl

package (Aberson, 2019) and an associated Shiny app.
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Introduction
Power analysis came to prominence with Jacob Cohen’s

seminal work (Cohen, 1977). Since then, considerable liter-

ature and numerous software packages focused on power

(e.g., G*Power, PASS, nQuery, Sample Power) emerged. De-

spite advances, surveys across fields such as abnormal psy-

chology (Sedlmeier & Gigerenzer, 1989), consulting, clini-

cal, and social psychology (Rossi, 1990), and neuroscience

(Button et al., 2013) suggest that low power remains com-

mon in published literature.

Most tools for multiple regression power focus on R2

Model or R2
change, but power analyses focused on mul-

tiple regression coefficients are still a challenge. Existing

resources for detecting power for coefficients are of lim-

ited utility as most require input of complicated statisti-

cal values. For example, G*Power (Faul, Erdfelder, Lang,

& Buchner, 2007) provides protocols to address power for

a single predictor. This approach requires that users in-

put either partialR2
or its components. The partialR2

is a

function of the proportion of variance uniquely explained

by the predictor (squared semi-partial correlation) and the

variance explained in the dependent measure by the other

predictors in the model. This value is not intuitive, nor

is it provided by most commercial packages. This tool is

accurate; however, the complexity of the required inputs

limits its usability as it requires values unknown to most

researchers. Without tools that are simple enough to pro-

duce reasonable power analyses, low power will continue

to plague our field.

Another explanation for low power in designs with

multiple predictors is a lack of recognition that power for

detecting a set of outcomes differs from power for indi-

vidual coefficients. Researchers using multiple regression

models with three predictors commonly want to detect

significant coefficients for all the predictors. However,

even some tools for power analyses with multiple predic-

tors estimated simultaneously typically yield an estimate

of power for each predictor, but not power to detect all of

them in the same study (e.g., MRC function in pwr2ppl;
Aberson, 2019). Problematically, power to detect multi-

ple effects can differ substantially from power for individ-

ual effects. In most situations, power to detect multiple

effects is considerably lower than the power for individ-
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ual effects. The lack of attention to this form of power

is a likely source of underpowered research in the behav-

ioral sciences (Maxwell, 2004). This combination of factors,

both a lack of tools for simultaneously calculating power

over multiple predictors and a lack of awareness the prob-

lems associated with multiple predictors create a situation

wherein multiple regression designs tend to have consid-

erably less power than intended.

The present paper addresses these challenges with

power analysis for multiple regression. The paper intro-

duces tools to calculate simultaneous power estimates for

up to five multiple regression coefficients (i.e., five predic-

tors) and power for detecting significant effects on all co-

efficients in a model. In addition to code, I also present a

Shiny app that requires no background in R. All tools re-
quire entry of zero-order correlations with several other

optional values.

Typical Effect Sizes and their Relation to Power
In the area of social and personality psychology, a meta

analysis of meta analyses found the typical effect size was

equivalent to r = .21 (equivalent to d = 0.43; Richard,
Bond, & Stokes-Zoota, 2003). Similarly in fields like intelli-

gence research, effect sizes averaged r = .17 (d = 0.35;
Mathur & VanderWeele, 2021), studies of interventions

for children with externalizing behaviors was r = .22
(d = 0.46; Mingebach, Kamp-Becker, Christiansen, & We-
ber, 2018), and meta analyses published in Psychological

Bulletin yielded an average r = .16 (d = 0.32; Cafri, Krom-
rey, & Brannick, 2010). Given these somewhat small typi-

cal sample size in psychology (n = 107; Marszalek, Barber,
Kohlhart, & Holmes, 2011), this suggests much of the work

in the field is deeply underpowered as the average effect

size and sample size produce about 60% power. This, com-

bined with the reduction in power for detecting all coeffi-

cients of interest suggests that, on average, power is even

worse than previously understood.

Equations for Multiple Regression
Calculating power formultiple regression involves correla-

tions among all variables in amodel. The calculation of the

standardized regression coefficient (Eq. 1) involves both

the correlations between the predictors (represented with

numbers) and the criterion or dependent variable (repre-

sented with y). In this equation, ry1
is the correlation be-

tween the predictor one and the dependent variable (dv),

ry2
is the correlation between the predictor two and the dv,

and r12 is the correlation between the two predictors.

b∗y1.2
=
ry1

− ry2
r12

1− r212
(1)

The size of the coefficient increases when correlations be-

tween the predictor andDV are large but gets smallerwhen

predictors correlate in the same direction as predictor-dv

relationships.

Equation 1 demonstrates important concepts relevant

to multiple predictors. Larger regression coefficients yield

more power. Larger coefficients result from stronger cor-

relations between predictors and the DV. Correlation be-

tween predictors drives coefficient size downward and

thus reduces power. Broadly this means that multi-

collinearity reduces statistical power.

Power for Detecting Significant Effects for All Predic-
tors in the Model
Most commonly, researchers using multiple regression

want to detect significant effects for all of the predictors

in a model. However, existing power analysis approaches

only address power for individual predictors. This section

details how power to detect effects for all of the predictors

in a model differs from power to detect individual effects

and present tools for addressing this form of power. The

primary issue relevant to detecting significant effects for

multiple predictor variables is the role of Beta error infla-

tion (or Familywise Beta error; see Maxwell, 2004, for a

technical discussion). This issue is similar to inflation of

α or Type I error. When conducting multiple significance
tests, Type I error rates for the family of tests (a.k.a., fam-

ilywise alpha) increase. Equation 2 provides an estimate

of familywise α error for multiple comparisons and is the
conceptual basis for development of tests such as the Bon-

ferroni adjustment. According to the formula, with three

tests using a pairwise alpha (αpw) of .05, familywise alpha

(αfw) is .14.

αfw = 1− (1− αpw)
c

(2)

The same process is at work with the familywise probabil-

ity of making a β or Type II error (Equation 3), a value we
refer to as βfw. For example, for a study designed to de-
tect β of .10 (called βind for Beta individual) for each of its
three predictors (Power = .90 for each predictor), the like-

lihood of making a single β error among those three tests
is substantially higher than the error rate of .10 for the in-

dividual tests. Just as with α error, multiple tests inflate
the chances to make a single β error among a set of sig-
nificance tests. The βfw value easily converts to power to
detect all of the effects in the design by taking 1 − βfw.
Throughout the paper, we term this value Power(All).

βfw = 1− (1− βind)
c

(3)

Table 1 shows βfw and Power(All) for two through 10
predictors. One clear result here is that inmodels with four

predictors or more, if the researcher designs for Power =

.90 for each individual predictor, the studywill, more likely

than not, fail to find significance on at least one of the pre-

dictors. This table is useful for a conceptual understanding
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Table 1 Familywise Type II Error (Beta) Rates for Predictors using βpw = .10 (Power = .90), assuming independence of
predictors

Number of Predictors βfw Power(All)

2 .190 .810

3 .261 .729

4 .344 .656

5 .410 .590

6 .469 .531

7 .522 .478

8 .570 .430

9 .613 .387

10 .651 .349

of βfw , however these results (Eq. 3) are only accurate for
calculations where all tests have the same power and pre-

dictors are uncorrelated.

Power (All) for Designs with Correlated Predictors

Calculation of βind and Power(All) is simple with uncorre-
lated predictors. In practice, predictors nearly always cor-

relate to some degree in multiple regression models. How

this influences Power(All) is a function of both the strength

and direction of correlations between predictors. When

predictors correlate positively with each other, Power(All)

decreases. If predictors negatively correlate, Power(All) in-

creases but this is a relatively rare occurrence with some

values (as noted in Table 2) being impossible.

Calculations of Power(All) involve simulation. Simula-

tions draw independent samples of size n from a popula-
tion with parameters used in the power analysis. Multi-

ple regression is performed on each resample, allowing for

a simple count how of many samples allowed rejection of

null hypotheses for all the predictors in the study. The pro-

portion of samples rejecting all hypotheses is Power(All).

Equation 4 provides a 95% confidence interval for the

power estimate.

95%CI = power× t.95 ×

√
p(1− p)

nsims
(4)

Table 2 demonstrates how predictor correlations affect

Power(All) for a three-predictor model. Power for each

predictor is.90 (the predictor-DV correlations vary to cre-

ate this level of power) and the sample size is 100. Reject

All reflects Power(All) estimates derived by simulation of

10,000 samples. Since this approach is empirical, there is

some deviation from theoretical probabilities. For exam-

ple, Power(All) for two predictors with Power = .80 and

no correlation between predictors is theoretically .64. A

simulation, however, might provide a value of .635. The

range of values for Power(All) is .72 to .82 withmore power

generated as correlations between predictors move from

strongly positive to strongly negative. Obviously, this is

substantially smaller than the Power of .90 for individ-

ual coefficients. These values suggest that negative cor-

relations between predictors are advantageous. However,

relatively strong negative correlations between predictors

under conditions wherein the predictors show substantial

positive correlation with the criterion is about as likely as

seeing Bigfoot.

Also of note is that some values in Table 2, represented

as n/a, are impossible. For example, there is no predictor-

DV correlation where it is possible to have correlations

of -.60 or -.80 between the predictors. Additionally, mod-

els with substantial positive correlations among multiple

predictors likely violate regression assumptions regarding

multicollinearity.

The previous section demonstrated how correlations

between predictors influence Power(All). However, the

values presented in those tables are limited as they reflect

situations wherein correlations between predictors and

power for individual predictors are constant. Practically,

predictors might show various levels of power and correla-

tion. The MCR_all function included in pwr2ppl (Aber-
son, 2019), allows for such input and address Power(All)

for designs with two to five predictors.

Three Predictor Example

The example that follows demonstrates use of the function

MRC_all to determine adequate sample size. This exam-
ple uses the values in Table 3 to establish population corre-

lations.

Using the correlation matrix from Table 3, we demon-

strate use of MCR_all function from the pwr2ppl R
package (Aberson, 2019). Listing 1 contains code and out-

put. The code is straightforward with the subscripts 1, 2,

and 3 representing predictor variables and y representing
the outcome. Other options include alpha. Alpha defaults

to .05. Presently, the code is limited to five predictors.
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Table 2 Power(All) for Three Predictors with Power=.90 and Varying Levels of Correlation Between Predictors

Correlation between

predictors

Required x-y corre-
lations

Reject

None

Reject

One

Reject

Two

Reject All N for 90%

Power(ALL)

-.80 n/a

-.60 n/a

-.40 .093 .024 .046 .111 .819 123

-.20 .194 .006 .040 .183 .771 131

.00 .294 .001 .026 .223 .750 132

.20 .399 .000 .016 .255 .729 135

.40 .517 .000 .012 .268 .720 136

.60 .650 .000 .008 .284 .708 137

.80 .809 .000 .005 .276 .719 135

Note. Required x-y correlation is the correlation between each predictor and the dv to produce Power = .90 with n =
100.

Table 3 Correlations between Variables in Three Predictor Example

x1 x2 x3
x1 .45 (ry1 )

x2 -.39 (ry2 ) -.42 (r12)
x3 -.31 (ry3

) -.22 (r13) .11 (r23)

For n = 173, power for the individual predictors are
.985, .916, and .907 respectively but Power(All) is only .816.

To get to Power(All) = .90, we need a sample of 210. This

represents a 21 percent increase over the original sample

size estimate.

Users might want to change the number of samples

draw to get a quick sense of how large a sample will be

needed before using the default 10,000 replications. List-

ing 2 demonstrates how to use this code in conjunction

with a loop. Do note that a loop using 10,000 samples

will take a bit of time. When looping, we suggest begin-

ning with a small number of replications (e.g., 100) to get

a reasonable estimate of the sample sizes that achieve ad-

equate power and then move to 10,000 replications fo-

cused on a smaller range of sample sizes. For this anal-

ysis, x stands for predictor-predictor correlations and i
stands for predictor-dv correlations (alternatively, users

may enter values directly, replacing x or i with the num-
ber). The command for j in seq(128,132,1) indi-
cates that the analysis should start with an n of 128 and
add one until we hit 132.

A Tour of the Code
The table of the Appendix at the end of the article presents

annotated MRC_all code. The code takes a sample of size
n (specified by the user) and generates an analysis predict-
ing the DV from the set of IVs for that sample. Mutliple

regression is performed and results stored. This repeats

10,000 times via resampling. Finally, the code compiles re-

jection rates and provides output representing power for

individual coefficients (total times rejecting null divided by

total number of replications) and power for rejecting zero

to all coefficients. Usersmay change the number of replica-

tions. However, more replications substantially increased

processing time.

Shiny App
These protocols are also available via a Shiny app. Figure 1

shows the look and feel of the app. To initialize the app use

the code shiny::runGitHub("MRC_all-Shiny",
"chrisaberson"). Presently the app only handles up
to three predictors.

Conclusion
Researchers often misunderstand power for multiple re-

gression models. Specifically, the difference between

power for detecting a single coefficient as opposed to

power for detecting all coefficients. This misunderstand-

ing results in underpowered designs. The tools discussed

in this paper provide researchers with tools for estimating

both power for individual coefficients and power to detect

all coefficients in a model.
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Listing 1 Using MRC_all

pwr2ppl::MRC_all(ry1=.45,ry2=-.39,ry3=-.31,r12=-.42,r13=-.22,r23=.11,n=173)
## Sample size is 173
## Power R2 = 1
## Power b1 = 0.9835
## Power b2 = 0.9139
## Power b3 = 0.9018
## Proportion Rejecting None = 0
## Proportion Rejecting One = 0.0066
## Proportion Rejecting Two = 0.1876
## Power ALL (Proportion Rejecting All) = 0.8058

pwr2ppl::MRC_all(ry1=.45,ry2=-.39,ry3=-.31,r12=-.42,r13=-.22,r23=.11,n=210)
## Sample size is 210
## Power R2 = 1
## Power b1 = 0.9941
## Power b2 = 0.9588
## Power b3 = 0.9467
## Proportion Rejecting None = 0
## Proportion Rejecting One = 0.0023
## Proportion Rejecting Two = 0.0958
## Power ALL (Proportion Rejecting All) = 0.9019
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Power failure: Why small sample size undermines

the reliability of neuroscience. Nature Reviews Neu-
roscience, 14(5), 365–376. doi:10.1038/nrn3475

Cafri, G., Kromrey, J. D., & Brannick, M. T. (2010). A meta-

meta-analysis: Empirical review of statistical power,

type i error rates, effect sizes, and model selection

of meta-analyses published in psychology. Multivari-
ate Behavioral Research, 45(2), 239–270. doi:10.1080/
00273171003680187

Cohen, J. (1977). Statistical power analysis for the behav-
ioral sciences, rev ed (1987-98267-000). Inc: Lawrence
Erlbaum Associates. Retrieved from http : / / ezproxy.

humboldt .edu/ login?url=https : / / search.ebscohost .

com/ login .aspx?direct= true&db=psyh&AN=1987-

98267-000&site=ehost-live

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007).

Gpower 3: A flexible statistical power analysis pro-

gram for the social, behavioral, and biomedical sci-

ences. Behavior Research Methods, 39(2), 175–191.
doi:10.3758/BF03193146

Marszalek, J., Barber, C., Kohlhart, J., & Holmes, C. (2011).

Sample size in psychological research over the past

30 years. Perceptual and Motor Skills, 112, 331–348.
doi:10.2466/03.11.PMS.112.2.331-348

Mathur, M. B., & VanderWeele, T. J. (2021). Estimating

publication bias in meta-analyses</span> of peer-

reviewed studies: A meta-meta-analysis across disci-

plines and journal tiers. Research Synthesis Methods,
12(2), 176–191. doi:10.1002/jrsm.1464

Maxwell, S. E. (2004). The persistence of underpow-

ered studies in psychological research: Causes, conse-

quences, and remedies. Psychological Methods, 9(2),
147–163. doi:10.1037/1082-989X.9.2.147

Mingebach, T., Kamp-Becker, I., Christiansen, H., & Weber,

L. (2018). Meta-meta-analysis on the effectiveness of

parent-based interventions for the treatment of child

externalizing behavior problems. PLoS ONE, 13, 9–19.
doi:10.1371/journal.pone.0202855

Richard, F. D., Bond, C. F., & Stokes-Zoota, J. J. (2003). One

hundred years of social psychology quantitatively de-

scribed. Review of General Psychology, 7(4), 331–363.
doi:10.1037/1089-2680.7.4.331

Rossi, J. S. (1990). Statistical power of psychological re-

search: What have we gained in 20 years? Journal
of Consulting and Clinical Psychology, 58(5), 646–656.
doi:10.1037/0022-006X.58.5.646

Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statisti-

cal power have an effect on the power of studies? Psy-
chological Bulletin, 105(2), 309–316. doi:10.1037/0033-
2909.105.2.309

The Quantitative Methods for Psychology 1462

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.18.2.p142
https://dx.doi.org/10.1038/nrn3475
https://dx.doi.org/10.1080/00273171003680187
https://dx.doi.org/10.1080/00273171003680187
http://ezproxy.humboldt.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1987-98267-000&site=ehost-live
http://ezproxy.humboldt.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1987-98267-000&site=ehost-live
http://ezproxy.humboldt.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1987-98267-000&site=ehost-live
http://ezproxy.humboldt.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1987-98267-000&site=ehost-live
https://dx.doi.org/10.3758/BF03193146
https://dx.doi.org/10.2466/03.11.PMS.112.2.331-348
https://dx.doi.org/10.1002/jrsm.1464
https://dx.doi.org/10.1037/1082-989X.9.2.147
https://dx.doi.org/10.1371/journal.pone.0202855
https://dx.doi.org/10.1037/1089-2680.7.4.331
https://dx.doi.org/10.1037/0022-006X.58.5.646
https://dx.doi.org/10.1037/0033-2909.105.2.309
https://dx.doi.org/10.1037/0033-2909.105.2.309


¦ 2022 Vol. 18 no. 2

Listing 2 Looping Analyses

x <- -.20
i <- .194
for (j in seq(128,132,1))
{

print(j)
pwr2ppl::MRC_all(ry1=i,ry2=i,ry3=i,r12=x,r13=x,r23=x,n=j, rep=10000)

}
## [1] 128
## Sample size is 128
## Power R2 = 0.9954
## Power b1 = 0.9615
## Power b2 = 0.9576
## Power b3 = 0.9588
## Proportion Rejecting None = 0.0011
## Proportion Rejecting One = 0.0109
## Proportion Rejecting Two = 0.097
## Power ALL (Proportion Rejecting All) = 0.891

## [1] 129
## Sample size is 129
## Power R2 = 0.996
## Power b1 = 0.964
## Power b2 = 0.9618
## Power b3 = 0.9626
## Proportion Rejecting None = 6e-04
## Proportion Rejecting One = 0.0102
## Proportion Rejecting Two = 0.0894
## Power ALL (Proportion Rejecting All) = 0.8998

## [1] 130
## Sample size is 130
## Power R2 = 0.9969
## Power b1 = 0.9624
## Power b2 = 0.9667
## Power b3 = 0.9663
## Proportion Rejecting None = 6e-04
## Proportion Rejecting One = 0.0082
## Proportion Rejecting Two = 0.0864
## Power ALL (Proportion Rejecting All) = 0.9048

(Remaining output deleted)
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Figure 1 Shiny App for Multiple Regression Power for All Predictors
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Appendix: Inside the MRC_all function

Code Comment

MRC_all<-function(ry1=NULL, ry2=NULL, ry3=NULL,
ry4=NULL, ry5=NULL, r12=NULL, r13=NULL,r14=NULL,
r15=NULL, r23=NULL, r24=NULL, r25=NULL, r34=NULL,
r35=NULL, r45=NULL, n=NULL, alpha=.05, rep = 10000)

{

Initializes the function

pred<-NA
pred[!is.null(ry2)]<-2
pred[!is.null(ry3)]<-3
pred[!is.null(ry4)]<-4
pred[!is.null(ry5)]<-5

Establishes the number of

predictors.

vary<-1; var1<-1; var2<-1; var3 <-1; var4 <-1; var5 <-1 Establishes the variances.

This assumes normality

if (pred=="2") {
nruns = rep
int = numeric(nruns)
b1 = numeric(nruns)
b2 = numeric(nruns)
R2 = numeric(nruns)
F = numeric(nruns)
df1 = numeric(nruns)
df2 = numeric(nruns)

Creates each value used

for calculations as a vari-

able with rows equal to the

number of replications.

for (i in 1:nruns) { Initializes a loop

samp <- data.frame(MASS::mvrnorm(n, mu = c(0, 0, 0),
Sigma = matrix(c(vary, ry1, ry2,

ry1, var1, r12,
ry2, r12, var2),
ncol = 3),

empirical =FALSE)
)

Draws a sample of the spec-

ifiedn from the population.

test <- stats::lm(formula = X1 ~ X2+ X3, data = samp) This applies multiple re-

gression.

c<-summary(test)
int[i] = stats::coef(summary(test))[1,4]
b1[i] = stats::coef(summary(test))[2,4]
#grabs p from each analysis
b2[i] = stats::coef(summary(test))[3,4]
R2[i] = c$r.squared
F[i]<-c$fstatistic[1]

Captures results including

intercept, b1 and b2 (un-

standardized coefficients),

R squared, F, and df.

df1[i]<-c$fstatistic[2]
df2[i]<-c$fstatistic[3]

}

Creates a data frame to

store results.
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Powerall = data.frame(int = int, b1 = b1, b2 = b2)
Powerall[4:5, "rejectb1"]<-NA
Powerall$rejectb1 [ b1 < alpha] <- 1
Powerall$rejectb1 [ b1 >= alpha] <- 0
Powerall[4:5, "rejectb2"]<-NA
Powerall$rejectb2 [ b2 < alpha] <- 1
Powerall$rejectb2 [ b2 >= alpha] <- 0

Assigned the row a 1 if we

can reject null for each pre-

dictor.

Powerall[4:5, "rejecttotal"]<-NA
Powerall$rejectall <- (Powerall$rejectb1 +

Powerall$rejectb2)

Calculates the number of

cases rejecting all null hy-

potheses. Calculates the

other values

Reject.None <-NA
Reject.None [Powerall$rejectall == 0]<-1
Reject.None [Powerall$rejectall > 0]<-0
Reject.One <-NA
Reject.One [Powerall$rejectall == 1]<-1
Reject.One [Powerall$rejectall != 1]<-0
Reject.All <-NA
Reject.All [Powerall$rejectall == 2]<-1
Reject.All [Powerall$rejectall != 2]<-0
is.numeric(Reject.None)
is.numeric(Reject.One)
is.numeric(Reject.All)

Converts raw numbers to

probability.

Power_b1<-mean(Powerall$rejectb1)
Power_b2<-mean(Powerall$rejectb2)
pR2<-1-stats::pf(F,df1, df2)
Powerall$rejectR2 [pR2 < alpha] <- 1
Powerall$rejectR2 [pR2 >= alpha] <- 0
Power_R2<-mean(Powerall$rejectR2)
PowerAll_R0<-mean(Reject.None)
PowerAll_R1<-mean(Reject.One)
PowerAll_R2<-mean(Reject.All)

Compile the results

message("Sample size is ",n)
message("Power R2 = ", Power_R2)
message("Power b1 = ", Power_b1)
message("Power b2 = ", Power_b2)
message("Proportion Rejecting None = ", PowerAll_R0)
message("Proportion Rejecting One = ", PowerAll_R1)
message("Power ALL (Proportion Rejecting All) = ",
PowerAll_R2)

Report the results

}

Note. This is a shortened version of the code. For full code see https://github.com/chrisaberson/pwr2ppl.
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