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known as mixed or hierarchical) modeling. In spite of TCPPF’s widespread popularity, there is sparse
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Introduction

Randomly assigning participants to treatment and control
conditions and then measuring change over time is a pop-
ular research strategy in psychology. Pick up any issue of
the Journal of Consulting and Clinical Psychology, for exam-
ple, and one will see psychologists are often interested in
whether a treatment group differs from a control group
over time such as from pre-test to post-test to follow-up.
This treatment-control pre-post-follow-up (TCPPF) design
has many of the features of the randomized controlled trial
and it resembles a basic version of the classic split-plot ex-
periment (see Jones & Nachtsheim, 2009). In its simplest
form, one factor of the TCPPF is a between subject factor
with two levels, such as a treatment compared to a con-
trol group. Ideally, assignment to the treatment and control
group is random, although circumstances sometimes make
that impossible. Much of what we say here applies regard-
less of whether or not assignment to the treatment and con-
trol group is random. What we have to say also applies to
a comparison of two treatments, a control group and mul-
tiple treatments, etc. The other factor is a within subject
(repeated measures) factor with two or more levels. Of ut-
most interest is the interaction between the between and
within subject factors (Jaccard & Guilamo-Ramos, 2002a);

for example, does the treatment group do better than the
control group over time?

Although there are many excellent books, journal arti-
cles, and websites devoted to advanced statistical analyses,
few of these sources focus specifically on TCPPF designs,
and those sources that do provide insufficient detail or con-
tradictory advice regarding best practices for data analysis.
As stated by Howell (n.d.), “just about every source you read
on these models takes a somewhat different approach, and
it is not always clear how they relate to each other and why
they look at the models so differently” (para 2). Howell also
commented that these sources use a variety of statistical
software (e. g., SPSS, SAS, R) and he notes that “a discussion
written for SAS looks, on the surface, quite different from
one written with respect to R” (para 3). SPSS is the statisti-
cal package most widely used by researchers in psychology
(Davidson et al., 2019), but we searched in vain for a clear
step by step guide for how to analyze the TCPPF design us-
ing SPSS. Although our focus here is on SPSS, in the supple-
mentary material we include the syntax for doing the same
calculations in R.

We received a number of suggestions for resources
to analyze TCPPF designs. Peugh and Enders (2005) fo-
cus on multilevel analysis in SPSS, but not treatment-
control group designs. Their cross-sectional example uses
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data from 160 public and private schools predicting math
achievement from socioeconomic status. Their longitudi-
nal example looks at change over time in a cognitive task,
but not as a function of a treatment. Peugh and Ender’s dis-
cussion of moving from what we will call a marginal model
to a true multilevel model is limited to changing the co-
variance structure and readers are directed by Peugh and
Endler to other sources for further explanation. Another
suggested source was Heck et al. (2014), who examine mul-
tilevel models in SPSS, but experimental designs were only
briefly mentioned. Similarly, Field (2018) does an excep-
tional job of explaining multilevel models in one chapter
of his best-selling book, however Field’s focus is on what
buttons to click in the SPSS MIXED menu, whereas running
the analysis via syntax may be more efficient and reveal-
ing. Field does devote some attention to the MLM (multi-
level modeling) output (when many authors do not), but we
feel more interpretation should be provided. Field also per-
forms a random slope analysis that may not be appropriate
for many TCPPF designs for a reason we will discuss.

Design Issues

Why Does Randomization Matter? Although our focus
is on the statistical analysis of TCPPF data, the research
design that produces those data plays a critical role in
the choice of statistical analyses. There must be at min-
imum two groups (e. g., a treatment group and a control
group, or two different treatment groups). The nature of
the groups is not relevant here (Guidi et al., 2018; Kendall
et al., 2013); what is relevant is how participants are as-
signed to groups. Only through true random assignment
can one expect groups to be equivalent at baseline. In their
review of 2017 Journal of Personality and Social Psychology
articles, Chester and Lasko (2021) found 62% of between-
participant manipulations were said by the authors of the
articles to be the result of random assignment to conditions.
Yet none of the authors of those articles reported how par-
ticipants were randomly assigned to conditions, thus pro-
viding no means to assess whether systematic biases might
have arisen in that process. Further, in order to have the
opportunity to classify factors as causal, it is necessary to
start with random assignment to conditions. These deci-
sions can have important consequences on how we inter-
pret the findings of the study.

What about Pre-Test Covariates? Although not useful
for verifying random assignment success, examination of
pre-test scores for non-outcome (i.e., not dependent) vari-
ables can help to identify potential covariates. The issue
is how that examination should precede. The practice of
selecting covariates based on their statistical significance
through tests of group differences is frowned upon (Ass-
man et al.,, 2000; Eghewale, 2015). Rather, covariates se-
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lected judicially based on theoretical considerations, co-
variates strongly correlated to the outcome variable (e. g.,
moderate effect size), covariates not strongly correlated to
each other, and covariates measured before the treatment
is introduced, can serve to reduce error variance and in-
crease statistical power (Kahan et al., 2014; Streiner, 2019).
Again, it is worth reiterating the importance of ran-
dom assignment to groups. When participants are assigned
randomly to groups, covariate analysis addresses extrane-
ous and irrelevant variance. Conversely, when participants
are not assigned randomly assigned to groups, covariate
analysis is most tempting to employ but works least well
(Streiner, 2019). When group assignment is not random, a
covariate will be related to the outcome variable (which is
good), but the covariate will also be related to group mem-
bership (which is very bad). If related to group member-
ship, a covariate can artificially inflate or deflate differ-
ences between groups depending on the nature of the as-
sociation (Cribbie & Jamieson, 2000). Seeking to equalize
groups on a covariate in the absence of random assignment
is asking statistics to do the impossible.
How about the Pre-Test Score Serving as a Covariate?
This question highlights a longstanding debate (see Jen-
nings & Cribbie, 2016; Rausch et al., 2003) as to whether
pre-test to post-test data should be analyzed via gain score
analysis (i.e., computing pre-test to post-test difference
scores and then examining those difference scores by
group through a one-way ANOVA) or via covariance anal-
ysis (i.e., comparing the post-test scores between condi-
tions after covarying the pre-test scores via ANCOVA). Only
when there are differences between treatment and con-
trol groups on the pre-test will gain score and covariance
approaches produce meaningfully different results (Coun-
sell & Cribbie, 2017; Cribbie & Jamieson, 2000). Alterna-
tively, one could calculate a mixed (between-within) model
ANOVA. A mixed model ANOVA examines differences be-
tween groups collapsing over time periods (a between-
subject factor), differences between time periods collaps-
ing over groups (a within-subject factor), and the interac-
tion of Group by Time. For pre-test to post-test data, the
interaction term from the mixed model ANOVA is equiva-
lent to the outcome from the gain score approach (Knapp
& Schafer, 2009; O’Connell et al., 2017).

The ANOVA Approach

The traditional way to analyze TCPPF data is the mixed
model ANOVA. Mixed signifies that Group is a between (in-
dependent) groups variable and Time is a within groups
(repeated measures) variable. One question answered
through a mixed model ANOVA is do groups differ in their
change from pre-test to post-test. However, some have sug-
gested that the mixed model ANOVA be abandoned given
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Figure 1m Means Plot with 95% Confidence Intervals
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assumptional and practical limitations, and because there
are better alternatives (e. g., Gibbons et al., 2010; Vickers,
2005). The glaring limitation to the mixed model ANOVA is
that participants with any missing data are discarded (Lix
& Keselman, 2010), unless some sort of alternative strat-
egy (e. g., imputation) is adopted. Intention-to-treat anal-
ysis (see White et al., 2011) assumes all participants are re-
tained in the analysis regardless of dropout or other fac-
tors. Mixed model ANOVA cannot meet that assumption if
there are missing data. Furthermore, many authors (e. g.,
Field, 2018) express concern about meeting the spheric-
ity assumption in a repeated measures ANOVA, specifically
that variances and covariances be equal. However, if there
are few or no missing data points and a straightforward
analysis is an important consideration, then there may be
a role for the mixed model ANOVA approach.

Howell (n.d. 2010) presents a fictitious dataset with
and without missing values. The missing values dataset
has nine data points missing over seven participants —
those seven participants would be lost by performing a
mixed model ANOVA, reducing the sample size from 24
to 17. However, our focus is on the dataset without miss-
ing values (see Supplemental File). Howell was spurred to
create the dataset because of a question asked of him by
a Swedish researcher with missing data from a random-

Group

A

ized clinical trial of two treatment groups and measures
at four time periods (pre, post, three months follow-up,
and six months follow-up). Howell generated data with
one treatment group, one control group, 12 participants
per group, and each participant measured four times (pre-
test, one month, three months, and six months). One of the
characteristics of the data is that while the control group
declined over time, some participants more so than oth-
ers, the treatment group declined substantially more than
the control group (see Figure 1). Figure 1 was created
using dcousin3.shinyapps.io/superbshiny/ (see O’Brien &
Cousineau, 2014).

Group has been recoded so that 0 represents control
participants and 1 represents treatment participants (How-
ell coded it 1 for control and 2 for treatment). The SPSS data
fileis presented in Figure 2 in the standard wide form. Each
participant contributes one line of data. The syntax to re-
produce the mixed model ANOVA analysis using SPSS GLM
appears below. Polynomial is the default contrast in SPSS
that tests for a polynomial trend in the data versus a pro-
file contrast that compares means in pairwise fashion or a
reference contrast that compares means to a specified ref-
erence group.

GLM TimeO Timel Time3 Time6 BY Group
/WSFACTOR=Time 4 Polynomial
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Figure 2 m Howell’s Data in SPSS Wide Form

t,-\ *howellwide.sav [DataSet1] - IBM SPSS Statistics Data Editor
FEile Edit View Data

H&E 0O e

Transform  Analyze  Graphs  Utilities

14 -
& Group ¢ Subject & Timed & Timel & Time3 &b Time6 var
1 .00 1.000 29600 17500  187.00  192.00
2 .00 200 37600 32900  236.00 76.00
3 .00 3.000 30000 23800 15000  123.00
4 00 400 22200 60.00 82.00 85.00
5 .00 500 15000  271.000 25000  216.00
6 00 6.00 31600  291.000  238.00  144.00
7 .00 7.00 32100 36400 27000  308.00
8 .00 8.00  447.00 402000 29400  216.00
9 .00 9.00 220,00 70.00 95.00 87.00
10 .00 10.00 37500 33500  334.00 79.00
11 .00 11.00  310.00 30000  253.00  140.00
12 .00 1200 310.00 24500  200.00  120.00
13 1.00 13.00 28200  186.00 22500  134.00
14 1.00 14.00  317.00 31.00 85.00  120.00
15 1.00 15.00 36200 10400 14400  114.00
16 1.00 16.00  338.00 13200 91.00 77.00
17 1.00 17.00  263.00 94.00 14100  142.00
18 1.00 18.00 13800 38.00 16.00 95.00
19 1.00 19.00  329.00 62.00 62.00 6.00
20 1.00 20.00 29200  139.00 10400  184.00
21 1.00 21.00  275.00 94.000 13500  137.00
22 1.00 2200  150.00 48.00 20.00 85.00
23 1.00 23.00 31900 68.00 67.00 12.00
24 1.00 2400 30000 13800 11400  174.00

/METHOD=SSTYPE (3)
/PLOT=PROFILE (Timex*Group)
/EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES (Group)
/EMMEANS=TABLES (Time)
/EMMEANS=TABLES (Group*Time)
/PRINT=DESCRIPTIVE ETASQ
/WSDESIGN=T ime
/DESIGN=Group.

Output 1 at the end presents abbreviated mixed model
ANOVA output. Looking at the sphericity assumed results
in the output, there is a statistically significant Time main
effect, F'(3,66) = 45.13, p < .001, 77% = .672, and a sta-
tistically significant Group main effect, F'(1,22) = 13.71,
p < .001, 72 = .384. Partial eta-squared (77) is a measure
of effect size in which the effects of other independent vari-
ables are set aside (i.e., removed from the calculation of the
total sums of squared; see Cohen, 1973). These effects are
qualified by a statistically significant Group by Time inter-

Extensions
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action, F'(3,66) = 9.01, p < .001, n2 = .291. Thus, we
have statistically significant effects that explain a substan-
tial proportion of the variability in the scores.

The mixed model ANOVA assumes that the variances of
the pairwise differences between each treatment are equal
(sphericity), and equal across groups (multisample spheric-
ity). For this presentation, we will adopt the more straight-
forward (and strict) compound symmetry assumption that
variances and covariances are equal. In other words, there
is one variance and one covariance (the same variance and
the same covariance) for our four measurements across
both groups.

The correlations between scores by group (see Table 1)
suggests the compound symmetry assumption has been vi-
olated in so far as the correlations (the covariances stan-
dardized) are very different within and across groups.
Looking at the treatment group (Group 1), the correlations
range from r = .784 for Time 1 to Time 3 to r = —.075
for Time 0 to Time 6. Lix and Keselman (2010) regard the
compound symmetry assumption to be important in the-
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Table 1 m Intercorrelations for Time Disaggregated by Group

Variable  TimeO Timel Time3 Time6
TimeO — 375 .482 —.075
Time1l 684 — T84 % 493
Time3 573 919xx  — 484
Time6 .023 448 .382 —

@ CrgssMark

Note. The results for Group 0 (Control; n = 12; Greenhouse-Geisser € =.735) are shown below the diagonal. The results
for Group 1 (Treatment; n = 12; Greenhouse-Geisser ¢ = .615) are shown above the diagonal. *p < .05, *p < .01

(two-tailed)

ory yet rarely met in practice. Popular alternatives are
the Greenhouse-Geisser and Huynh-Feldt corrections to the
degrees of freedom in ANOVA (Note that the Greenhouse-
Geisser e values, a measure of sphericity that ranges from
0, complete lack of sphericity, to 1, perfect sphericity, are
added to Table 1 for each group). The safest route if one is
employing the mixed model ANOVA approach is to use the
Greenhouse-Geisser or Huynh-Feldt tests.

Anything larger than a 2 x 2 design produces omnibus
test results that demand further analysis. Jaccard and
Guilamo-Ramos (2002b, 2002a) discuss how to break down
the results from an omnibus mixed model ANOVA. Their
suggestion, citing Keselman and Keselman (1993), is to ju-
diciously conduct simple main effect contrasts (i.e., explor-
ing the effect of one variable at each level of the second
variable). These simple main effect contrasts can be con-
ducted in one of two ways: 1) run dependent t-tests (or
equivalently repeated measures ANOVAs) separately for
each group; or 2) compare the groups with independent
samples t tests at each time point.

For the sake of argument, say that a simple main effect
contrast is statistically significant for the treatment group
but the same simple main effect contrast is not statistically
significant for the control group. On that basis, can you con-
clude that the treatment group is superior to the control
group? According to Nieuwenhuis et al. (2011), conclud-
ing yes is a frequently made mistake; “Although superfi-
cially compelling... the difference between significant and
not significant need not itself be statistically significant” (p.
1105).

What is needed is a test to determine if the differ-
ence between two simple main effects is statistically signif-
icant. Jaccard and Guilamo-Ramos (2002b) recommend re-
searchers perform interaction contrasts. In our example,
we would partition the 2 (Group) x 4 (Time) interaction
into a series of 2 x 2 interaction contrasts. The easiest way
to do so is to select, for example, the pre-test and the six
month periods for the treatment and control groups (omit-
ting the one month and three month periods) and then re-
run the mixed model ANOVA. Since the recommendation
in repeated measures ANOVA is to use an error term de-

rived only from the levels being compared (Howell, n.d.),
this is a straightforward and logical method. Since multi-
ple interaction contrasts will need to be conducted, some
may raise concerns regarding multiplicity control (e. g.,
Maxwell & Delaney, 2004) . However, note that the focus
of these interaction contrasts is to understand the nature
of the significant interaction, and that researchers should
focus on the effect sizes more than statistical significance
testing (Cribbie, 2017). For our data, the interaction con-
trast of Group (treatment, control) by Time (pre-test vs. six
months) was not statistically significant, F'(1,22) = .20,
p = .66, nﬁ = .009, suggesting the impact of our fictional
treatment relative to the control did not persist over half
a year. However, the corresponding interaction contrast
for pre-test vs. one month was statistically significant and
explained a substantial proportion of the variability in our
treatment, F(1,22) = 21.14, p < .001, 77% = .490. We
recommend running all interaction contrasts of interest to
understand the nature of the omnibus interaction.

The MLM Approach

MLM has a number of advantages over the mixed model
ANOVA for analyzing TCPPF designs (see Gibbons et al.,
2010; Hesser, 2015; Rausch et al., 2003). One advantage
is how MLM handles missing data. If a participant misses
even one time period in a traditional mixed model ANOVA
setting, the default with SPSS, and most other software
packages, is to discard all their data (i.e., listwise deletion).
Although there are methods to address data missing at ran-
dom (or completely at random), such as multiple imputa-
tion (e. g., imputing the missing value(s) multiple times via
a stochastic regression model on the available data, and av-
eraging the results obtained from these complete datasets),
MLM uses maximum likelihood (ML) estimation to reach a
solution that retains all participants regardless of missing
data without the need for imputation. Using all available
data is an efficient strategy for estimating model parame-
ters (e. g., variances at each time point). MLM can also flex-
ibly handle continuous and, when time is treated continu-
ously, irregularly spaced measurement periods. The MLM
can also obviously handle categorical representations of
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time; this is how time is conceptualized here due to the na-
ture of the measurements.

A second advantage of the MLM approach is that one
can anticipate that participants’ scores on the same mea-
sure are correlated. The mixed model ANOVA provides
little flexibility in terms of modeling the structure of the
within person variance-covariance matrix (Chan, 2004),
whereas MLM allows for the specification of a variety
of variance/covariance structures for correlated measures
and their associated errors.

A third advantage of MLM is that it provides the oppor-
tunity to evaluate random effect factors. Fixed effect fac-
tors assume that a single parameter holds for all partici-
pants/groups. For example, if we assume that the intercept
is fixed, then the value of the outcome is assumed to be con-
stant across all units within the same group. In contrast,
random effect factors assume that any group/individual’s
parameter can vary [e. g., level (random intercept), growth
trajectory (random slope), or both]. Random effects can
speak to variation between and within subjects. Say we are
modeling the change in a single group of participants over
two time points. The model could have a random intercept
and fixed slope, where individuals can vary on the level
of the outcome, but each individual would have the same
slope (i.e., parallel lines). Or the model could have a ran-
dom intercept and random slope where individual levels
(e. g., starting points) and slopes can vary (i.e., non-parallel
lines with varying starting points). Mixed model ANOVAs
are fixed effect models with the exception of random resid-
uals. MLM allows for fixed and random effect models or
combinations of fixed and random effects. In addition to
incorporating random variation into the analysis, another
benefit of incorporating random effects is the ability to es-
timate the variances associated with the varying effect es-
timates (e. g., by how much do the intercepts differ across
participants?).

As a starting point, we will replicate the mixed model
ANOVA in SPSS MIXED, the dedicated program for running
MLM in SPSS. The first step is to transform Howell’s data
from wide form to long form. That can be done through
the following syntax:

VARSTOCASES
/MAKE DV FROM TimeO Timel Time3 Timeb6
/INDEX=Time (4)
/KEEP=Group Subject
/NULL=KEEP.

One should inspect the resulting dataset to make sure
the transformation is correct, especially important if there
are missing data. Figure 3 presents a screenshot of a se-
lection of the long form data for the Howell data. For each
participant, there are four rows of data in the long form

@ CrgssMark

(one for each time point) rather than a single row of data
in the wide form. Participants are designated by “Subject”.
We have a variable “Time” to capture whether a score was
generated at pre-test (Time = 0), at one month (Time = 1),
three months (Time = 3) or six months (Time = 6). Recall that
time is treated as categorical, not continuous. “Group” indi-
cates if a participant is associated with the treatment group
(Group = 1) or the control group (Group = 0). We have one
outcome variable labelled as “dv” rather than four outcome
variables each associated with each measurement time.
Itis a good idea to do a plot of the data before plunging
into MLM. The following syntax will produce a line graph
for our two groups. See Figure 4.
GRAPH

/LINE (MULTIPLE)=MEAN (dv) BY Time BY Subject
/PANEL COLVAR=Group COLOP=CROSS.

One observes (a) the treatment group (Group = 1) starts

lower than the control group (Group = 0), (b) most of the
treatment group starts at about the same spot (near the
mean of the outcome variable), while the control group is
more spread out in their starting scores, (c) almost all par-
ticipants get better over time regardless of group, (d) many
of the treatment group scores rise between Time = 3 and
Time = 6, which is not true of the control group, and (e) the
treatment group, for the most part, has lower scores at the
last time point than the control group.
Marginal Model. What many sources, including How-
ell (n.d.), first calculate, but do not label as such, is the
marginal model. The marginal model takes the form
of a MLM, but has no random effects (see Heagerty &
Zeger, 2000). The marginal model is the equivalent of the
mixed model ANOVA except the former uses ML estima-
tion. Selecting a marginal model over MLM is appropriate
when you measure the outcome variable only a few times,
when there are no higher level clusters (e. g., participants
counter-balanced), when your interest is in mean differ-
ences across groups rather than change over time, which is
better captured by MLM, when MLM fails to converge, and
when you are interested in comparing different covariance
structures but not random effects

The following syntax replicates the mixed model
ANOVA in SPSS MIXED for the marginal model:

MIXED dv BY Group Time
/FIXED=Group Time Group*Time |
/METHOD=REML
/PRINT=SOLUTION TESTCOV R
/REPEATED=Time | SUBJECT (Subject)

SSTYPE (3)

COVTYPE (CS) .

The first line of syntax tells SPSS to access SPSS MIXED.
The outcome variable is “dv” and the independent vari-
ables are “Group” and “Time”. The outcome variable must
be listed first. BY appears innocuous but it is the first of
many complexities in SPSS MIXED. BY identifies categori-
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Figure 3m SPSS Data in Long Format

& subject ¢ Time

1 1
2 1
3 1
4 1
5 2
6 2
7 2
8 2
9 3
10 3
11 3
12 3
13 4
14 4
15 4
16 4
17 5
18 5
19 5
20 5
21 B
22 6
23 B
24 6
25 7
26 7
27 7
28 7
29 8
20 8
31 8
a2 8
k! 9
24 9
35 9
6 9
a7 10
a8 10

cal predictors whereas WITH lists covariates that are to be
treated as continuous. There can be one BY and one WITH
command in the same MIXED statement (e. g, BY Group
WITH Time). In our example, the between-subject vari-
able Group is categorical so it should be entered with a BY
statement. Similarly, the within-subject variable Time is
what Howell (n.d.) refers to as an ordered categorical vari-
able (since it was not measured at evenly spaced intervals
and it contains an intervention between two of the time
points) so it should also be entered with a BY statement. If
we had several time points over which we would expect lin-
ear change, then treating Time as continuous would allow
us to estimate the per-unit-of-time change. The F' values as-
sociated with Time and the Group by Time interaction vary
widely depending on if Time is entered using BY or WITH
(which is expected since if we consider time to be continu-

4 0 m W A O m WD m WA D D WA O D WS D@ W 4D Wt DD WSO m WS

& v
296
175
187
192
376
329
236

76
309
238
150
123
222

80
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271
250
216
316
291
238
144
321
364
270
308
447
402
204
216
220

70

95

87
375
335

&> Group

o 000 o000 oo oo oo o o000 00000 oo oo oo o000 o000 oo

ous we would be looking for a linear relationship over time,
instead of exploring differences among all levels of the cat-
egorical variable). The bottom line is that our mixed model
ANOVAresultsreplicate only if Time and Group are entered
via BY.

The next line is /FIXED. What follows is a list of
fixed effects, specifically Group, Time, and Group x Time.
SSTYPE (3) is how sums of squares will be partitioned,
with this default being the traditional Type III sum of
squares (this selection may or may not be appropriate; see
Smith & Cribbie, 2014).

/METHOD is the estimation method: ML or Restricted
Maximum Likelihood (REML). ML is better if you are exam-
ining fixed effects (as per a strictly traditional analysis) or
comparing models that differ in their fixed effects. Alterna-
tively, REML is better if you are examining random effects
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Figure 4m Line plot.
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or if you are comparing random effect models (McNeish,
2017). However, REML and ML frequently give similar re-
sults (Everitt & Pickles, 2004).

/PRINT SOLUTION provides estimates of values as-
sociated with our FIXED command. TESTCOV is an option
to provide Wald test statistics and confidence intervals for
variance estimates. R prints the variance-covariance ma-
trix for the residuals. Examining the variance-covariance
matrix is essential for interpreting the results from the
variance estimates.

The final and critical line of syntax to replicate
the mixed model ANOVA results in SPSS MIXED is
/REPEATED. This line provides variances and covari-
ances associated with repeated score (level 1) residu-
als and maps the relationships between those resid-
uals based on their presumed covariance structures.
Time | SUBJECT (Subject) indicates that the time
points are nested within the subject IDs.

SPSS MIXED provides for a number of different pos-
sible covariance structures in the /REPEATED statement.
Authors of sources on SPSS MIXED (and researchers) fre-
quently choose covariance structures without specifying or

explaining their choice. Like (Howell, n.d.), we have chosen
Compound Symmetry (CS) because that is the equivalent
of assuming equal variances and covariances as per the
mixed model ANOVA. An alternative in SPSS MIXED that
was also chosen by Howell is Unstructured (UN) which al-
lows each time period to have its own variance and each
pair of time periods their own covariance. UCLA Statistical
Consulting Group (n.d.) wrote “If the compound symmetric
covariance is overly simple, the unstructured covariance
seems overly complex” (para 27). Howell (n.d.) was even
more colorful in his description of UN: “Put another way,
with the unstructured solution we threw up our hands and
said to the program ‘You figure it out! We don’t know what’s
going on™ (para 37). Again, if we adopted UN with four
measures we would need to estimate four variances and
six covariances, a substantial number of parameters given
our small sample size (see Chan, 2004). With CS, there are
only two parameters.

The marginal model output is presented in Output 2.
Model Dimension reports number of levels (not to be con-
fused with levels in multilevel modeling) for each predic-
tor in the model, with one for the intercept (since it is con-
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tinuous), two for Group (two groups), four for Time (four
time points), and eight for Group x Time (2 groups x 4
time points). There is one parameter for the intercept,
one parameter for Group (number of groups — 1 because
of dummy coding), three parameters for Time (number of
time points — 1 because of dummy coding), and three pa-
rameters for Group x Time [(number of groups-1) x (num-
ber of time points - 1)]. There are two repeated parameters
for Time, specifically one variance and one covariance be-
cause of our choice of compound symmetry that assumes
the same variance and same covariance for all levels of
Time. Information Criteria values permit comparing mod-
els with different covariance structures, with lower val-
ues indicating better model fit. For compound symmetry,
the log-likelihood value is 1000.805, Akaike’s Information
Criterion (AIC) is 1004.805, and Schwarz’s Bayesian Crite-
rion (BIC) is 1009.76. Both AIC and BIC penalize for model
complexity; BIC penalizes more than AIC. Other covari-
ance structures will provide higher or lower values for log-
likelihood, AIC, and BIC.

Type III Tests of Fixed Effects are identical to our mixed
model ANOVA results, specifically statistically significant
main effects for group and time, and a statistically signif-
icant interaction of group by time. Turning to Estimates
of Fixed Effects, the intercept is 106.67, the mean for Treat-
ment at Time 6. Time 6 for Treatment is our intercept be-
cause of how we coded our variables in the dataset. SPSS
defaults to the last category (i.e., Time = 6, Group = 1) as the
reference category.

The reference group is Treatment (Group = 1) and the
effect of the Control (Group = 0) is 42.17 (see Output 2 at
the end). Thus, the Control is scoring 42.17 higher than the
Treatment at Time 6. Thus, 106.67 plus 42.17 is equal to
148.84 or the mean for Control at Time 6. The next estimate
is 173.75, labeled ‘[Time = O], which represents the effect
of time from Time 6 to Time O for Treatment; if you add
173.75 plus the intercept of 106.67, that equals to 280.42 or
the mean for Treatment at Time 0. Next is —12.17, labeled
‘[Time = 1], the effect of Time from Time 6 to Time 1. The in-
tercept of 106.67 plus —12.17 is equal to 94.5, which is the
mean for Treatment at Time 1. Similarly, the intercept of
106.67 plus —6.33 is equal to 100.34 or the mean for Treat-
ment at Time 3. And the zero that follows — the intercept is
106.67 and 106.67 (plus 0) is the mean for Treatment at Time
6. What about the —18.25, 120, and 73.25? Those relate to
the means of the interaction contrasts between Group and
Time. For example, —18.25 is equal to

(XTime 0, Treatment — XTime 0, Cont'r‘ol)

- (XTime 6, Treatment — XTime 6, C’ontrol)
= (304.33 — 280.42) — (148.83 — 106.67) .

In other words, this represents the difference between the
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treatment effect at Time 0 and the treatment effect at Time
1. These values are important because they highlight the
interaction contrasts that drive the omnibus interaction ef-
fect. In this example, we see that the Group x Time (0,6) in-
teraction contrast contributes little to the interaction, but
the Group x Time (1,6) interaction contrast and Group X
Time (3,6) interaction contrast both contribute to the inter-
action. Contrast tests for interactions are discussed below.
SPSS MIXED does not provide measures of effect size given
the complexity of calculating effect sizes with multiple er-
ror terms, however see Rights and Sterba (2019) for possi-
bilities.

Next we see Estimates of Covariance Parameters. These
values are best understood in relation to the Residual Co-
variance (R) Matrix. Careful, though — the Estimates of Co-
variance Parameters table is NOT listing the variance and
the covariance, per se. According to Littell et al. (2006; see
also Littell et al., 2000), the CS Covariance value of 2539.361
is the covariance between two scores for the same sub-
ject and is equivalent to a between-subjects variance com-
ponent that Littell et al. (2006) label as o2. On the other
hand, the CS diagonal offset value of 2760.622 is an esti-
mate of a residual variance component or the variance con-
ditional on the participant that Littell et al. label as 0%.
That 2760.622 is the same value as the mean squared error
found for Sphericity Assumed in the mixed model ANOVA
(see Output 1), given we have a balanced design and no
missing data. The total variance or o2 according to Littell
et al. is the sum of between-subjects variance (covariance)
and the residual variance, that is 02 = o2 + 0% or 5299.98
=2539.361 + 2760.622. In the R matrix (Output 2), you see
that the diagonal is the variance (5299.98), the off-diagonal
is the covariance (2539.361).

An additional option is /TEST. This option could be used
to produce contrast tests. We might have tested an interac-
tion contrast between scores at Time 0 and Time 1 by Group
(treatment and control) via:

/TEST (0) Group*Time 1 -1 0 0 -1 1 0 O.

As noted above, other covariance structures could be
selected. For example, we could choose an unstructured or
UN covariance structure by replacing CS with UN as How-
ell (n.d.) attempted. See Output 3 for selected output. Tests
of Fixed Effects and Estimates of Fixed Effects are identi-
cal between CS and UN so are not reported. Note that for
Model Dimensions, the number of Repeated Effects Time pa-
rameters is 10 (versus two for CS), specifically four vari-
ances and six covariances. The log-likelihood is 975.37 (vs.
1000.80 for CS) and AIC is 995.37 (vs 1004.80 for CS) so both
are better for UN. However, BIC which penalizes for model
complexity is 1020.15 for UN (vs. 1009.76 for CS). Exami-
nation of other covariance structures reveals worse model
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fit compared to UN or CS. For the UN model, the Estimates
of Covariance Parameters is best understood relative to the
Residual Covariance R Matrix. UN (1,1), UN (2,2), UN (3,3),
and UN (4,4) values are the variances in the residual covari-
ance matrix (i.e., 0%, 03, 02, 03). In that vein, UN (2,1) or
3535.58 is the residual covariance (i.e., o21) between Time
0 and Time 1 (recall that both variances and covariances
can vary across time points in the UN covariance struc-
ture). There is little covariance between Time 0 and Time
6 (041 = —80.2575) relative to the covariances between
other time periods.

Autoregressive or AR1 is an alternative to CS and UN

(see Output 4). As stated by Howell (n.d.), “[AR] assumes
that correlations between any two times depend on both
the correlation at the previous time and an error compo-
nent. To put that differently, your score at time 3 depends
on your score at time 2 and error” (para 37). AR1 produces
a log likelihood of 991.55 (so worse than for UN) and AIC of
995.55 for the AR1 structure (the same as for UN). The AR1
structure estimates one variance (AR1 diagonal = 5190.42,
SE=1005.51) and one correlation (AR1 rho =.611, SE =.083).
The diagonals of the R matrix are o2 = 5190.42, the off-
diagonals of the R matrix being 02 x p (5190.4% x .611 =
3172.215), 02 x p? (5190.4% x.6112 = 1938.754), and 0% x p*
(5190.42 x .6113 = 1184.903).
Random Intercept Model. So far we have focused on
fixed effects in MLM because that is all the mixed model
ANOVA and the marginal model are capable of examining.
Fixed effect factors are appropriate if it is plausible that
all individuals/groups have the same parameter (e. g., in-
tercept). In contrast, if a factor (e. g., the intercept) varies
across participants and thus would be better represented
by a distribution rather than a point estimate, then this fac-
tor could be specified as a random factor. As stated by Mc-
Neish (2017), “the random effects... capture the difference
between aspects of the [individual/group] specific intercept
and slopes and the overall regression line formed by the
fixed effects” (p. 663).

Adding random effects adds complexities to the analy-
sis. Chan (2004) cautions that “[f]or the extension of the
fixed effects to a mixed effect model (having both fixed and
random effects), it would be most appropriate to seek the
assistance of a biostatistician!" (p. 460). However, Judd et
al. (2012), among others, encourage greater use of random
effect models by psychological researchers.

In the marginal model, we modeled Time using the RE-
PEATED statement. To account for dependencies between
scores using random effects in SPSS MIXED, we swap out
the /REPEATED statement for a /RANDOM statement that
lists predictors of random effects in the models. ARANDOM
statement serves to specify random effects through the G
matrix while a REPEATED statement speaks to the structure
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of the R matrix (see Littell et al., 2006).

The random intercept model allows each individual’s
intercept (pre-test level, which in SPSS is by default the last
level) to vary from the average for the individual’s condi-
tion (i.e., treatment or control group). The goal is to deter-
mine the variability associated with those individual scores
and determine if that variability is substantial. One needs
only to change the last line of the syntax from the marginal
model to run the random intercept model, specifically:

/RANDOM=Intercept |
COVTYPE (VC) .

SUBJECT (Subject)

The /RANDOM statement specifies a trajectory for each
“Subject” or participant within each group, all with the
same slope but with a random intercept specific to each
participant. SUBJECT() lists sampling units. In our example,
participants are randomly assigned to treatment or control
groups at Level 2 while their repeated measurements are
at Level 1. COVTYPE(VC) or Variance Components is the
covariance structure suggested by Field (2018). Other co-
variance structures are converted to a VC or unstructured
covariance structure given our random effect and G ma-
trix has only one parameter (i.e., the random intercept).
One should add G after R in the /PRINT command to obtain
the G matrix, the matrix associated with random intercepts
(and if applicable, random slopes).

The resulting output for the random intercept model
is identical to the output from the marginal model with a
couple of exceptions (see Output 5). Looking at Model Di-
mension, there is one parameter associated with the ran-
dom intercept and one parameter associated with residual
error. Fixed effects are unchanged. Turning to the Esti-
mates of the Covariance Parameters, the variances around
the fixed effects, the value 2760.62 is now labelled Residual
or the level 1 residual variance. Recall for the mixed model
ANOVA this variance was labeled the mean squared error
and for the marginal model this variance was labeled the
CS diagonal offset. These three models are referring to the
same residual variance using different terms. The R ma-
trix has only the one value of 2760.62 because the VC co-
variance structure has the same variance for all four time
periods and zeros for the covariances (having defaulted to
a Scaled Identity matrix that is assigned to each random
effect). The value of 2539.36 is now labelled the Intercept
[subject=Subj] Variance and is the variance estimate (72)
of the intercept (Field, 2018). The GG matrix value reflects
the variance associated with the random effect of the in-
tercept of 2539.36. Both the residual and intercept variance
estimates are statistically significant, indicating that there
is variability remaining that could be explained by adding
time-varying predictors (to explain differences over time)
or time-invariant predictors (to explain variability in the
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intercepts).

The random intercept model adds the G and R matrices
after the G matrix is converted to a 4x4 matrix (reflecting
our four measurement periods). The resulting variance-
covariance matrix is equivalent to the compound symme-
try (CS) matrix of constant variances and constant covari-
ances, hence why we are getting the same results from the
marginal model and the random intercept model (albeit
with different labels for Estimates of the Covariance Param-
eters). And we also get the same results from a repeated
measures ANOVA model given we have a balanced design
and no missing data.

Given that the output from the marginal model and the
random intercept model frequently do not differ except in
their labeling in SPSS MIXED, comparing those two mod-
els is of no benefit. What is of benefit is to compare the
random intercept model to a simpler form of that same
model, the empty model (Output 6). The empty model is
run as per the random intercept model in SPSS MIXED ex-
cept that /FIXED= has nothing following the equal sign. Do-
ing so allows one to calculate and compare the intraclass
correlation coefficient (ICC) values for the two models or
72/(7% + 02). Note that 72 represents in this instance
the intercept (between subject) variance and o2 represents
the residual (individual subject) variance. The random in-
tercept model with fixed effects produced an ICC of .479
[2539.36 / (2539.36+2760.62)]. That compares to an ICC of
.244 for an empty model with no fixed effects or 2824.89 /
(2824.89+8759.14). For the empty model, note the substan-
tial within subjects/residual variance of o2 = 8759.14 rel-
ative to the variance between subjects or attributable to
the intercept of 72 = 2824.89. Also note the substantial
relative drop in within subjects or residual variance from
02 = 8759.14 to 02 = 2760.62 as we move from the empty
model to the random intercept model (i.e., by considering
the individual level intercepts we are much better able to
predict the scores of the participants on the outcome vari-
able). It is noteworthy that the random intercepts are not
tied to a specific reference group but instead relate to over-
all between participant differences in the level of the out-
come.

Random Slope Model. The random slope model (that also
includes a random intercept) evaluates the assumption that
each participant’s slope or trajectory of change varies from
the average for the participant’s condition (i.e., treatment
or control group). It might be important for the researcher
to determine the variability associated with those individ-
ual trajectories and determine if that variability is substan-
tial. The random slope model can be beneficial for deter-
mining if there are time-varying covariates that might help
explain variability in slopes over time. As with the random
intercept model, the random slope model improves the op-
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eration of our fixed effect model.

Howell (n.d.) proceeded to perform a random slope
model, albeit noting his uncertainty as how to proceed.
When time is treated categorically (as we have done in this
example), it is not possible to estimate variability in slopes
between each of the time points. When we request random
slopes, there are three slope variances for our four time pe-
riods for each participant. Time 6 is the reference by de-
fault in SPSS; thus, there is a slope variance for Time 0 vs.
Time 6, there is a slope variance for Time 1 vs. Time 6, and
there is a slope variance for Time 3 vs. Time 6. For example,
the Time 0 vs Time 6 random slope would estimate the vari-
ability in slopes across these two time points. Thus, we are
requesting a random intercept value, three random slope
values, and a residual variance value (for the random ef-
fects). When treating time categorically, it can be impossi-
ble to estimate random slopes because we are not provid-
ing enough information (e. g., variances, covariances from
the time points) to be able to estimate the individual slopes
(and thus the individual slope variances) in addition to the
other model parameters (e. g., intercept variances, residual
variance). This difficulty might seem confusing since we
know that it is easy to calculate the variances of the slopes
via a simple difference score model (i.e., calculate the vari-
ance of Time 1 - Time 0, the variance of Time 3 — Time 0,
etc.). However, what is explicit in these models is that the
residual is zero; the mixed model that we have been run-
ning estimates the residual and it is not possible to fix it
to zero in SPSS. Some software programs, for example the
structural equation modeling program AMOS, allow users
to fix residual parameters to zero; doing so would allow us
to estimate the model as long as we are comfortable assum-
ing that the residuals are all zero.

Only for a different design in which each individual at
each time period was associated with multiple measure-
ments would it be possible to estimate a random slope
model (Singmann & Kellen, 2019). Imagine a study look-
ing at the effect of cognitive behavioral therapy on depres-
sion; individuals were measured across four waves (stages
of therapy), and at each wave there were multiple mea-
surements of depression (e. g., different depression scales;
measurements before, during and after the counselling ses-
sion). Thus, in most mixed model design cases, we should
focus our attention in evaluating on either the random in-
tercept model or the marginal model.

Presentation of Results

Below we present the results for the mixed model ANOVA,
marginal model, and random intercept model. These re-
sults should be supplemented by appropriate tables and fig-
ures. Correlations between scores on the variables should
also be reported. To summarize, if we have a group by time
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design with all participants measured at the same points in
time, if we have no missing data, if we are satisfied with a
compound symmetry covariance structure, and if we want
a relatively simple analysis, then the mixed model ANOVA
is sufficient. If there are missing data, if we wish to explore
other covariance structures, if time periods vary between
participants, and if we are willing to tackle more complex
analyses, then MLM is appropriate. The marginal model
and the random intercept model produce similar results,
but if we wish to explore random variables and more com-
plex designs, then random intercept (and slope) models
might be investigated. Otherwise, a marginal model buys
one the advantages of MLM without the added complexity.
What might our results look like as a mixed model
ANOVA? A mixed model ANOVA was conducted on the data
from the 24 participants from Howell (n.d.). Group (treat-
ment or control) was a between-subject factor. Time (four
time periods) was the within-subject factor. There was
a main effect for Group, F(1,22) = 13.714, p < .001,
775 = .384, and a main effect for Time, F'(3,66) = 45.135,
p < .001, 77% = .672. The main effects were qualified
by a statistically significant interaction of Group by Time,
F(3,66) = 9.014, p < .007,72 = .291. According to cutoffs
(e. g., Cohen, 1988), partial eta-squared greater than 0.14
indicates a large effect (these cutoffs actually apply to eta-
squared but have been transferred to partial eta-squared).
Cell means are plotted in Figure 1. Scores diminished over
time, more so for the treatment group. Interaction con-
trasts (group by time) were statistically significant for pre-
test (Time 0) and one month (Time 1), F'(1,22) = 21.141,
p < .001, 77’2, = .490, pre-test (Time 0) and three months
(Time 3), F(1,22) = 10.586, p < .004, 77127 = .325, one
month (Time 1) and three months (Time 3), F(1,22) =
7.247,p < .013, 7 = .248, one month (Time 1) and six
months (Time 6), F'(1,22) = 13.738, p < .001, 7 = .384,
three months (Time 3) and six months (Time 6), F'(1,22) =
6.372,p < .019, 775 = .225, but not pre-test (Time 0) and six
months (Time 6), F'(1,22) = .204, p < .656, 77127 =.009.
How about marginal multilevel model results? A
marginal multilevel model was conducted on the data from
the 24 participants from Howell (n.d.). Group (treatment
or control) was a between-subject factor. Time (four time
periods) was the within-subject factor. The compound sym-
metry covariance structure was selected. There was a main
effect for Group, F'(1,22) = 13.714, p < .001, and a main
effect for Time, F'(3,66) = 45.135, p < .001. Again, the
main effects were qualified by an interaction of Group by
Time, F'(3,66) = 9.014, p < .007. Cell means are plotted in
Figure 1. The residual covariance between each (and all) of
the time periods is 2539.36 (SE = 981.119). The residual
variance was 2760.622 (SE = 480.563). The total variance
is the sum of the residual covariance and residual vari-
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ance or 5299.983. Statistically significant interaction (group
by time) contrasts were found between pre-test (Time 0)
and one month (Time 1), 1oy = —138.25 (SE = 30.335),
t(66) = —4.557, p < .001, 95% CI [—198.816, —77.684],
and pre-test (Time 0) and three months (Time 3), ¥g3 =
—91.500 (SE = 30.335), t(66) = —3.016, p < .004, 95%
CI [—152.066, —30.934], but not between pre-test (Time 0)
and six months (Time 6), Ygg = —18.250 (SE = 30.335),
t(66) = —.602, p < .549, 95% CI [—78.816,42.316]. The
residual variance was 02 = 2760.62 (SE = 480.563), a
value that was statistically significant, Wald Z = 5.745,
p < .001, 95% CI [1962.600, 3883.131]. Therefore, there
could be potential level 1 predictors that explain a portion
of this variance.

Finally, what would the results for a random intercept
model look like? A random intercept multilevel model was
conducted on the data from the 24 participants from How-
ell (n.d.). Group (treatment or control) was a between-
subject factor. Time (four time periods) was the within-
subject factor. The variance components covariance struc-
ture was selected. There was a main effect for Group,
F(1,22) = 13.714, p < .001, and a main effect for Time,
F(3,66) = 45.135, p < .001. These main effects were
qualified by a statistically significant interaction of Group
by Time, F'(3,66) = 9.014, p < .007. Cell means are plot-
ted in Figure 1. Statistically significant interaction contrasts
[as above]... The residual variance was [as above]... The
random intercept model with fixed effects produced an in-
traclass correlation coefficient of ICC = .479 compared to an
empty random intercept model with no fixed effects of ICC
=.244.

Discussion

More than 20 years ago, Overall et al. (1999) wrote of their
struggles to understand SAS PROC MIXED, the SAS equiva-
lent to SPSS MIXED. Overall et al. spoke of how “hidden in
the general formulation of the mixed model equation are li-
abilities associated with what is perhaps too great flexibil-
ity for defining a model on which inferences about treat-
ment effects are to be based” (p. 190). Like us, they re-
lied upon the literature for guidance on how to analyze
TCPPF data, and, like us, they reported conflicting and un-
clear advice. Their recommendation was that researchers
must specify in detail exactly how their analyses were run;
“[gliven the procedure’s inherent flexibility, the only way
that anyone can evaluate adequacy of reported results is to
consider the complete model specification... observed ran-
dom effects and error correlation matrix” (p. 215). Thus,
we conclude with the same recommendation as Overall et
al. —that whatever researchers do when they analyze data
from a TCPPF design, that data analysis be reported clearly
and, for even more clarity, including the syntax used. Since

The duantitative Methods for Psychology

36



https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.1.p025

| 2023 mVol. 19mno. 1

T = o

SPSS is the most popular software program in psychol-
ogy (Davidson et al., 2019), we believe it makes sense to
have a resource available that can assist researchers in im-
plementing and understanding hierarchical/mixed model
analyses for TCPPF designs within this software package.
We hope readers will find the present tutorial to be useful
as they analyze their own TCPPF data.
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