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Abstract A standardized mean difference using a pooled standard deviation with paired samples

(dp; paired-pooled design) can be compared directly to a dp from an independent samples design,
but the unbiased point estimate gp and confidence interval (CI) for dp cannot unless the population
correlation ρ between the scores is known in the paired-pooled design, which it rarely is. The ρ is
required to calculate the degrees of freedom ν for the design, and ν is necessary to calculate the
gp and CI. If a variable sample correlation is substituted for ρ the ν is only approximate and the
sampling distribution for dp is unknown. This article uses simulations to compare the characteris-
tics of the unknown distribution to the noncentral t distribution as an approximation and provides
empirically-derived regression equations to compensate for the bias in the approximated CI com-

puted using the noncentral t distribution. The result is an approximate but much more accurate
coverage of the CI than previously available. Tables are supplied to assist sample size planning and

computer programs are provided for computations. These results are experimental and tentative

until the actual distribution can be discovered. The regularity of the deviation in coverage that

allows the compensation to work encourages that search.
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Introduction
A common experiment in psychology and science in gen-

eral involves a comparison of two sample means. These

means can be from two independent samples of partici-

pants or subjects (two-sample test), or they can be from

two dependent or correlated samples (paired-samples test)

such as repeated measures on one group of subjects or

measures from two different groups of subjects that have

been matched into pairs on a positively correlated match-

ing variable. This article presents the most accurate

method to date for computing confidence intervals (CIs)

for a standardized mean difference in paired samples tests

when the pooled standard deviation is the denominator for

standardization. The study also explores the effect of using

themethod on the point estimate of effect size. Themethod

is based on regression equations determined from the re-

sults of the simulations, where a “practical confidence coef-

ficient” replaces the nominal confidence coefficient in the

calculation of the CI. For many uses, an investigator need

only look up the practical coefficient in a table and use that

instead of the nominal coefficient when calculating a CI.

Some computing using supplied software may be required

for coefficients that do not appear in the table.

I begin by describing the way such means have been

compared historically, and the problemswith the proposed

solution. I then present simulations that demonstrate the

bias in coverage of approximated CIs and a simple method

to compensate for the bias in many cases.

An unstandardized (raw) mean difference D can be

standardized by dividing by a standard deviation (Becker,

1988; Cohen, 1988; Hedges, 1981). For two independent

samples with equal population variances, the best estimate

of the population standard deviation σ is a pooled estimate
from the two standard deviations. This article assumes

equal sample sizes in the two groups or conditions, so the

pooled standard deviation, the standardized mean differ-
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ence, and the degrees of freedom ν can be calculated as:

Sp =

√
S2
1 + S2

2

2
(1)

dp = D/Sp (2)

ν = 2(n− 1) (3)

For a paired samples design, the denominator is often the

standard deviation of the differences calculated directly

from the difference scores, or, if the standard deviations

and Pearson r are available:

SD =
√
S2
1 + S2

2 − 2rS1S2 (4)

dD = D/SD (5)

ν = (n− 1) (6)

The standardized mean difference d is a positively biased
estimator of the population δ. Hedges (1981) applied a
correction to produce an unbiased estimate g from the bi-
ased estimate d based on the degrees of freedom ν and the
gamma function Γ() (the nomenclature here conforms to
current usage, not the usage in Hedges’ original article).

Hedges’ unbiased g =d× J(ν);

J (ν) =
Γ
(
ν
2

)√
v
2 Γ

(
(v−1)

2

) (7)

An example of how to calculate J(16) in the free statistical
programming language R is,

exp( lgamma(16/2) - ( log( sqrt(16/2) )
+ lgamma( (16-1)/2) ) )

The log function helps prevent overflow with large n.
Thus, the unbiased versions of the standardized mean dif-

ferences for the two designs are gp = dp × J(ν) and
gD = dD × J(ν).
The unstandardized mean difference D is calculated

the same in two-sample and paired-sample designs and

can be compared directly between studies that use dif-

ferent designs. Confidence intervals can easily be com-

puted for an unstandardized difference (Fitts, 2022a; Kel-

ley, Maxwell, & Rausch, 2003) and in some contexts it is

the preferred difference for reporting (Bond, Wiitala, &

Richard, 2003; Wilkinson & the Task Force on Statistical

Inference, 1999). Standardized units are preferred when

comparing studies that use units of measurement that are

more arbitrary or not compatible with other measuring in-

struments. For example, effect sizes from two studies of

anxiety that use different testing scales can be compared in

standardized units when comparing unstandardized units

makes no sense.

The standardized estimates of effect size cannot be

compared directly between these two experimental de-

signs because the standardizer SP is usually quite differ-
ent from SD. In order to facilitate comparisons of effect
sizes from these different designs for purposes of gain-

ing more accurate estimates and for combining results us-

ing meta-analysis, methodologists recommended that the

same standardizer SP should be used in both designs as
calculated in Equation 1 (e. g. Borenstein, Hedges, Higgins,

& Rothstein, 2009, p. 29). In this article, I refer to the

paired samples design used with a pooled error term as

a “paired-pooled design” to distinguish it from the paired

design based on difference scores. This worked well for

comparing dp from the two designs, but the gp computed
from the paired samples design was biased when using

ν = (n − 1) as recommended by Borenstein et al. (2009)
or when using ν = 2(n − 1) as recommended by Goulet-
Pelletier and Cousineau (2018). Fitts (2020) demonstrated

that the degrees of freedom in a paired-pooled test, as re-

quired for the calculation of J(ν), varied according to the
population correlation ρ from ν = n − 1 when ρ = 1.0 to
ν = 2(n − 1) when ρ = 0. Cousineau (Cousineau, 2020;
Cousineau & Goulet-Pelletier, 2021) identified the correct

degrees of freedom for the paired-pooled design when ρ is
known,

Paired-pooled - population: ν = 2(n− 1)/(1 + ρ2), (8)

and presented the approximate distribution of the stan-

dardized mean difference dp when ρ is known. Cousineau
and Goulet-Pelletier (2021) then published a study of eight

different protocols for constructing approximate CIs for dp,
some of which used the noncentral t distribution as an ap-
proximation to the unknown distribution of dp when cal-
culated using the sample r instead of ρ.
The noncentral t distribution requires the calculation

of a noncentrality parameter λ, and in general terms the
definitions for the sample estimate and the population pa-

rameter are:

Sample: λ̂ = d
√
A; (9a)

Population: λ = δ
√
A (9b)

where A is a scaling factor based on the experimental de-
sign. For the two-sample test or a paired samples differ-

ence test the value of A is:

Two-samples pooled error term:A = n/2 (10)

Paired-samples differences:A = n. (11)

and the associated degrees of freedom are given in Equa-

tions 3 and 6. For the paired-pooled design, however, the
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value of A, like the degrees of freedom, depends on the
value of ρ,

Paired- pooled - population:A =
n

2 (1− ρ)
(12)

Because ρ is unknown in an experiment, it must be ap-
proximated using some variant of the sample correlation

coefficient. For the degrees of freedom, the variant is the

approximate unbiased correlation coefficient rOP (Olkin &
Pratt, 1958),

rOP = r

[
1 +

(
1− r2

)
2 (n− 3)

]
(13)

and for the noncentrality parameter the variant is the rec-

tified correlation coefficient rW (Cousineau, 2020)

rW = r
S1S2

S2
p

(14)

Thus, the approximate degrees of freedom and A for a
sample using the paired-pooled design are,

Paired- pooled - sample:ν = 2(n− 1)/(1 + r2OP ) (15)

Paired- pooled - sample:A =
n

2 (1− rW )
. (16)

Because r is a random variable, the degrees of freedom ν
and noncentrality parameter λ̂ from a sample are only ap-
proximations and will rarely equal the population values

of ν and λ as calculated using ρ. It is known that using
the estimated ν and a variable r often produce CIs with
other than the expected nominal coverage with the paired-

pooled design when using CI protocols employing a non-

central t distribution (Cousineau & Goulet-Pelletier, 2021).
What is not known is whether a correction exists to make

the coverages of the CIs more accurate.

In studying CIs for standardized mean differences, one

frequently refers to the expected coverage of the CI and to

its complement the exclusion rate (or Type I error rate).

“Coverage” means the proportion of randomly formed CIs

using a particular CI protocol that includes the population

standardized mean difference δ. This expected coverage
can often be calculated directly if the distribution of scores

is known to be normal (Fitts, 2021), and I abbreviate this

expected or desired coverage as η0. The exclusion rate for
this coverage is therefore α0 = 1 − η0. The η0 and α0

are inputs to the CI protocol that control coverage and ex-

clusion rate in a simulation. In addition to this expected

coverage, there is also an empirical or observed coverage

that is an output of a simulation and calculated as the pro-

portion of times that the CIs from random samples in the

simulation included the population δ. This observed or em-
pirical coverage is abbreviated η∗. Ideally, the value of η∗
in a simulation will be close to the expected value η0 if all

assumptions have been met. The variability of η∗ around
η0 grows smaller as n grows larger. However, if we ap-
ply a CI protocol with a nominal η0 to a distribution that
is skewed or otherwise does not meet the assumptions, we

may find that the observed η∗ from the simulation consis-
tently fails to equal η0. This is important for the upcoming
simulations because we will be using the noncentral t dis-
tribution based on a population noncentrality parameter λ
to estimate the noisier and unknown distribution based on

λ̂ = dP
√
n/(2 (1− rW ) (combining Equations 9a and 16).

The exploration of the CI for the paired-pooled design

requires a brief digression to decide what method to use

and how to calculate it. The statistic d is not normally
distributed, but a transformation of d (λ̂ in equation 9a)
creates a variable that is distributed as a noncentral t
with noncentrality parameter λ and degrees of freedom
as given in Equations 3, 9a, and 10 for the two-sample de-

sign or in Equations 6, 9a, and 11 for the paired-sample dif-

ference design. For the dp calculated using ρ with paired-
pooled design the distribution is also approximately a non-

central t (Equations 8, 9b and 12). Therefore, an ap-

proximate but highly accurate CI can be constructed us-

ing the noncentral t distribution for dp from two indepen-
dent samples, for dD from a paired-sample test using SD ,
or from a paired-pooled test using dp if ρ and ν are both
known. The subject of this article is the application of the

samemethod to a CI for dp using the paired-pooledmethod
when using a variable r instead of ρ as would happen in
most experiments.

In addition to the point estimate gp and the CI, it will be
useful to calculate the variance of g assuming the sample
standardized mean difference is drawn from a noncentral

t distribution. The equation for δ is adapted from Hedges
(1981) where the factor A is defined in Equations 10, 11,
and 12, for each experimental design.

V ar (d) =

(
1

A

)
ν

ν − 2

(
1 + (A) δ2

)
− δ2

J(ν)
2 . (17)

If a biased d is substituted for δ, the unbiased V ar(g)
(Hedges, 1981) can be calculated as:

V ar(g) = V ar(d)J(ν)2 (18)

The following experiments will explore whether the

V ar(g) is an unbiased estimate of the population vari-
ance of d when used with a paired-pooled design using
A = n

2(1−rW ) (Equation 16) as a substitute for A =
n

2(1−ρ) (Equation 12) and using ν = 2(n − 1)/(1 + r2OP )

(Equation 15) as a substitute for ν = 2(n − 1)/(1 + ρ2)
(Equation 8).
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Table 1 Summary of all definitions of sample statistics (a) and population parameters or ideal values (b) for mean

difference test between Sample 1 and Sample 2 arms as given throughout the text. The d can be computed using either
the standard deviation of the difference scores SD or the pooled standard deviation of the two sets of scores as in the
two-sample test, SP .

Symbol Sample statistic (a) Population parameter or ideal (b)

Raw mean difference D = M1 −M1 ∆ = µ1 − µ2

Raw CI full width W Ω

Standardized d (two sample scores) dp = D/Sp δp = ∆/σp
A (two samples) A = n/2 A = n/2
df (two samples) ν = 2(n− 1) ν = 2(n− 1)
CI width w = W/Sp ω = Ω/σp

Standardized d (difference scores) dD = D/SD δD = ∆/σD
A (difference scores) A = n A = n
df (difference scores) ν = n− 1 ν = n− 1
CI width w = W/SD ω = Ω/σD

Standardized d (paired-pooled scores) dp = D/Sp δp = ∆/σp
A (paired-pooled scores) A = n

2(1−rW ) A = n
2(1−ρ)

df (paired-pooled scores) ν = 2(n− 1)/(1 + r2OP ) ν = 2(n− 1)/(1 + ρ2)
CI width w = W/Sp ω = Ω/σp

d to t conversion λ̂ = d
√
A λ = δ

√
A

t to d conversion d = λ̂
√

1
A δ = λ

√
1
A

Note. λ, the population noncentrality parameter of the relevant noncentral t distribution with degrees of freedom ν
in column b. λ̂, an estimate of that noncentrality parameter with degrees of freedom ν in column a; rW , the rectified
Pearson r, Equation 14; rOP , the Pearson r corrected for bias, Equation 13. Assumes n1 = n2 = n per group for two
independent samples or n = number of pairs for paired samples. A is a scaling factor unique to each design.

Noncentral t Confidence Intervals
Methods for constructing “exact” CIs for either d or g in a
two independent-samples test have been proposed (Goulet-

Pelletier & Cousineau, 2018; Hedges, 1981; Hedges & Olkin,

1985; Steiger & Fouladi, 1997). Unfortunately, the CI gener-

ated by Hedges and Olkin method is not the same as that

generated by the Steiger and Fouladi method. Fitts (2021)

provided a method for calculating the exact coverages of

these four different CI methods: Hedges and Olkin with d
or with g, and Steiger and Fouladi with d or with g. The
most accurate was the Steiger and Fouladi method used

with d, which always produced coverage that matched the
desired coverage η0. Thus, when it comes to standardized
mean differences, we are in the awkward position of pre-

ferring the unbiased g as a point estimate of effect size and
the CI for the biased d as the best interval estimate. Kelley
and Rausch (2006) give other examples where best point

and interval estimates are based on a combination of bi-

ased and unbiased estimators.

Kelley and Rausch (2006) used the Steiger and Fouladi’s

(1997) method with d to determine sample sizes for two-
sample tests across a wide range of standardized CI full

widths, w, that should yield an observed coverage equal
to the desired coverage on average. This aids sample size

planning in experiments so that a sample size can be se-

lected to get the desired width and coverage on average.

A complicating feature of standardized CIs is the fact that

the sample size required to produce the desired coverage

varies with effect size: larger standardized effect sizes re-

quire larger sample sizes to achieve the same desired con-

fidence level for a fixed width of CI than smaller or null

standardized effect sizes. Tables 1 to 3 in Kelley and Rausch

(2006) are two dimensional tables with the standardized

effect size δ = ∆/σ as the columns and the standardized
widths ω = Ω/σ as rows (whereΩ is the desired full width
of the CI in raw units, see Table 1).

The exact distribution of λ̂ = dP
√
n/(2 (1− rW ) is un-

known (Cousineau & Goulet-Pelletier, 2021). However, one

can use the noncentral t distribution to approximate the
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unknown distribution with the paired-pooled method to

see the conditions under which gp provides an unbiased
point estimate of δ and the Steiger and Fouladi’s (1997)
method with dp provides a close enough approximation
to the nominal coverage to be useful. One paired-pooled

protocol tested by Cousineau and Goulet-Pelletier (2021),

which they called the “Pivotal of t’”, involves the same cal-
culation of the CI by the Steiger and Fouladi (1997) proto-

col except that the noncentrality parameter and degrees of

freedom were as given in Equations 9a, 15, and 16 for the

paired-pooled scores instead of for the two-sample scores.

This article uses that protocol.

Although the CI method for dD assumes only a nor-
mal distribution of difference scores, the method for dp
must also require homogeneous variances for the use of

Sp to be valid. Therefore, the populations in the simula-
tions had equal variances, and a correlation between sam-

pled scores was induced as a variable in different simu-

lations using a common method as previously described

(Fitts, 2018, 2020).

Calculating the CI Limits
Observed CI. The calculation of the CI for the standard-
ized mean difference d uses the algorithm of Steiger and
Fouladi (1997) and involves a computer search for conver-

gence rather than a closed-form equation. The d for the ex-
periment is calculated first, and it is converted to a t value,
λ̂, according to Equations 9a and 16. The lower and upper
limits, LLt and ULt, of a two-sided CI around λ̂ are the
noncentrality parameters of two unique noncentral t dis-
tributions with ν degrees of freedom. The LLt has λ̂ as the
t quantile corresponding to probability 1 − α0/2, and the

ULt has λ̂ as the t quantile corresponding to the probabil-
ity α0/2. The algorithm for this uses a computer search for
the desired noncentrality parameters of the two noncen-

tral t distributions with ν degrees of freedom that have λ̂
as the quantile suitably close to probabilities 1− α0/2 and
α0/2 (current approximations are within 8 decimal digits).
For any given ν, the noncentral t distribution at λ = 0.0

is identical to the central t distribution for that ν and is
symmetrical. All other noncentral t distributions have a
degree of skewness in proportion to the absolute value of

λ and a direction according to the sign of λ (for graphical
illustrations see Cumming & Finch, 2001; Fitts, 2021; Kelley

& Rausch, 2006). Because of the skewness, the quantiles

at symmetrical probabilities such as 1 − α0/2 and α0/2
are not equal distances from the noncentrality parameter

λ. To put the limits in the same units as d we convert LLt
and ULt to standard score equivalents LLd and ULd ac-
cording to an algebraic manipulation of Equations 9a and

16:

LLd = LLt

√
1
n

2(1−rW )

;

ULd = ULt

√
1
n

2(1−rW )

(19)

Steiger and Fouladi-Compliant Fixed-width CI. The
sample size necessary for a CI having nominal coverage

for an interval of exact width ω with a paired-pooled de-
sign can be calculated when ρ is known (Fitts, 2021), but
it must be estimated from simulations when using r. In
the search for the correct sample size, one sets a trial n
and a fixed width ω but does not know η for that n. The
challenge is to create an interval like a Steiger and Fouladi

interval with equal probabilities in the two tails of a non-

central t distribution, and from these tail probabilities one
can calculate η = 1 − α for that n. The interval of ex-
act width ω must be identical to a Steiger and Fouladi in-
terval created for that n and its now known η. That is,
we need to calculate the CI limits of an interval of a fixed

width and sample size without knowledge of its confidence

coefficient such that the limits are identical to a CI calcu-

lated from the normal Steiger and Fouladi algorithm based

on the now known confidence coefficient and sample size

without knowledge of the width. I call this a Steiger and

Fouladi-compliant fixed-width CI. The algorithm calculates

a trial value for the lower limit, determines the probability

in the tail below that limit, then calculates an upper limit

exactly ω standardized units above the lower limit and ex-
amines the probability in the upper tail. It adjusts these

limits up and down until it finds the unique pair of limits

that have equal probabilities (within 8 decimal digits) in

the two tails. The sample size at which the expected cover-

age of this fixed-width interval equals η0 is the sample size
tabled in Kelley and Rausch (2006) for two-sample tests.

This is also the sample size where the average standard-

ized widthw of the observed noncentral t CI reaches width
ω in a two-sample test. In a paired-pooled test where r is
used in place of ρ, however, the ηmust be estimated from a
simulation using the real, unknown distribution instead of

the noncentral t distribution and the average width w will
not equal ω. The fixed-width CI in no way uses η0 or α0

in

calculations.

Table 1 summarizes all definitions and equations for

both sample statistics and population or ideal values

for two-samples, paired-samples differences, and paired-

samples pooled designs for a mean difference test between

Sample 1 and Sample 2.
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Figure 1 Difference between the cumulative relative frequency of 500,000 simulated values of λ̂ = dp
√

n
2(1−rW ) and

the calculated cumulative probability of λ = δp
√

n
2(1−ρ) with ν = 2(n − 1)/(1 + ρ2) with n = 12. The peak value is

the Kolmogorov-Smirnov (KS) statistic. g/e is the ratio of the mean of 500,000 computed estimates of the variance of the
standardized unbiased g statistic to the empirical variance of 500,000 d values. ncp: non-centrality parameter.

Simulations Using the Paired-Pooled Design
Empirical Sampling Distribution of dp√ n

2(1−rW )

The CI protocol for dp is to use the basic Steiger and Fouladi

(1997) noncentral t procedure with λ̂ for standardized
mean differences with Sp as the basis for standardization
of d (Equations 9a and 16). The first step in this exploratory
work is to conduct simulations to demonstrate how much

error is introduced into the calculations by using rW in-

stead of ρ. The method was to sample 500,000 statistics of

the form λ̂ = dp
√

n
2(1−rW ) with a relatively small sam-

ple size of n = 12 pairs. In independent simulations the
effect size was set at δp = 0, 0.2, 0.4, 0.6667, and 1.0 and
the population correlation ρ = .0, .2, .4, .65, and .9, for
25 total simulations. For each, the 500,000 values of λ̂
were analyzed as cumulative relative frequencies in ap-

proximately 50 bins. The approximate noncentral t distri-
bution cumulative probability (Cousineau, 2020) was then

computed for each bin using ρ instead of r to calculate λ

and ν: λ = δp
√

n
2(1−ρ) , and ν = 2(n − 1)/(1 + ρ2). The

Kolmogorov-Smirnov (KS) test is a rough but simple way

to compare cumulative probability distributions by com-

puting the maximum absolute difference between the two

distributions among all 50 bins with larger KS values in-

dicating greater discrepancies between the distributions.

Figure 1 plots these differences (empirical minus theoret-

ical) across the 50 bins in a subset of nine of these distri-

butions. The KS statistic is the largest absolute difference

in each graph, and these include both extremes observed

in 25 combinations. In addition, the empirical variance

of 500,000 dp values was calculated for each combination
of simulation parameters. For the same combinations, the

mean of 500,000 estimates of V ar(g) was calculated from
Equations 17 and 18, and the ratio of the V ar(g) to the em-
pirical variance is listed in Figure 1 as “g/e”. Numbers less
than 1.0 indicate that the best estimate of the variance of d
given the noncentral t distribution was less than the actual
variance of the unknown distribution of d with rW being

a variable. The extremes of the 25 analyses are included

in Figure 1 as 0.96 to 1.09. The fit between distributions is
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Figure 2 Ratio of the mean of 500,000 V ar(g) values to the variance of 500,000 simulated d values in paired-pooled
experiments with n = 12 (augments data from Figure 1). The variance of g is a best estimator of the variance of δ if the

λ̂ statistics are distributed as a noncentral t with λ = δp
√

n
2(1−ρ) and ν = 2(n − 1)/(1 + ρ2). The empirical variance of

g is calculated from each observed d value using Equations 17 and 18. The positive slope is one indicator of the severity
of the departure of the λ̂ statistics from a noncentral t distribution. Loss of experiments to increasing computation faults
account for the decline with very high ρ and large δ. See Table 1 for notation.

worst where the differences in the figure are greatest, and

a perfect fit would be a flat line at 0 with no differences.

The noncentrality parameter is the vertical red line, and it

is clear that the differences between the distributions oc-

cur mainly in one or both tails.

Figure 2 is an extension of the previous stimulations to

display the g/e ratio at ρ values of 0, .2, .3, .4, .5, .6, .6667, .7,
.8, .9, and .95 with 500,000 iterations each. If the empirical

distribution of λ̂ = dp
√

n
2(1−rW ) were a noncentral t, the

lines would track a ratio of 1.0 across the graph. Instead,

the empirical variance of d is wider than V ar(g) at ρ = 0
and increases monotonically relative to the V ar(g) as ρ in-
creases. The effect size δ is also a source of variance in the
ratio, with larger δ values exceeding smaller ones at most
values of ρ but then converging near the limit of ρ = 1.0.
The apparent crossover on the right resulted from exper-

iments lost to computation faults, which increased expo-

nentially with very high correlation and very large effect

size. The regularity of the changes as a function of δ and ρ
bode well for the future invention of corrections for these

biases.

Sample Size and Coverage of Fixed-Width Intervals in a
Paired-Pooled Design

Calculated Sample Sizes Using ρ. The sample size to gen-
erate a CI of a known fixed width and confidence coef-

ficient is available for a two-sample test using function

ss.aipe.smd in the R package MBESS (Kelley, 2007). A simi-
lar sample size tool for a paired-pooled design is not avail-

able, so it was necessary to generate one (see Software).

Tables S1, S2 and S3 in the online Supplement list sample

sizes for experiments using a paired-pooled experimental

design with coverage coefficients .90, .95, and .99, respec-

tively. The method was to calculate the Steiger and Fouladi

(1997) approximate CI for dp using λ = δp
√

n
2(1−ρ) and

ν = 2(n− 1)/(1 + ρ2)with successive sample sizes to find
the largest sample size that yields a result w ≤ ω. This
calculation gives the average stopping sample size when ρ
is not a random variable and the noncentral t distribution
is a very close approximation to the sampling distribution
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Figure 3 Simulated coverages of 95% observed CIs and fixed-width CIs for ω = 0.8 at various values of δ, ρ and n with
a paired-pooled design using the sample r instead of ρ [δ = 0.0 to 0.8 by 0.2; ρ = .0, .2, .4, .6, .8; iterations = 50,000]. See
Table 1 for notation.

(Cousineau, 2020).

In practice, most investigators will not know ρ and

must use the noisy, unknown distribution of dp
√

n
2(1−rW ) .

For that reason, I simulated all experiments with each com-

bination of ω, δ, and ρ using Equations 9a, 15, and 16 to cal-
culate the noncentrality parameter and degrees of freedom

using a CI with a fixed width of ω in independent simula-
tions of 50,000 experiments at each of a large number of

sample sizes until I identified the sample size where the

coverage of the fixed-width CI was η0. The observed CI
was also calculated at each n as explained below. These
sample sizes determined by simulations using r required a
slightly larger n to achieve a fixed width of ω, and this was
affected by η0 as follows: η0 = .90 required +0.8±1.1; η0 =
.95 required +1.3±1.4; and η0 = .99 required +2.7±3.9 extra
subjects. Thus, it is wise to add 1, 2, or 3 extra subjects to

the numbers given in Tables S1, S2 and S3 respectively.

The values in Tables S1, S2, and S3 are useful for plan-

ning sample size with a paired-pooled design. For each

protocol I also calculated the expected coverage of the ob-

served CI using the algorithm of Fitts (2021). These ex-

pected coverages using the population ρ were always the
nominal η0. The expected coverages of the observed CI
cannot be calculated for the experiments using the sam-

ple r because the sampling distribution is not a noncentral
t. They are best estimated from the simulations below.
Simulated Sample Sizes Using r Instead of ρ. I simu-
lated the experiments implied by Tables S1, S2 and S3 us-

ing a paired-pooled design at different values of n, δ, ω,
and ρ using η0 = .90, .95, or .99 with λ̂ and ν given by
Equations 9a, 15 and 16. The designation is [η0 = .90, .95,
.99; ω = 0.25, 0.4, 0.6, 0.8, 1.0, 1.2; δ = 0.0 to 1.0 by 0.2;
ρ = .0, .2, .4, .6, .8; iterations = 50,000]. For each com-
bination of ω, δ, and ρ, the output variables were deter-
mined independently at each sample size beginning at a

small number and ending at a large number relative to

the value of ω. For example, the n for ω = 0.25 ranged
from 50 to 700, whereas the n for ω = 1.2 ranged from
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10 to 34. For ω = 0.25, this means that there were 50,000
independent experiments at each tested sample size from

50 to 700. See supplementary material concerning vari-

ability between identical simulations of 50,000 iterations.

This simulation gives the average coverage and stopping

sample size when r is a random variable that contributes
noise to the experiment. Using the same procedure, which

they call the “Pivotal of t’”, Cousineau and Goulet-Pelletier
(2021) found coverages of observed CIs when averaged

over 10 correlations and 5 effect size scenarios to be un-

acceptably low at very small sample sizes but within 1% of

nominal .95 (i.e.,≥ .94) at sample sizes of 15 or more.
Representative example simulations for ω = 0.8 are

illustrated in Figure 3 for the limited set of values δ =
0.0, 0.2, 0.4, 0.6, and 0.8 and ρ = .0, .2, .4, .6, and .8 across
a wide range of n. The output observations were the 95%
CI coverages of the observed CI (Figure 3, left side) and of

the standardized fixed-width CI (right side) with ω = 0.8
for a paired-pooled test. When the sampling distribution is

known, such as with a two-sample test, an observed CI has

a width that is adjusted using the noncentral t distribution
so that the coverage for each n is always the nominal η0.
The same is true with the paired-pooled method when ρ is
known rather than approximated. However, the coverage

data in Figure 3 are from the approximation with r instead
of ρ. See “Calculating the CI Limits”.
I did not detect differences in coverage with the ob-

served CI that were consistent across values of ρ and δ in
Figure 3, but small differences according to δ and ρ can-
not be ruled out (see supplementary material). What was

consistent for all ρ and δ for the observed CI was coverage
below the intended .95 at small sample sizes. This agrees

with the notion that the estimation of ρ from rwill bemuch
more variable at small sample sizes. Furthermore, the

coverages were within 1% of nominal except at the small-

est sample sizes as observed by Cousineau and Goulet-

Pelletier (2021). Overall, the coverage of the observed CI

had a small negative bias even after the coverages seemed

to stabilize at larger sample sizes. This bias is attributable

to the use of r in place of ρ because the expected coverage
using ρ was always the nominal .950. This small bias was
also observed by Cousineau and Goulet-Pelletier (2021) at

sample sizes near 100. With a two-sample test or with a

paired samples test using SD , the average coverage of this
observed CI is always the nominal .950 (Fitts, 2021).

The coverages of the fixed-width CIs at ω = 0.8 (right
side of Figure 3) had very strong and clear effects of both

ρ and δ as a function of n. Note that the scales on the or-
dinates for the left (observed) and right (fixed) graphs are

very different, which accounts for much of the apparent

smoothness of the data on the right. For a given ρ and δ
the fixed-width interval had low coverage at small sample

size and increased regularly with increasingly larger sam-

ple sizes until the coverage eventually reached and then

exceeded the desired η0 = .95. The abscissa point where
the coverage curve intersects the line representing .95 is

the sample size where the coverage of a CI protocol with

this ω, δ, and ρ is exactly η0 = .95 on average. These are the
points that tended to be slightly larger than the calculated

n listed in Table S2 for η0 = .95. For example, the listing
in Table S2 for the protocol [δ = 0.8; ρ = .8; ω = 0.8] is
17. The estimate from the simulations with r instead of ρ
in the lower right panel of Figure 3 where the far-left curve

for ρ = .8 intersects the line for .950 was 19, i.e., 2 more
than the tabled value.

The foregoing demonstrates that a Steiger and Fouladi-

compliant fixed-width CI exists that has a desired width

and desired coverage η0 at some n. With a two-sample test
where the sampling distribution is a noncentral t, this in-
terval would be identical to the observed CI at that n, but
with the paired-pooled test it is not. In fact, the observed CI

calculated using η0 will have neither that width nor exact
coverage at any reasonable n.

Compensating for Biased Coverage of the Observed CI in a
Paired-Pooled Design

Here I introduce a new input to the CI protocol, a practical

coefficient η′. The confidence coefficient is the value of η
that is used to generate a value of α0 = (1 − η0) for use
in the calculation of the limits for the standardized CI (See

“Calculating the CI Limits”). Nowwewill replace it with the

practical coefficient α′ = (1−η′). When a CI protocol with
a nominal α0

consistently produces an observed coverage

that is either greater than or less than the desired nominal

η0, perhaps the use of some different value for α′ will gen-
erate a CIwith a consistent average coverage of η0, which is
what we want. This trial α′ can be varied in simulation tri-
als until a value is identified that consistently produces the

desired overall nominal coverage of η0. Although a practi-
cal coefficient, such as .96, is used in the calculation phase

instead of the nominal coefficient, .95, the protocol is still

nominally a 95% CI because that is the actual coverage of

the procedure (Fitts, 2021).

Figure 4 illustrates both the best η′ for each n (open
circles and regression curve) and the coverage of an ob-

served CI in a reliability simulation when using the best η′

instead of η0 to calculate the CI at each n (blue filled cir-
cles with standard deviation). The best η′ was found in
simulations with sample sizes between 10 and 160 using

the above method for η0 values of .90, .95, and .99. An in-
verse first or second order polynomial equation that pro-

vided a good fit to the data (adjustedR2 > .95) is drawn as
a solid curve (SigmaPlot 14.0) through the plotted empiri-

cal best η′ results averaged over 30 combinations of δ and
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Table 2 Regressed values of the practical coefficient α′ for calculating a two-tailed CI for a paired-pooled design at 90,
95, or 99% confidence as a function of n. Values were determined from best-fit inverse first or second order polynomial
regression to yield an adjustedR2 > .95. Equations at bottom. See Figure 4.

n 90% 95% 99% n 90% 95% 99%

10 0.0928 0.0411 0.0052 35 0.0973 0.0471 0.0085

11 0.0932 0.0418 0.0056 40 0.0976 0.0474 0.0086

12 0.0935 0.0425 0.0060 45 0.0979 0.0476 0.0088

13 0.0939 0.0430 0.0063 50 0.0981 0.0478 0.0089

14 0.0942 0.0435 0.0065 55 0.0982 0.0480 0.0090

15 0.0944 0.0439 0.0067 60 0.0984 0.0481 0.0090

16 0.0947 0.0442 0.0069 65 0.0985 0.0482 0.0091

17 0.0949 0.0445 0.0071 70 0.0986 0.0483 0.0091

18 0.0952 0.0448 0.0072 75 0.0987 0.0484 0.0092

19 0.0954 0.0451 0.0074 80 0.0988 0.0484 0.0092

20 0.0956 0.0453 0.0075 85 0.0989 0.0485 0.0093

21 0.0957 0.0455 0.0076 90 0.0989 0.0486 0.0093

22 0.0959 0.0457 0.0077 95 0.0990 0.0486 0.0093

23 0.0961 0.0458 0.0078 100 0.0990 0.0487 0.0093

24 0.0962 0.0460 0.0079 110 0.0991 0.0487 0.0094

25 0.0963 0.0461 0.0080 120 0.0992 0.0488 0.0094

26 0.0965 0.0463 0.0080 130 0.0993 0.0489 0.0094

27 0.0966 0.0464 0.0081 140 0.0993 0.0489 0.0095

28 0.0967 0.0465 0.0082 150 0.0994 0.0489 0.0095

29 0.0968 0.0466 0.0082 160 0.0994 0.0490 0.0095

30 0.0969 0.0467 0.0083

90% α′ = 0.1001− 0.1087/n+ 0.3589/n2

95% α′ = 0.0495− 0.0843/n
99% α′ = 0.0098− 0.0461/n

ρ as in the previous paragraph. The α′ for a planned n can
be predicted from the equation for any δ or ρ. In blue are
means and standard deviations of coverages for reliability

simulations with 100,000 iterations each conducted using

the best α′ rounded to 3 decimal digits [η′ regressed for
each n; δ = 0.0 to 1.0 by 0.2; ρ = .0, .2, .4, .6, and .8; itera-
tions = 100,000] for η0 = .90 or .95 and 4 decimal digits for
η0 = .99. The regressed best α′ values for η0 = .90, .95, and
.99 between sample sizes of 10 and 160 are listed in Table

2 along with the regression equations. Closer inspection of

these regression equations reveals that each begins with a

number very close to the desired α0
and then subtracts a

small amount based on n to calculate α′.
This method demonstrates one way to compensate con-

sistently for the low coverage induced in the observed CI

by the use of r instead of ρ in a paired-pooled design with
small samples. This is an important result for those who

are more interested in obtaining an accurate 100η % CI
with a small sample size than in achieving a fixed-width CI,

and the single value of η′ for each n does not require prior
knowledge of σ or ρ. As seen in Figure 4 and explained in
the Supplementary Material, the adjustment does not elim-

inate the possibility of differences in coverage across dif-

ferent values of ρ or δ, but it does adjust the overall mean
coverage for all tested values of ρ or δ to the nominal η0.
If ρ and δ are known a priori, the same procedures can be
employed to give a more focused adjustment for that com-

bination of parameters using the supplied software and the

instructions in the User’s Notes (see Example 8).

The adjustment demonstrated in Figure 4 helps to gen-

erate paired-pooled CIs with an average coverage near the

desired η0, but it remains to be seen if the procedure with a
practical coefficient from Table 2 can be paired with sam-

ple sizes from Tables S1 to S3 to generate CIs that have a

known approximate width as well. If so, an estimate of the

δ and ρ could be used to determine a sample size from Ta-
bles S1 to S3 that yields a CI with an average known width

and a coverage of η0 (compare to Tables 1, 2, and 3 in Kel-
ley & Rausch, 2006). My simulation software supplies the

average width w of the observed CI for each simulation as
an output, so I created a scatterplot for the n from the blue
symbols in Figure 4 versus the observed w of the observed
CI in that experiment, and these are plotted as the symbols

in Figure 5. Examples are shown in Figure 5 for observed
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Figure 4 Best η′ values for 90%, 95% and 99% observed CIs using a paired samples design with a pooled Sp. Blue circles
are the mean and S.D. coverages from simulations across 6 levels of δ and 5 levels of ρ from independent reliability runs
of 100,000 iterations when using a 3-digit regressed α′ for 90% and 95% and a 4-digit regressed α′ for 99%. See Table 2.
The η′ corrects for the low coverage from using r instead of ρ seen in Figure 3.

95% CIs with δ = 0.4, 0.6, and 0.8 and values of ρ from .0 to
.8. In these simulations from Figure 4, nwas set as an input
to the simulation and the width w was a dependent vari-
able in the output. Drawn on the same graph as solid lines

with colors coordinated to the levels of ρ are data from Ta-
ble S2 for 95% CIs where the best sample size is given to

produce a 95% CI of a fixed width ω. In these simulations,
ω was set as an input to the simulation and the best sam-
ple size n was determined from the output. One can see in
Figure 5 that selecting a sample size for a given width ω,
δ and ρ and then calculating the CI using the regressed α′

from Table 2 produces an observed CI with width w = ω
and coverage η∗ = η0 on average. This generalization at
present can apply only to the range of values of ω, δ and
ρ tested in these studies. In particular they apply only to
positive values of ρ because positive correlations provide
the advantage in a repeated measures design and no in-

vestigator would intentionally match subjects based on a

negatively correlated matching variable. Values of the ob-

served r were of course occasionally negative when ran-
domly sampled from populations with low ρ. Cousineau
and Goulet-Pelletier (2021) did include negative ρ values in
their simulations.

Complex Example for Parameters Not in the Tables.

Tables 2 and S1, S2, and S3, are sufficient in many but

not all situations. Figure 6 provides a graphical summary

of the entire method from the sole perspective of the ob-

served CI since that is the one we typically calculate. This

large simulation used a basic CI protocol for which none

of the parameters are in the current tables [ω = 0.7,
δ = 0.5, ρ = 0.3, η0 = .995, α0 = .005]. The cover-
age and standardized width were calculated for all test η′

values between .995 and .998 by increments of .0001 (i.e.,

.9950, .9951, .9952, etc.) and for all sample sizes from 95

through 100 for 186 independent simulations of 500,000

experiments each. Figure 6A illustrates the coverage of the

observed CI in each of the 186 simulations. The coverage

using the nominal η0 = .995 was too low. Clearly what mat-
tered for coverage was the test η′ rather than the sample
size within this range, and η′ = .9954 was the best for
gaining a coverage of .995 at all sample sizes tested. Fig-

ure 6B demonstrates that a standardized width ω = 0.7
can be achieved at any tested η′ values between .995 and
.996 depending on the sample size, but only a combination

of n = 97 and η′ = .9954 results in an observed CI with a
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Figure 5 Relation between n and the width of observed 95% CI at several levels of δ and ρ determined two ways: (1)
Symbols represent the observed width w from the reliability simulations in Figure 4 where n was fixed and w was a
dependent variable; (2) Solid lines represent values from Table S2 where ω was fixed and the best n for that width was
determined from simulations. Using α′ instead of α0

produces the same average width expected from Table S2.

standardized width of ω = 0.7 and also a coverage of .995.
This entire simulation is instructive but not necessary in

practice with sample sizes this large. Any of these sample

sizes can be used to compute the best η′ in one smaller sim-
ulation, and then that η′ value can be tested at different
sample sizes in another smaller simulation to determine

the n that gives a coverage of the observed CI closest to the
nominal η0. See Example 8 in the User’s Notes to repeat
this simulation independent of the tables for any combina-

tion of ω, δ, ρ, and η0. With small sample sizes, it is impor-
tant to test both multiple n values and multiple η′ values.
The large number of iterations is important.

Summary of the Point Estimates
The biases for dp and gp from previous simulations are

summarized in Figure 7 as a function of the sample size

n, where the mean biases are calculated as (mean dp − δ)
and (mean gp − δ). The range of δ was 0.0 to 1.0 and the
range of ρ was 0.0 to 0.8 with each combination of δ and
ρweighted equally. In these simulated experiments, nwas

the calculated n for that protocol as listed in Table S2 and it
was an independent variable. In all experiments reported

here, gp was an unbiased estimate of δ. The bias values for
dp at small sample sizes increased as a function of δ and
ρ. The conclusion is that the use of the sample r to replace
ρ in construction of gp and a CI does not appear to affect
the value of gp itself as much as it does the variance of gp
(Figure 2) and the coverage of the CI (Figure 3).

The mean gp values were determined from the experi-
ment of Figure 4 where coverage was determined using a

regressed value of α′ at levels of δ between 0 and .8 and
levels of δ between 0 and 1.0 across sample sizes ranging
from 10 through 160, and the results are displayed in Fig-

ure 8. The data for the two graphs are identical but they are

shown at different scales: the graph on the left shows detail

and the graph on the right has the same ordinate scaling as

Figure 7. Although there is a definite bias of gp caused by
the use of the regressed α′, it is minuscule compared to the
bias of dp in Figure 7.
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Figure 6 Demonstrations (A) that the best η′ to get nominal .995 coverage of the observed CI is .9954 with any n in the
range, and (B) with η′ = .9954 the best sample size to get a ω ≤ 0.700 with the observed CI is n = 97. Protocol [ω = 0.7;
δ = 0.5; ρ = 0.3; η0 = .995; iterations = 500,000 per symbol].

Software
Software that can reproduce the simulations for the fig-

ures and tables in this article is located at the Open Science

Foundation site https://osf.io/q35g6/, including a 64-bit ex-

ecutable PC console application, complete C source code,

and user’s notes to explain how to conduct the simulations.

Software is also supplied to compute a paired-pooled CI us-

ing the current methods from raw means, standard devia-

tions, and correlations and to compute the required sam-

ple size from the noncentral t distribution with a known
confidence coefficient if ρ is known as in Tables S1 to S3 us-
ing themethod of Fitts (2021). These tables from the Online

Supplement are reprinted in the user’s notes. The notes in-

clude 8 detailed, fully worked examples of applications of

the technique from the easiest to the most difficult. Other

statistics packages may be useful for computing the ap-

proximate CI for paired-pooled designs if the functions use

the method of Steiger and Fouladi (1997) with d and allow
the user to supply both the noncentrality parameter and

the degrees of freedom, λ̂ = dP
√
n/(2 (1− rW ) and ν =

2(n−1)/(1+r2OP ). The R functionconf.limits.nct in
MBESS (Kelley, 2007) is one such function (see Cousineau
& Goulet-Pelletier, 2021, their Listing 7). That listing uses

r instead of rOP in the calculation of ν, but rOP can be
calculated with the line:

rOP <- r * (1 + (1-r^2)/(2 * (n - 3)))

(from Equation 13).

Discussion
The research presented here on the use of a standardized

mean difference in a paired samples research design that

employs a pooled standard deviation Sp for standardiza-
tion of dp (paired-pooled design) is experimental because
it is based on simulations of unknown distributions rather

than on analytical mathematics and a thorough under-

standing of the actual distribution of dp when it is cal-
culated using the r instead of ρ. The method is a useful
way to approximate a CI for a standardized mean differ-

ence in a paired-pooled design with known coverage un-

til the true distribution is discovered. In many research

situations, a CI with nominal coverage can be constructed

simply by looking up a practical coefficient in Table 2 and

using that α′ instead of α to construct the CI. If a certain
width is desired, ρ and δmust be estimated, then the exper-
iment can be conducted with augmented sample sizes de-

termined from Tables S1 to S3 along with the practical co-

efficient from Table 2. More complicated procedures may

be necessary if the needed δ, ρ, ω, or η0 are not included in
the tables, and all of these procedures are explained using

detailed examples in the user’s notes to the accompanying

the software.

Summary of the Method
It is always valid to compare a standardized mean dif-

ference dp from a paired-pooled design to a dp in an-
other study that uses two independent samples. The prob-

lem arises when trying to compare unbiased standardized
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Figure 7 Bias of dp and gp as a function of n in various conditions of ω, δ, and ρ in a one-sample paired pooled design
using r to approximate ρ. Bias is computed as (dp − δ) and (gp − δ) so a positive number indicates a positive bias. The dp
became more biased with increasing δ and ρ, but gp was always within .003 of δ. The sample size nwas the n from Table
2 that yielded the width ω in a 95% noncentral t CI. The values of ω were 0.25, 0.4, 0.6, 0.8, and 1.0, and the paired-pooled
procedures did not cause a bias in the estimate of δ from gp. 50K iterations. See Table 1 for notation.

mean differences gp or to compare CIs for dp, because the
paired-pooled design requires knowledge of ρ to calculate
the degrees of freedom ν, and ν is necessary for the calcu-
lation of both gp and the CI. Because ρ is rarely known, it
must be approximated by the variables rW and rOP , and
the use of the same formula for a CI that simply replaces

ρ with r produces low coverage. In Figures 6 and 7, the
calculation of gp in a pooled-paired design that uses rW
to approximate ρ did not badly bias gp itself, although the
variance of gp, V ar(gp), was clearly biased (Figure 2). This
implies that othermethods of forming a CI for the unbiased

standardizedmean difference that employ the V ar(gp) for
the calculations (Cousineau & Goulet-Pelletier, 2021; Fitts,

2021; Goulet-Pelletier & Cousineau, 2018; Hedges & Olkin,

1985) will also have biased results. When using the non-

central t method of Steiger and Fouladi (1997) to calcu-
late paired-pooled CIs with λ̂ = dP

√
n/(2 (1− rW ) and

ν = 2(n− 1)/(1 + r2OP ), the coverages of the observed CIs
are lower than the nominal η0 at small sample sizes and
even at n = 100 (Figure 3; Cousineau & Goulet-Pelletier,
2021).

Also shown in Figure 3 is the coverage of a fixed-

width Steiger and Fouladi-compliant CI of exact standard-

ized width ω. As sample size increases, the coverage of any
fixed-width CI will increase, and at some sample size that

coverage will equal the desired η0. That sample size de-
pends heavily on knowledge of δ and ρ before the exper-
iment begins, because the sample size must be set at the

beginning of the experiment and different values of δ and
ρ require different sample sizes. This is the same require-
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Figure 8 “Bias” of gp caused by the use of α
′
values from Figure 4 to generate 95% CIs at 5 levels of ρ and 6 levels of δ

across various values of n. The same data are shown at two scales, a detailed scale on the left and the same scaling used
in Figure 7 on the right. There is a definite bias at n < 30, but it is tiny compared with the bias of dp. See Table 1 for
notation.

ment as the need for ω and δ in Kelley and Rausch (2006)
with the added requirement of an estimate of ρ. Tables S1,
S2, and S3 give the sample size for a paired-pooled design

when δ and ρ are known. Simulations that used the sample
r to approximate ρ demonstrate that about 1, 2, or 3 addi-
tional subjects are needed in Tables S1, S2, and S3, respec-

tively, when using r to generate a fixed-width CI. This does
not mean that the use of the sample size from these tables

will yield an observed CI with nominal coverage, however.

It is the fixed-width CI that will have nominal coverage on

average when using r. An example will help to explain this
difference.

Suppose one desires a paired-pooled 95% CI of stan-

dardized width ω = 0.8 and one knows a priori that the
δ = 0.6 and ρ = 0.4. The calculated sample size in Table
S2 for [ω = 0.8, δ = 0.6, ρ = 0.4] is n = 32. If one uses ρ to
calculate the CI, then the interpretation of this sample size

is exactly the same as that for the two-sample Table 2 in

Kelley and Rausch (2006), i. e., that if one uses the selected

sample size n = 32, the observed CI will have an aver-
age width of ω = 0.6 and an average coverage of η∗ = .95.
At this n, the average width of the observed CI will equal
that of the fixed-width CI and the average CI limits will be

identical. The rationale for this in Kelley and Rausch (2006)

is the fact that the coverage of the observed CI for a two-

sample test in a simulation such as the left side of Figure 3

would have coverages of all observed CIs tracking exactly

along the .95 guideline at all values of δ and n (ρ being ir-
relevant for independent samples). The sample size from

the table of Kelley and Rausch does not affect coverage of

the observed CI, it simply selects the n that produces an
average width of ω. If we reproduced Figure 3 using ρ to
calculate the observed CI, the coverages would also track

exactly along the .95 guideline, and the selection of n from
the table would simply assist in generating an observed CI

of average width ω. If one does know that δ = 0.6 and
ρ = 0.4, both the observed CI (using ρ) and fixed-width CIs
will have an average coverage of .95 when using n = 32.
But this is clearly not what happens when we replace ρ
with r.
When approximating ρ with r for [ω = 0.8; δ = 0.6;

ρ = 0.4], Table S2 advises that the sample size from sim-
ulations required about 2 more subjects than the calcula-

tion states, so we would expect to use n = 34. However,
this does not mean that using n = 34 will produce an ob-
served CI with η∗ = .95 and ω = 0.8. By inspecting Figure
3 for ω = 0.8 and finding the coverage of the observed CI
when δ = 0.6, ρ = 0.4, and n = 34 we see that the cover-
age is less than the desired η0 = .95. In fact, we may not
have nominal coverage with the observed CI even if we

used n = 100. Replacing ρ with r destroys that relation-
ship, and the width (i.e., w < ω) and coverage (η∗ < η0)
of the observed CI will be too low even with n = 34. The
coverage of the fixed-width CI will be .95, but only if ρ is ac-
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tually 0.4. If we do not really know ρ, we cannot select an
exact sample size to use from Table S2. Thus, Tables S1 to

S3 are not very helpful by themselves unless one is happy

with the depressed coverages given for the observed CIs in

Figure 3.

One could instead use the fixed-width CI with n = 34,
and the coverage would average the nominal η0 assuming
that the a priori estimates of δ and ρ were accurate. As
seen on the right side of Figure 3 with ordinate scaling on

the right, a sample size of 34 can give very different cov-

erages for a fixed-width CI if ρ has been poorly estimated.
Many experiments do not have such accurate a priori esti-

mates of δ and ρ. Furthermore, the fixed-width CI is ad hoc
and not calculated from first principles based on a given

η0.
This is where the practical coefficients η′ and α′ are

helpful (Table 2, Figure 4). Keeping with the same exam-

ple, we can look up the regressed value for α′ in Table 2
for n = 34 and η0 = 95%, which is between .0467 at n = 30
and .0471 at n = 35. We can calculate an exact value using
the regression equation or we can use .047 (the blue relia-

bility symbols in Figure 4 used 3 digits for 95%). Note that

the .047 does not depend importantly on any δ or ρ within
the ranges of these parameters that were tested in this ar-

ticle. Figure 4 tells us that this practical coefficient will ad-

just the mean coverage from its biased value to the nom-

inal η0 = .95, and Figure 5 tells us that the average width
of the interval will be the desired ω = 0.8. Thus, the use
of Tables S1 to S3 combined with the use of the adjusted

practical coefficient from Table 2 and Figure 5 will yield an

observed CI with nominal coverage and the desired width

with a paired-pooled design. Tables S1, S2, S3, and 2 were

all generated using the supplied software, so an investiga-

tor can use the software according to the instructions in

the User’s Notes to calculate and test most useful values for

n, δ, ρ, and ω.

Assumptions of the Method
The calculations used in the Tables and Figures in this ar-

ticle were derived from populations with normal distribu-

tions, and the two arms of each repeated measures exper-

iment had equal variances. Equal variances are necessary

in order for a pooled error term Sp to make sense. The al-
ternative procedure using SD requires only a normal dis-
tribution of difference scores, but its dD cannot be com-
pared with dp from a two-sample test. An alternative pro-
cedure not discussed here is the use of the error term from

the control condition only with ν = n − 1 (Becker, 1988).
The calculation for rW in Equation 14 requires knowledge

not only of the Pearson r and Sp but also of the individual
standard deviations S1 and S2. For a meta-analyst to try to

calculate a corrected CI using the present methods from a

published paper that used an incorrect ν or that used dD
instead of dp, it means that the paper must have reported
the correlation r and both S1 and S2. Using r or rOP in
place of rW in the calculation of λ̂ = dP

√
n/(2 (1− rW )

can produce poor results (Fitts, 2020). In addition, a le-

gitimate dD may have been reported where the differ-

ence scores were normal in shape, but the distributions of

the experimental and control conditions were not homoge-

neous as required for dp. Violations of normality and ho-
mogeneity of variances are well known to adversely influ-

ence results, and such violations have not yet been studied

with the current procedures. Bootstrap and other alterna-

tive procedures (Kelley, 2005) should be studied explicitly

for paired-pooled tests.

Generalization to other CI protocols
I selected the Steiger and Fouladi (1997) protocol for com-

puting CIs because it is the most widely discussed in the

literature for noncentral t procedures. Cousineau and

Goulet-Pelletier (2021) tested eight CI protocols to create

approximate CIs for a paired-pooled design. They found

that a new “Adjusted Λ’” approach produced approximate
intervals for which the average coverage of the CI in simu-

lations was sometimes greater than but never less than the

nominal η0. The “practical coefficient” technique does not
depend on any one of these CI protocols, so it could be used

with the Adjusted Λ’ approach as well. The approximation
using the Steiger and Fouladi method produces coverages

below η0, so the practical coefficient η′ was larger than η0

to bring the overall coverage up to η0. Its use with the Ad-
justed Λ’ could use a practical coefficient η′ smaller than
η0 to bring the coverage down to η0 in those circumstances
where it was too high.
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