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Abstract Psychological research is rife with inappropriately concluding “no effect” between pre-
dictors and outcome in regression models following statistically nonsignificant results. However,
this approach is methodologically flawed because failing to reject the null hypothesis using tra-
ditional, difference-based tests does not mean the null is true. Using this approach leads to high
rates of incorrect conclusions that flood psychological literature. This paper introduces a novel,
methodologically sound alternative. In this paper, we demonstrate how an equivalence testing ap-
proach can be applied to multiple regression (which we refer to here as “negligible effect testing”)
to evaluate whether a predictor (measured in standardized or unstandardized units) has a negli-
gible association with the outcome. In the first part of the paper, we evaluate the performance of
two equivalence-based techniques and compare them to the traditional, difference-based test via a
Monte Carlo simulation study. In the second part of the paper, we use examples from the literature
to illustrate how researchers can implement the recommended negligible effect testing methods
in their own work using open-access and user-friendly tools (negligible R package and Shiny app).
Finally, we discuss how to report and interpret results from negligible effect testing and provide
practical recommendations for best research practices based on the simulation results. All materi-
als, including R code, results, and additional resources, are publicly available on the Open Science
Framework (OSF): osf.io/w96xe/.
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Introduction

Psychologists are often interested to determine if an indi-
vidual predictor in a multiple regression model is negligi-
ble or practically insignificant. For example, Proudfoot and
Kay (2018) testedwhether feelings of personal controlmod-
erate the effect of perceived organizational stability on par-
ticipants’ tendency to identifywith their organization, with
higher stability associated with greater organization iden-
tification only for those in the “control threat” condition.
To support the hypothesis, they sought to demonstrate that
no such relationship, or effect, existed for participants feel-
ing a lack of control. In another study, Seli et al. (2017) in-
vestigated the relationship between obsessive-compulsive
disorder (OCD) symptomatology and mind wandering. Be-
cause intrusive thoughts are a shared symptom of both

spontaneous mind wandering and OCD, the authors rea-
soned that spontaneous, but not deliberate, mind wander-
ing would be positively associated with OCD symptomatol-
ogy.

The problem is that researchers employ the same tools
to test for a negligible association as they do when testing
for a meaningful one. A common, but methodologically in-
appropriate, practice in the literature is to draw inferences
of “no relationship” between the independent variable and
the dependent variable following a statistically nonsignifi-
cant result (i. e., p ≥ α) from null hypothesis significance
tests (NHST). That is, if a particular test statistic results in a
sufficiently large p value (e. g., p ≥ 0.05), researchers con-
clude “no association” and accept the null hypothesis (e. g.,
H0 : β = 0). But, p values are not - and, cannot be - an indi-
cation of the accuracy or probability of a hypothesis (Lak-
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ens, 2022). In the NHST framework, the null hypothesis is
already assumed to be true, and p values are only indica-
tive of the probability of observing the data we obtained.
As Cohen (1994) explains, p values represent the probabil-
ity of obtaining data as ormore extreme than that observed
given the null hypothesis - P (data |H0) - which is entirely
different from P (H0 | data), the probability of the null hy-
pothesis, given the data.

What can one say then when encountered with a non-
significant p value? If p ≥ α, one can merely conclude that
there is insufficient evidence to reject the null. And, as the
old expression goes: “absence of evidence is not evidence
of absence.” Of course, it might be that the null hypothesis
is indeed true, but we simply cannot infer this from a non-
significant p value: The statistical tests commonly used in
psychology are difference-based tests which are designed
to detect the presence of an effect — a difference or a rela-
tionship -– not a lack thereof (Goertzen & Cribbie, 2010).
Consequently, any conclusion about the accuracy of the
null hypothesis is inappropriate, “no matter how large the
p value” (Quintana, 2018).

Another issue with concluding “no association” follow-
ing statistically nonsignificant results is that the probabil-
ity of finding statistical significance increases as the sam-
ple size increases (unless the true effect is exactly zero, but
see next section). Hence, the likelihood of finding non-
significant results – which are commonly, but incorrectly,
interpreted as a “negligible association” – decreases with
larger sample sizes (Goertzen & Cribbie, 2010). Put differ-
ently, even with truly negligible effects (that are not per-
fectly zero), the probability of concluding “negligible asso-
ciation” is highest with small sample sizes and lowest with
large sample sizes. This inverse relationship between sam-
ple size and statistical power to support the researcher’s
hypothesis of a negligible relationship is counterintuitive,
misleading, and therefore outright inappropriate.

Defining Negligible Association

Realistically, the probability that the true effect is exactly
zero (i. e., the null hypothesis) is infinitely small (Berkson,
1938; Cohen, 1990, 1994; Thompson, 1992; Tukey, 1991).
For most purposes, however, associations or effects need
only be small enough to be regarded as practically zero.
Using an equivalence testing approach, “small enough” is
defined by a prespecified value (indicated by δ) which
represents the threshold of practical interest used to cre-
ate an equivalence (or negligible effect) interval (−δ, δ).
Here, an effect that falls within the equivalence interval’s
bounds is considered negligible, or practically zero. Note
that δ may also be called the smallest effect size of interest
(SESOI) orminimallymeaningful effect size (MMES; we use
δ and SESOI interchangeably thereafter). It is important to

emphasize here that equivalence interval bounds, or the
SESOI value, should be carefully planned a priori with con-
crete justification and independently from the data. In this
paper, we only briefly discuss selecting a SESOI with exam-
ples, but see Anvari and Lakens (2021) and Lakens et al.
(2018) for how to justify SESOI decisions.

To illustrate the equivalence interval conceptually, let
us consider an example from the literature borrowed from
Quintana (2018): Kupats et al. (2018) examined the lack
of relationship between symptoms of generalized anxiety
and cardiovascular autonomic dysfunction, which is mea-
sured by heart-rate variability (HRV). According to Quin-
tana (2016), about 75% of HRV effect sizes in anxiety stud-
ies are at d = 0.26 or above. Quintana (2018) suggested
that this value (d = 0.26) should therefore be set as δ, or
the SESOI, in this example. Thus, the equivalence interval
lower and upper bounds will be d = −0.26 and d = 0.26,
respectively. To conclude a negligible association between
generalized anxiety symptoms and HRV, the magnitude of
the resulting association needs neither be larger than d =
0.26 nor smaller than d = −0.26; if the observed rela-
tionship’s effect size and its associated uncertainty are con-
tainedwithin the equivalence interval (−0.26 < d < 0.26),
a negligible effect should be concluded.

Testing for Negligible Association Using Equivalence
Tests

Early appearances of testing for a negligible effect in psy-
chological research used equivalence testing to determine
similarity (i. e., negligible difference) between two group
means (see Rogers et al., 1993). Since then, several other
negligible effect testing methods have been developed. For
example, Goertzen and Cribbie (2010) demonstrated how
tests of equivalence can be used to determine negligible ef-
fects in simple correlations. Beribisky et al. (2020) showed
how to testwhether an indirect effect is negligible for a sub-
stantial mediation. Yuan and Chan (2016) and Counsell et
al. (2020) proposed to use equivalence testing to assess neg-
ligible effects for measurement invariance. Campbell and
Lakens (2021) illustrated how to test whether an ANOVA or
a linear regression model, as a whole, does not account for
a meaningful proportion of the outcome variable. Most re-
cently, in a preprint, Campbell (2022) demonstrated how
equivalence testing can be used on regression coefficients
to test for a lack of meaningful association.

The work in Campbell (2022) represents a significant
contribution to the equivalence testing literature but in-
cludes a few areas which we seek to address and supple-
ment in this paper. First, the focus in the preprint (Camp-
bell, 2022) is on standardized regression coefficients. In
this paper, we shift the focus to unstandardized regres-
sion coefficients: Unstandardized regression coefficients
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are the most prevalent effect size reported in psychologi-
cal research (Farmus et al., 2022) and are often the default
output from statistical software packages. Similarly, the
standard error provided by software output and reported
in published articles is almost always tied to the unstan-
dardized effect. Furthermore, we agree with Pek and Flora
(2018) that reporting and using unstandardized effects is
typically preferred because they are often tied to a more
meaningful metric (e. g., reaction time, number of correct
responses, etc.), are easier to interpret, and more directly
aid researchers to answer questions about practical impli-
cations. Weacknowledge, however, thatmanyunstandard-
ized effect sizes from psychological scales are arbitrary
such that the magnitude of effects will change depending
on choices such as reporting a mean or a total score. Nev-
ertheless, we believe that mean or sum scores from Likert-
type items can oftentimes be more intuitive than think-
ing about standard deviation units, and even more so with
well-knownand established scales such as the BeckDepres-
sion Inventory (BDI-II; Beck et al., 1996) or the Minnesota
Multiphasic Personality Inventory (MMPI-II; Butcher et al.,
2001).

Second, most papers evaluating the equivalence test-
ing approach in psychology, use Schuirmann’s (1987) Two
One-Sided Tests (TOST) technique. This paper presents and
compares an additional, but less familiar, equivalence test-
ing technique – Anderson and Hauck’s (1983) procedure -
which was previously found to demonstrate greater statis-
tical power than the TOST at smaller sample sizes (e. g.,
Counsell & Cribbie, 2015). The current paper further intro-
duces functions from the negligible R package (Cribbie
et al., 2022) followed by an online Shiny application to as-
sess negligible associations between a given predictor and
outcome variables -measured in either standardized or un-
standardized units - in a linear regression model.

While there are several recommended equivalence
testing R packages available such as TOSTER (Camp-
bell, 2022; Lakens, 2017), the negligible package
contributes to the arsenal of online tools by introduc-
ing equivalence-based adaptations of numerous statistical
methods such as multiple regression, mediation analyses,
structural equation modelling and fit indices, correlations,
interaction between continuous variables, association be-
tween categorical variables, etc. The negligible pack-
age also provides paper-ready graphical output and helpful
guidelines for users on how to interpret test results. Finally,
we demonstrate, using examples from the literature, how
to determine if certain predictors are in fact negligible, and
provide practical recommendations for researchers.

Note that the term equivalence testing is often referred
to as non-inferiority testing or negligible effect testing
(equivalence/similarity canbe thought of as a negligible dif-

ference). By the same token, the term equivalence interval
is commonly called negligible effect interval. In this paper,
we will use negligible effect terminology when referring to
determining negligible associations, whereas equivalence
terminology applies more broadly to a variety of methods,
many of which are discussed in the next section.

Applying Equivalence Testing to Conclude Negligible
Association in Multiple Regression

The most popular equivalence testing methods are
Schuirmann’s (1987) TOST and the Anderson and Hauck
procedure (AH; 1983; Hauck & Anderson, 1984). Although
the two methods have the same purpose and hypotheses,
each adheres to a different set ofmathematical procedures.
Furthermore, some research has suggested that the TOST
is slightly more conservative than the AH method - with
lower power and Type I error rates (Berger & Hsu, 1996;
Brown et al., 1997). Statistical power and Type I error in
the context of equivalence testing will be explained using
a more convenient terminology of correct and incorrect
negligible association conclusions which is defined in the
Method section. In this section, we describe in detail how
the TOST and AH procedures can be used to determine
if an effect size of an unstandardized or standardized re-
gression coefficient can be considered both practically and
statistically negligible.

Schuirmann’s Two One-Sided Tests (TOST)

The popular TOSTmethodwas originally developed to eval-
uate the equivalence of two group means (Schuirmann,
1987). Applying the TOST to individual predictors in mul-
tiple regression requires replacing the difference between
group means with the regression slope of interest (β),
which could be in unstandardized or standardized units.
As its name suggests, the TOST consists of two directional
t tests, each of which has a unique null hypothesis. The
first t test’s null hypothesis states that the magnitude of the
effect (i. e., regression coefficient) is equal to, or less than,
the lower bound of the SESOI, whereas the second t test’s
null hypothesis states that themagnitude of the same effect
is equal to, or greater than, the upper bound of the SESOI.
Thus, the null hypotheses are

H01 : β ≤ −δ

H02 : β ≥ δ

where, again, −δ and δ are the lower and upper SESOI
bounds, respectively. Because β could be in standardized
or unstandardized units, it is crucial that δ is on the same
metric as β. The alternative hypotheses then follow

H11 : β > −δ

H12 : β < δ
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If the first null hypothesis (H01) is rejected, there is ev-
idence that our regression coefficient is greater than the
lower SESOI bound (i. e., H11). By the same token, if the
second null hypothesis is rejected (H02), there is evidence
that the regression coefficient is smaller than the upper
SESOI bound (i. e., H12). It then follows that if both null
hypotheses are rejected at the nominal Type I error rate,
we can conclude that the regression coefficient is simulta-
neously greater than the lower SESOI bound and smaller
than the upper SESOI bound; the regression coefficient is
completely contained within the negligible effect interval,
such that δ < β < δ.

Both sets of hypotheses can be tested using two tra-
ditional one-tailed Student’s t tests, where the first set is
tested with its corresponding t statistic:

t1 =
β̂ − (−δ)

seβ̂
=

β̂ + δ

seβ̂
(1)

and the second set is tested with a similar formula, appro-
priately adjusting the numerator:

t2 =
(+δ)− β̂

seβ̂
=

δ − β̂

seβ̂
(2)

where β̂ is the estimated effect size of the predictor of in-
terest, β, and seβ̂ is the standard error of the correspond-
ing regression coefficient. H01 is rejected if t1 ≥ tc(1−α,df)

andH02 is rejected if t2 ≥ tc(1−α,df), where tc(1−α,df) is the
critical t value associated with the prespecified α and the
corresponding degrees of freedom, df = n− k − 1, where
n is the sample size and k is the number of predictors in
the regression model. If both null hypotheses are rejected,
the predictor of interest can be considered practically and
statistically negligible.
Symmetric Confidence Intervals (CIs) Approach. Anal-
ogous to the TOST, researchers can use CIs to test for neg-
ligible association (Westlake, 1972, 1976; Metzler, 1974).
Much like in difference-based tests, a CI can be constructed
around the parameter estimate of interest (e. g., β̂) with
a predefined level of confidence (e. g., 95%). If the result-
ing CI falls entirely within the SESOI bounds (i. e., −δ, δ),
a researcher may conclude a negligible effect (Dunnett &
Gent, 1977). CIs for equivalence testing have one notable
difference from their difference-based counterparts, how-
ever; they should be constructed at the 100 × (1 − 2α)%
confidence level rather than 100× (1−α)%. Although the
overall Type I error rate remainsα, if the 100×(1−2α)%CI
associated with the observed effect is contained within the
SESOI bounds, a negligible association can be concluded.
To explain why we use 100× (1− 2α)% (e. g., 90%) instead
of 100× (1−α)% (e. g., 95%) CI to reject the null at α (e. g.,
.05), let us consider Seaman and Serlin’s (1998) point: Be-
cause the two null hypotheses are mutually exclusive, each

one-sided test is constructed at the nominal Type I error
rate α. Each one-sided t test “occupies” one tail of the cen-
tral t distribution. The resulting t value of one test must fall
anywhere above the left-hand (lower) critical t value (asso-
ciated with α and the corresponding degrees of freedom),
whereas the other test must simultaneously fall anywhere
below the right-hand (upper) critical t value (with the same
α and degrees of freedom) to reject both null hypotheses
and conclude a negligible effect. The intersecting area of
the corresponding t distribution for the two rejection re-
gions is therefore 1−2α. For a detailed review, see Metzler
(1974), Rogers et al. (1993), Seaman and Serlin (1998), or
Westlake (1972, 1976, 1981).

Anderson and Hauck (AH)

Anderson and Hauck (1983; Hauck & Anderson, 1984) pro-
posed an additional approach to testing the equivalence of
two group means on a parameter of interest where the dif-
ference between the two groups is contrasted against the
middle of the equivalence interval. To determine if a spe-
cific predictor’s effect size is negligible, a researcher must
compare the regression coefficient associated with the tar-
get predictor once again with the interval bounds. Thus,
the regression-adjusted hypotheses are as follows:

H0 : β ≤ −δ or β ≥ δ, equivalently |β | ≥ δ

H1 : −δ < β < δ, equivalently |β | < δ

The accompanying AH T statistic measures how far the
observed effect size - here, of the regression coefficient - is
from the center of the equivalence interval. Thus, the alter-
native hypothesis is supported if |T | is sufficiently small.
The adjusted T statistic is:

T =
β̂ − 1

2 (−δ + δ)

seβ̂
(3)

If the lower and upper bounds of the equivalence interval
have the same absolute value (which is often the case), the
center of the equivalence interval equals zero. Then Equa-
tion 3 can be simplified to the following:

T =
β̂ − 1

2 (−δ + δ)

seβ̂
=

β̂

seβ̂
(4)

As indicated byHauck andAnderson (1984), the p value can
be calculated as:

p = t

(
|T | − (δ − (−δ))

2seβ̂

)
− t

(
− |T | − (δ − (−δ))

2seβ̂

)
(5)

where t is the distribution function for Student’s t with
df degrees of freedom which are calculated the same as
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shown under Equation 2. If the resulting p value is smaller
than α, such that p < α, the null hypothesis is rejected. In
this case, the alternative hypothesis that the regression co-
efficient of interest falls within the equivalence bounds is
supported and thus a negligible effect can be concluded.

Current Study

The purpose of the current study is five-fold. We aim to:
(1) Demonstrate, using computer simulations, that the use
of the traditional NHST (i. e., difference-based) regression
methods is both inappropriate and inaccurate when the
goal is to determine negligible or no association. (2) Offer
an appropriate alternative to concluding negligible associ-
ation between a given predictor variable and outcome by
introducing equivalence testing approaches in multiple re-
gression. (3) Evaluate and compare the statistical perfor-
mance of two equivalence-based tests (AHandTOST) across
different conditions. (4) Illustrate how researchers can im-
plement appropriate negligible effect testing techniques in
their own work and provide practical recommendations.
(5) And finally, demonstrate how researchers can employ
functions from the negligible R package and accompany-
ing Shiny application to determine negligible associations
in multiple regression.

Method

Simulation Study

Objective

We constructed aMonte Carlo simulation study to compare
the two equivalence-based tests, TOST and AH, to one an-
other as well as to the traditional difference-based test for
detecting a negligible association between individual pre-
dictors and the outcome variable in multiple regression
under common conditions encountered by psychology re-
searchers.

Design

The study design is a 3 (test type)× 6 (sample size)× 5 (ef-
fect size)× 4 (correlations/covariance between predictors),
resulting in 360 total unique conditions. The nominal sig-
nificance level (α) was set at .05 for each analysis to mimic
the common practice in the literature, and the SESOI – or
negligible effect threshold value – was set at δ = .15 (mea-
sured in the same units as the predictors) – a value slightly
less conservative than in similar studies (i. e. Counsell &
Cribbie, 2015; Cribbie et al., 2004). The simulation parame-
ters and values are summarized in Table 1.

Procedure

We simulated a population-level multivariate normal
dataset (µ = 0, σ = 1) using the SimDesign package
(Chalmers & Adkins, 2020) in R (R Core Team, 2021). The
population-level data consisted of six parameters, one in-
tercept and five slope coefficients to estimate the unique re-
lationships between five predictors and one outcome vari-
able. Because our simulation was not tied to any partic-
ular research context or effect (e. g., depression, reaction
time, anxiety, etc.), we decided to measure the relation-
ship betweenpredictors and outcome in standardizedunits
(i. e., β) for convenience and uniformity, however, these
can be replaced with unstandardized coefficients for iden-
tical simulation results. Note, however, that, in practice,
conversion from unstandardized to standardized or vice
versa may produce a minor difference in Type I error rate
(see Supplemental Materials for a brief commentary and
Campbell (2022), for a longer discussion).

The population-level intercept parameter was set to 1
while the population-level slope parameters were set to
β = 0, .05, .1, .15, and .2. We further manipulated the
strength of the relationship between the model predictors
by specifying the correlation matrices according to which
the predictor variables were simulated. Specifically, the
predictor variables were correlated at 0, 0.25, 0.5, and 0.75
to represent a wide array of scenarios encountered in the
field. For example, in the first condition, each pair of pre-
dictor variables have a correlation of 0 in the population.
Parameters were estimated by creating a multiple regres-
sion model with five predictors and N random observa-
tions sampled from the population-level data. This estima-
tion was repeated 5000 times, each time with another ran-
dom sample of the same size (N ) and a different association
magnitude between predictors. The relatively high num-
ber of levels is intended to uncover reliable trends in the
data. In each regression model (from the 5000 repetitions
× six sample size levels× four association magnitudes be-
tween predictors = 120000 models) there were five predic-
tors, each of which is testedwith both difference-based and
equivalence tests. A graphical illustration of the simulation
procedure can be found in Figure S1 in the Supplementary
Materials along with the simulation code.

Evaluating the Performance of Statistical Tests

Test performance is typically evaluated through Type I er-
ror andpower rates. However, the definitions of power and
error rates change from difference-based to equivalence-
based tests because the twomethods have opposite null hy-
potheses. Therefore, this terminology cannot consistently
be applied. Consequently, we use the language “correct”
and “incorrect” conclusions of negligible association in-
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Table 1 Summary of Simulation Parameters and Parameter Values

Parameter Values
Testing approach Equivalence-based: AH, TOST

Difference-based: traditional predictor-level t test
N 50, 75, 100, 250, 500, 1000
β 0, .05, .1, .15, .2
ρ 0, 0.25, 0.5, 0.75
δ .15
α .05

Note. Themanipulated variables in the simulation are testing approach (difference-based and equivalence tests), sam-
ple size (N ), correlation/covariance between the predictor variables (ρ), and effect size of individual predictors mea-
sured in standardized regression coefficients (β). Constant parameters across all conditions include the smallest effect
size of interest (SESOI; δ) and nominal significance level (Type I error rate; α). Equivalence testing procedures in the
simulation are the Anderson-Hauck (AH; Anderson & Hauck, 1983) and the two one-sided tests (TOST; Schuirmann,
1987).

stead. Accordingly, we evaluated test performance by com-
paring the number of correct versus incorrect conclusions
of negligible association divided by the number of itera-
tions (i. e., 5000).

Correct and Incorrect Conclusions

The difference between correct and incorrect conclusions
lies in the true effect of the individual predictor of interest,
which refers to the population-level partial relationship be-
tween the predictor variable and the outcome variable. Of
course, the population-level, or true, relationship is rarely
(if ever) known. Thus, regardless of test type, correctly con-
cluding negligible association occurs if results indicate neg-
ligible association between a predictor and outcome when
the true (i. e., population) effect is within the equivalence
interval (i. e., −δ < β < δ). In the current study, three
effect size levels lie within the equivalence interval (true
negligible association): β1, β2, and β3 represent the levels
inside the equivalence interval (−.15 < β < .15). There-
fore, any negligible association result drawn for these pre-
dictors is considered a correct negligible association con-
clusion. Similarly, incorrectly concluding negligible associ-
ation occurswhen results suggest negligible association be-
tween a predictor and outcome, but the true effect is out-
side of the equivalence interval (i. e., β ≤ −δ or β ≥ δ):
β4 and β5 represent the levels at or larger than the SESOI
value (β ≥ .15), which is outside the equivalence inter-
val. Thus, any negligible association result drawn for these
predictors is considered an incorrect negligible association
conclusion. A summary of correct and incorrect negligible
association conclusions can be found in Table 2.

Note that β1 was set to 0, the middle of the equiva-
lence interval, to reflect the highest rates of correct con-
clusions with tests of equivalence. The greater the differ-
ence between the estimated β from | δ | , the more likely a

researcher is to correctly conclude a negligible association
(greater power). However, true effects are rarely (if ever)
exactly zero. We, therefore, tested at other effect sizes con-
tained inside the equivalence interval (i. e., β2, and β3). By
the same token, β4 was set to .15 (δ), the cusp of the equiv-
alence interval, to determine the highest rates of incorrect
conclusions with equivalence tests. The interval’s bound
(i. e., δ or−δ) is the lowest possible value outside the equiv-
alence interval. Outside the equivalence interval, the far-
ther the estimatedβ from δ, the less likely it is to incorrectly
conclude a negligible association (lower error).

Results

Simulation results are presented in Figures 1 and 2. Note
that the results, simulation code, and additional materials
are also available on the Open Science Framework (OSF):
osf.io/w96xe/.

Incorrectly Concluding Negligible Association

The probabilities of incorrectly concluding negligible asso-
ciation, when the predictor’s true effect size falls outside
the equivalence bounds (β ≥ δ), are illustrated in Figure 1.

Difference-Based Approach

Simulation results from thedifference-based approach sug-
gest that the probability of incorrectly concluding negligi-
ble association is extremely high, especially for samples
at or smaller than 100. These rates are even higher with
stronger associations (i. e., correlation) between the pre-
dictor variables. For example, with a sample size of 100,
a correlation of 0.25, and a true effect at β = .15, one has
a 73.3% chance of falsely concluding a negligible associa-
tion. Similarly, with the same sample size and correlation,
one has a 57% chance of falsely concluding negligible as-
sociation even with a true effect as large as β = .2. It is
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Table 2 Correct and Incorrect Conclusions of Negligible Association

Equivalence-based test Difference-based test
Negligible associ-
ation concluded
(p < α)

Association con-
cluded (p ≥ α)

Negligible associ-
ation concluded
(p ≥ α)

Association
concluded
(p < α)

True negligible as-
sociation (β < δ)

Correct decision: Re-
jectH0 (Power)

Incorrect decision:
Fail to reject H0

(Type II error)

Correct decision:
Fail to rejectH0

Incorrect decision:
Reject H0 (Type I
error)

True association
(β ≥ δ)

Incorrect decision:
Reject H0 (Type I
error)

Correct decision:
Fail to rejectH0

Incorrect decision:
Fail to reject H0

(Type II error)

Correct decision: Re-
jectH0 (Power)

Note. Equivalence-based tests (H0: there is a non-negligible association as defined by the SESOI interval,−δ, δ) include
the two one-sided tests (TOST) and Anderson and Hauck (AH) test. Difference-based test (H0: there is a negligible as-
sociation between a predictor and outcome) includes the traditional multiple regression coefficient analysis. p refers
to the resulting p value, α refers to the set Type I error rate, and β refers to the individual predictor regression coeffi-
cient. The dark grey shaded boxes indicate incorrectly concluding negligible association (correspond to Figure 1). The
light grey shaded boxes indicate correctly concluding negligible association (correspond to Figure 2). The light and
dark grey boxes are the conditions tested in the simulation study. Note, however, that “negligible association” conclu-
sions cannot be drawn from statistically nonsignificant difference-based tests; this aspect of the simulation is meant
to mimic the practices used in the field for the purpose of comparing such practices to methodologically sound alter-
natives.

only with larger samples (N = 500, 1000) and weaker cor-
relations (ρ = 0, 0.25), that the probability of incorrectly
concluding negligible association comes somewhat close to
the expected Type I error rate (i. e., α = .05). However,
when the correlation between the predictors is strong (e. g.,
ρ = 0.75), even with large sample sizes (e. g., N = 1000),
the rate of incorrect conclusion can still be very high (e. g.,
25% when β = δ).

Interestingly, although the performance of the
difference-based test is affected by sample size and the
magnitude of the effect, the traditional NHST is impervious
to whether the effect is negligible. That is, for any associa-
tion between a predictor and outcome variable (as long as
it is not perfectly nil), the difference-based test will always
be statistically significant (i. e., lower rates of incorrect neg-
ligible association conclusions) with a large enough sample
size, irrespective of the presence or absence of a negligible
effect. As evidence, we can see a similar, almost identi-
cal, downward slope pattern of the difference-based test in
both Figure 1 (non-negligible effect) and Figure 2 (negligi-
ble effect), with the exception ofwhen the effect is perfectly
zero (which is discussed in the next section). This is not a
characteristic we would like our test to possess if our goal
is to determine a negligible association. It is not the case,
however, with an equivalence-based approach.

Equivalence-Based Approach

Recall that a true effect of β = .15 is when we expect the
highest rates of false rejections (see Correct and Incorrect
Conclusions section). Simulation results demonstrate that
the probability of falsely concluding a negligible associa-
tion when β = .15 stabilizes around the Type I error rate,
or lower (i. e.,≤ 5%). These rates are very similar across all
the correlation conditions for the TOST and virtually iden-
tical for the AH. These rates are the expected and appropri-
ate error rates. When the true effect is larger than β = .15,
however, the probability of falsely concluding a negligible
association approaches zero as the sample size increases.
Again, these rates are essentially indistinguishable across
the different correlation conditions for both equivalence
tests.
Anderson-Hauck (AH) versus Two One-Sided Tests
(TOST). Simulation results from the two procedures sug-
gest a similar pattern with slight differences. Here, the
probability of incorrectly concluding a negligible associa-
tion using the AH procedure is slightly higher (precisely at
the expected nominal Type I error rate, .05) than with the
TOST, when N ≤ 100. When the sample size is N ≥ 250,
however, the probabilities of incorrectly concluding a neg-
ligible association using the two procedures converge and
become practically the same.
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Figure 1 Simulation Results: Incorrect Negligible Association Conclusions. Incorrect negligible association conclusions
are reflected by the effect size of predictorsβ4 andβ5 which are presented at the top of each of the two graphs, respectively.
Rates presented on the y-axis represent the proportion of incorrect conclusions for the traditional, difference-based (DB)
test, two one-sided tests (TOST), and Anderson and Hauck’s (AH) test. Different line types reflect the different relationship
strength between predictor variables from completely independent predictors (solid line) to correlated at 0.75 (dotted
line). The horizontal, dashed, red line indicates the nominal Type I error rate across all simulation conditions.

Figure 2 Simulation Results: Correct Negligible Association Conclusions Correct negligible association conclusions are
reflected by the effect size of predictors β1, β2, and β3, which are presented at the top of each of the three graphs, respec-
tively. Rates presented on the y-axis represent the proportion of correct conclusions for the traditional, difference-based
(DB) test, two one-sided tests (TOST), and Anderson and Hauck’s (AH) test. Different line types reflect the different rela-
tionship strength between predictor variables from completely independent predictors (solid line) to correlated at 0.75
(dotted line). The blue, dashed line reflects the minimum desired statistical power in most psychological studies.
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Correctly Concluding Negligible Association

The probabilities of correctly concluding a negligible asso-
ciation, when the predictor’s true effect size falls within the
equivalence bounds (−δ, δ), are illustrated in Figure 3.

Difference-Based Approach

Simulation results from thedifference-based approach sug-
gest that the probability of correctly concluding negligible
association decreases as the sample size increases. The in-
verse relationship between correct conclusions and sam-
ple size is prominent in small, non-zero effect sizes (see
Figure 2), where higher rates are found with larger cor-
relations. The exception is when the true effect is β = 0
(1st predictor, β1) where the probability of correctly con-
cluding negligible association using a difference-based ap-
proach, remains stable at around 95% across all n levels.
However, this finding is expected because the β = 0 con-
dition represents the case where the difference-based test’s
null hypothesis is perfectly true, i. e., where the probability
of concluding an association equals the pre-set Type I er-
ror rate, α (e. g., 5%). Because the difference-based results
presented for our purposes are nonsignificant, we observe
stable rates of concluding a negligible association around
1− α, or .95, regardless of sample size.

Notice that the probabilities of correct conclusions us-
ing the difference-based approach are high. However,
this finding is deceiving and should not be considered
in isolation from its associated error rates; the probabili-
ties of correctly concluding negligible association using the
difference-based approach are artificially inflated due to
the extremely high rates of incorrect negligible association
conclusions. For example, with a sample size of N = 50,
a correlation of 0.25, and a true effect of β = .1, a negligi-
ble association is correctly concluded in about 90% of the
cases, using the difference-based test. Nevertheless, with
the same sample size, correlation, test, and similar effect
size (β = .15), a negligible association is falsely concluded
in about 86% of the cases.

Equivalence-Based Approach

In sharp contrast to the difference-based approach, both
equivalence testing procedures demonstrate a strong, pos-
itive relationship between correct conclusions and sample
size, where the probability of correctly concluding negligi-
ble association is significantly higher with larger samples
and lower correlations between predictors. Importantly,
with both the TOST and AH procedures, the probability
of correctly concluding negligible association quickly in-
creases when the sample size is greater than 100, regard-
less of effect size or correlation (except for TOST ρ = 0.75,
which increases when N > 250). However, the probabil-

ities of correct negligible association conclusions are no-
tably higher as the true effect is closer to zero, the middle
of the equivalence interval, and with weaker correlations.
Anderson-Hauck (AH) versus Two One-Sided Tests
(TOST). Simulation results from the two procedures re-
veal a similar pattern, albeit with some minor differences.
The probability of correctly concluding negligible associ-
ation using the AH procedure is slightly higher than with
the TOST procedure, when the sample size is less than, or
equal to 100, regardless of effect size or correlation. How-
ever, for any sample size greater than 250, the probability
of correctly concluding negligible association with the two
equivalence-based procedures is virtually identical.

Determining Negligible Associations in Regression: A
Practical Demonstration

Here, we re-analyze data from published studies using our
proposed negligible association testing approach in multi-
ple regression to illustrate the simplicity and necessity of
the method. We also demonstrate how to perform and re-
port these tests using the free and accessible negligible
R package (Cribbie et al., 2022) and provide readers with
an accompanying Shiny app (udialter.shinyapps.io/negreg-
shiny/). To download the free, open-source software R,
visit cran.r-project.org/. We also recommend download-
ing RStudio (www.rstudio.com/) for a more accessible in-
terface.

Negligible effect testing can be applied when re-
searchers have raw data or summary information from a
regression table. The negligible package provides sev-
eral functions designed to evaluate whether a negligible
effect exists among variables in numerous statistical con-
texts such as between two means, among correlation coef-
ficients, categorical data etc. In addition, the package pro-
vides graphics that help researchers interpret the results
of the analyses. The package can be downloaded in R. The
user must first download the package using the following
command: install.packages("negligible"). To
start using the functions in the package, the user must
then “call upon” - or load - the package by entering
library(negligible) in a line below.

To determine whether a certain predictor is practically
and statistically negligible, we will use the neg.reg func-
tion found in the negligible package. There are two
main approaches to using neg.reg. The first (and more
recommended) is by entering a dataset (using the data ar-
gument) into the function. However, this function also ac-
commodates caseswhere only summary statistics are avail-
able (e. g., coefficient value, sample size, SE, etc.) which are
commonly found in the Results section of published arti-
cles. Next, we use examples from the literature to demon-
strate how to use neg.reg to determine a negligible asso-
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ciation in multiple regression and how to report and inter-
pret the results.

Example 1: “Unlinking” Deliberate Mind Wandering
and OCD Symptomatology

Our first example comes from Seli et al. (2017) where the
authors investigated the relationship between everyday ex-
periences of mind wandering and OCD symptomatology.
Seli and colleagues make a clear distinction between two
types of mind wandering: the first is an unintentional,
spontaneous mind wandering (MW-S), and the second is a
voluntary and deliberate off-task thought (MW-D). This dis-
tinction is important because the authors hypothesized that
MW-Swill show ameaningful relationship with each of the
four dimensions of OCD (contamination, responsibility for
harm and mistakes, unacceptable thoughts, and symme-
try/completeness) whereas MW-D will demonstrate a neg-
ligible, or no, association.

Sample Details and Descriptive Statistics

Data come from 2636 undergraduate psychology students.
The variables of interest for this demonstration are the two
predictors, MW-S and MW-D, and the four dimensions of
OCD symptomatology, each of which serves as the outcome
in four regression models (all four models have the same
two predictors). Table 3 includes descriptive statistics and
correlations.

Because Seli et al. (2017) sought to demonstrate that
MW-D was negligibly (or not at all) associated with each of
the four OCD dimensions, we can use the neg.reg func-
tion. But, beforewe do, wemust first definewhat is a (prac-
tically)meaningful effect in this context, i. e., the SESOI. Ide-
ally, the SESOI should be derived from substantive knowl-
edge of the effects in the research area, prior to inspect-
ing the data. Numerous approaches to selecting the SESOI
are possible; however, these details are beyond the scope of
this paper. For more information on justifying the SESOI,
with examples, we recommend reading Anvari and Lakens
(2021) and Lakens et al. (2018).

Selecting the SESOI

We decided to set the SESOI (i. e., δ) at 5% of the maximum
possible score on the Contamination dimension from the
OCD scale. We reasoned that a Contamination score equiv-
alent to 5% would be low enough to have no serious prac-
tical significance (i. e., negligible). Although OCD research
experts might set a slightly different SESOI, we will accept
this value for the purpose of this demonstration. The Con-
tamination subscale is measured from 0 to 20 (see Seli et
al., 2017), therefore the SESOI was set at b = 1 (measured
in unstandardized units of the outcome variable) such that
our equivalence interval is (-1, 1): if the observed effect for

MW-D and its associated uncertainty falls entirely within
the SESOI bounds, from -1 to 1, we can conclude a negligi-
ble association between MW-D and Contamination.

neg.reg Function with Raw Data

The authors reported standardized effects, but here we use
raw measurement units to make this example easier to in-
terpret. Because the authors generously shared their origi-
nal dataset, we successfully replicated the results in Seli et
al. (2017) and calculated unstandardized regression coeffi-
cients. With access to the dataset, users should first import
their data file into the RStudio environment. The functions
and packages for importing data vary depending on the
data file extension (e. g., .csv, .SAV). For instructions on how
to import your data into the RStudio environment, read-
ers are encouraged to follow the tutorial on the RStudio
Support page. The object name under which the imported
dataset is saved (e. g., ocd) should then be inserted as the
input for the first argument in theneg.reg function, data,
as shown in Listing 1.

The next argument, formula, requires the user to
specify the regressionmodel consisting of the outcome (i. e.,
criterion/dependent variable) to the left of the tilde symbol
(~), followedby all the predictor variables in themodelwith
the + sign between each predictor name. Note that each ar-
gument is separated by a comma except for the last argu-
ment which precedes the close bracket, indicating the end
of the function input. Users should identify the exact vari-
able names in the imported dataset they are interested in
modelling and pay close attention to lower or capital case.
In our example, the first outcome variable is contamina-
tion (one of the OCD symptomatology dimensions), labelled
hereocd_cont. Wehave only twopredictors in our exam-
ple model, MW-D and MW-S (MWD + MWS), which then go
to the left of the ~(see Listing 1).

The predictor argument asks users to specify which
of the predictors they would like to test for a negligible ef-
fect. Because Seli et al. (2017) hypothesized a negligible or
no association of MW-D with the outcomes, we specified
predictor = MWD in our code example. The next two
arguments, equivalence interval upper (eiu) and lower
(eil) refer to the two SESOI bounds. In our example, the
SESOI is set to 1, so we specified eiu = 1 and eil = -1.
Recall that the SESOI is set in unstandardized units (i. e.,
b = 1), therefore the next argument, std, which asks if the
units are standardized, is set to FALSE. Although std =
FALSE is a default in the function, we recommend explic-
itly making this distinction to avoid confusion or incorrect
conclusions. The same negligible association testing with
standardized effects is presented in the SupplementaryMa-
terials.

Finally, there are additional, optional features included
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Table 3 Means, standard deviations, range, and correlations with confidence intervals for Example 1

Variable M SD min-max 1 2 3 4 5
1. MW-S 4.27 1.42 1-7
2. MW-D 4.50 1.44 1-7 .40

[.37, .43]
3. Contamination 3.53 3.15 0-17 .14 .05

[.10, .18] [.01, .09]
4. Responsibility for harm and mistakes 3.28 3.19 0-17 .22 .10 .54

[.18, .25] [.07, .14] [.52, .57]
5. Unacceptable thoughts 3.98 3.83 0-19 .36 .12 .39 .48

[.32, .39] [.08, .16] [.36, .42] [.45, .51]
6. Symmetry / completeness 2.96 3.39 0-19 .20 .05 .51 .48 .42

[.16, .24] [.01, .09] [.48, .54] [.45, .51] [.39, .46]

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% con-
fidence interval for each correlation. Each of the spontaneous mind wandering (MW-S) and deliberate mind wandering (MW-D)
variable scores are averaged across four seven-point Likert scale items for each participant (N = 2636). Scores on Contamina-
tion, Responsibility for harm and mistakes, Unacceptable thoughts, and Symmetry/completeness are summed for each participant
across five five-point Likert scale items for a maximum score of 20.

in the function such as using bootstrap (and setting the
number of iterations and/or seed) to calculate the standard
errors, changing test type from AH (default) to TOST or
nominal Type I error from .05 to another, custom rate, sav-
ing the resulted plots locally (e. g., as .png, or .jpeg) etc.
These added features will not be discussed in this example,
but readers are encouraged to findmore information about
theneg.reg features and arguments in thenegligible
package documentation.

At this point, all the necessary inputs are in place and
we cannow run the function by executing the block of code.
The output from the function, containing both results from
the negligible association testing and illustrating graphics
are presented in Figure 3.

Reporting and Interpreting neg.reg Output

Negligible association testing results (top of Figure 3) show
that MW-D is indeed statistically negligible, bMW−D =
−0.018, SE = .046, 90% CI [-0.09, 0.06], AH T statistic =
-0.40, p < .001. To illustrate the magnitude of the effect
graphically, the neg.reg function also provides a visual-
ization of the regression coefficient’s point estimate and its
associated 90% CI in relation to the SESOI band (the region
within the vertical red dashed lines) and its center (vertical
grey dashed line), as demonstrated in the bottom of Figure
3.1

We can therefore reject the null hypothesis that the ef-
fect size falls outside of the negligible effect bounds and
find inferential evidence in support of a statistical andprac-
tical negligible association between MW-D and contami-
nation. In other words, given the predefined SESOI of 1

point on OCD symptomatology (scale ranging from 0-20)
and Type I error rate of .05, deliberate mind wandering
was found to be a negligible predictor of contamination
while holding spontaneous mind wandering constant. We
can further observe from the bottom of Figure 3 that the
effect size estimate (b = −0.02) is closely centered around
0 and the CI band is but a small proportion of the entire
SESOI area. Finally, both the effect size and CI are com-
pletely containedwithin the SESOI area and are reasonably
distant from either bound.

In Example 1, we used the neg.reg function with ac-
cess to the raw data to answer whether deliberate mind
wandering truly has a negligible association with contami-
nation, partialling out the effect of spontaneous mind wan-
dering. Results from the negligible effect testing approach
using theneg.reg function are congruent with Seli et al.’s
(2017) conclusion, which was obtained from a statistically
nonsignificant difference-based test. It is often the case,
however, that results from negligible effect testing contra-
dict negligible association conclusions made using results
from a nonsignificant difference-based test; this scenario
will be demonstrated in Example 2 in the following section.
Example 2 also shows how users can employ the neg.reg
function without access to raw data.

Example 2: Personal Control Moderates the Associa-
tion Between Organizational Stability and Identifica-
tion

Proudfoot and Kay (2018) predicted that feelings of per-
sonal control would moderate the relationship between
perceived organizational stability and organization identi-

1Recall that for the negligible effect test’s null hypothesis to be rejected, the entire span of the 100 × (1 − 2α)% CI for the associated regression
coefficient must be contained between the two SESOI bounds.
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Listing 1 Code Block Input Using negligible::neg.reg for Example 1

library(negligible)
neg.reg(data = ocd, # name of dataset

formula = ocd_cont~MWD+MWS, # regression formula
predictor = MWD, # name of the predictor of interest
eiu = 1, # upper bound of SESOI (unstandardized)
eil = -1, # lower bound of SESOI (unstandardized)
std = FALSE, # using unstandardized units
bootstrap = FALSE) # not using bootstrap in example

fication. Specifically, they wished to demonstrate that a re-
lationship between organizational stability and identifica-
tion exists for participants with low personal control (“con-
trol threat” condition), but that no such effect is present
for participants with high personal control (“control affir-
mation” condition). To test their hypothesis, the authors
modelled an interaction between organizational stability
and personal control on organization identification in their
multiple regression analysis. As reported in Study 3, the
control× stability interaction (higher-order effect) was in-
deed statistically significant. Inspecting the simple slopes,
the authors found that participants in the “control threat”
condition exhibited a statistically significant relationship
between stability and identification, whereas participants
in the “control affirmation” condition did not, b = 0.15,
SE = .12, t(190) = 1.18, p = .24. It was concluded that
“for participants who recalled an event wherein they had
control, therewas no effect of perceived organizational sta-
bility on identification” (Proudfoot & Kay, 2018, p. 110).

neg.reg Function with No Raw Data

In this example, we do not have access to the dataset. Still,
we can formally test whether the association between per-
ceived organizational stability on identification is indeed
negligible for participants in the “control affirmation” con-
dition using the neg.reg function. All the information
we need can be easily gathered from the reported results
in Proudfoot and Kay (2018). Specifically, we will need the
following: the regression coefficient point estimate for or-
ganizational stability (b = 0.15) and its associated stan-
dard error (SE = 0.12), the sample size used in the analy-
sis (n = 194), the number of predictors in the multiple re-
gression model (k = 3), and the nominal Type I error rate
(α = .05). Note that the reported effect and its associated
standard error aremeasured in unstandardized units. As a
reminder to readers, if the standard error is not reported,
users can simply divide the effect size (i. e., the regression
coefficient) by the t statistic to retrieve the standard error.
This applies to both standardized and unstandardized ef-
fects.

Next, we must identify our definition of practical sig-

nificance in this context (selecting a SESOI). The outcome
variable in this example (organization identification) is an
average score of six items on a seven-point scale (from
“Strongly disagree” to “Strongly agree”). In thinking about
the scale, we propose that the minimum meaningful effect
is a one-point difference (e. g., from “Strongly disagree” to
“Disagree”) on at least one item from the six that are asked.
Here, we reference a one-point difference in the scale’s to-
tal score as the anchor for (the smallest) important differ-
ence in identifying with one’s organization. Translated to
an average score, this difference is about 0.33 points on the
organization identification scale. Accordingly, our SESOI
will be set at b = 0.33 (measured in unstandardized units).

Ideally, anchors for gauging meaningful effects should
be planned independently of the study’s results (in this
example, we were exposed to the observed effect before
proposing the SESOI) and be estimated carefully with ex-
periments (for guidelines on how to estimate the SESOI
using anchor-based methods, see Anvari & Lakens, 2021).
Thus, the SESOI we selected in this example is justified, but
not validated. Still, we will proceed with this value for the
purpose of our demonstration.

We cannowplug the input into theneg.reg function’s
arguments as demonstrated in Listing 2. Output from the
code in Listing 2 is presented in Figure 4. Negligible effect
testing results (top of Figure 4) were not statistically signifi-
cant, b = 0.15, SE = .12, 90% CI [-0.05, 0.35], AH T statistic
= 1.25, p = .068, suggesting that negligible association can-
not be concluded. That is, given the predefined SESOI of
0.33 points on organizational identification and α = .05,
there is insufficient evidence that organizational stability
has “no effect” on organizational identification among par-
ticipants in the control affirmation condition. But, perhaps
more important than the significance tests results is the es-
timated effect and its precision (Amrhein et al., 2019): as
seen in Figure 4, the observed effect is relatively distant
fromzero, its 90%confidence bandwhich ranges from -0.05
to 0.35 is somewhat wide (close to two-thirds of the entire
negligible effect region between the two SESOI bounds),
and at least some values within the 90% CI are greater than
the upper SESOI bound.
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Figure 3 neg.reg Function Output: Negligible Association Testing Results for Example 1. Results from the equivalence
test are presented below at the top of the figure and a graphical illustration of the Symmetric Confidence Interval (CI)
Approach is presented at the bottom. Here, we can reject the null hypothesis that the effect size falls outside of the SESOI
bounds and find inferential evidence in support of a statistical and practical negligible association between MW-D and
contamination.

Inferential results from negligible effect testing do not
support a lack of relationship between organizational sta-
bility and identification. Note that, other than deciding on
the SESOI, the input used for the negligible effect testing
analysis is exactly the same as the information extracted
from the sample in the published article. Yet, using a
methodologically appropriate inferential test, the results
are incongruent with the conclusions in the original paper.

Discussion

Behavioural and social researchers often aim to detect a
negligible association between a predictor variable and
outcome. However, for a lack of better statistical tools
and awareness, researchers continue to incorrectly use
nonsignificant results from traditional regression analy-
sis to demonstrate negligible effects. In this paper, we
sought to provide researchers with an appropriate method

for detecting negligible association in multiple regression.
The proposed negligible effect testing methods were evalu-
ated and compared to the traditional, difference-based ap-
proach using a Monte Carlo simulation. Simulation results
support the suitability of the equivalence-based approach
and demonstrate its applicability over the difference-based
test to detect negligible effects between predictors and out-
comes in multiple regression.

This paper also offers a brief tutorial on how neg-
ligible effect testing can be implemented in psychologi-
cal research with examples. We introduce the neg.reg
function from the negligible package and demonstrate
how researchers can easily test for negligible associa-
tions in multiple regression within the R/RStudio environ-
ment. We further provide an accompanying Shiny app
(udialter.shinyapps.io/negreg-shiny/) for users who prefer
a non-syntax-based interface. Finally, results reporting and
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Listing 2 Code Block Input Using negligible::neg.reg for Example 2

library(negligible)
neg.reg(b = 0.15, # effect size of the predictor of interest

se = 0.12, # standard error associated with the effect
n = 194, # sample size used in the analysis
nop = 3, # number of predictors
eiu = 0.33, # upper bound of SESOI (unstandardized)
eil = -0.33, # lower bound of SESOI (unstandardized)
std = FALSE) # using unstandardized units

interpretations are discussed with specific guidelines and
recommendations.

Equivalence-Based versus Difference-Based Ap-
proaches

The traditional, difference-based approach resulted in sub-
stantially higher rates of incorrectly concluding a negli-
gible association between a predictor and outcome vari-
ables, and even more so when the relationship between
predictors is strong, than those of the equivalence-based
approach. This is not the case when using the equivalence-
based tests: both equivalence tests (i. e., AH or TOST) reveal
acceptable rates (i. e., at or below the nominal Type I er-
ror rate) of incorrectly concluding a negligible association
which are robust to sample size, correlation, or magnitude
of effect fluctuations.

In addition, the rates of correctly concluding a negli-
gible association using the difference-based approach de-
crease as a function of sample size regardless of the cor-
relation strength between predictors (illustrated in Figure
2). From a theoretical standpoint, this relationship is illog-
ical; the closer a sample is to the population from which
it was taken (by increasing sample size), the less chance a
difference-based test has to find the true nature of a rela-
tionship (or lack thereof). Unlike the traditional approach,
equivalence-based tests demonstrate the appropriate rela-
tionship between sample size and correct negligible associ-
ation conclusions; this is the acceptable and excepted rela-
tionship between sample size and statistical power.

Although equivalence-based tests represent a better al-
ternative to difference-based tests, one drawback is when
the sample size is small (n ≤ 100), the probability of cor-
rectly concluding a negligible association between a pre-
dictor and outcome is low. This means that equivalence
tests - as with many other statistical tests - are not particu-
larly effectivewhenusing small sample sizes. It is onlywith
samples around n = 500 (when predictors are weakly cor-
related and the population effect size is closer to the mid-
dle of the equivalence interval) acceptable probabilities of
correct conclusions (i. e., ≥ .80) emerge. But, when pre-
dictors are strongly correlated and the true effect size is

farther away from the middle of the equivalence interval,
acceptable probabilities of correct conclusions will only be
attained with sample sizes larger than 1000.

WhyNegligible Effect Tests ShouldRequire Larger Sam-
ple Sizes?

Indeed, an equivalence testing approach to determining a
negligible association between a predictor and outcome us-
ing small samples may be inefficient due to low correct
conclusion rates. Although frustrating for researchers who
wish to demonstrate negligible effects, this “inefficiency”
might serve as a constructive safeguard. First, acknowledg-
ing the difficulty in concluding negligible effects using the
appropriate statistical tests with small samples may per-
suade researchers to increase their sample size. Given ris-
ing concerns about low-powered studies and their contri-
bution to the replication crisis (e. g. Anderson & Maxwell,
2017; Crutzen & Peters, 2017; Maxwell et al., 2015), suffi-
ciently large samples could help reduce questionable re-
search practices and false findings.

Second, the difficulty in providing evidence for negli-
gible effects with smaller samples conveys a greater bur-
den of proof. In fact, in formal logic, proving a negative or
providing evidence of absence (e. g., non-white swans do
not exist) is more challenging than proving the existence
of an effect or phenomenon. For example, it takes only
one observation of a phenomenon (e. g., a black swan) to
claim the existence of something with certainty. Though,
it would take a very large number of observations of non-
existence of the phenomenon (e. g., observing many white
swans) only to infer or make a probable conclusion of non-
existence, which would still be without absolute certainty.
Returning to psychology, providing evidence of absence
(i. e., negligible or no effect) often should be more difficult
than demonstrating an effect, for example, claiming no ad-
verse effects from a new treatment or practice would be
perilous with only a small number of participants. Fur-
ther, it is potentially dangerous to conclude negligible ef-
fects with a high margin of error (due to a small sample
size), even if the estimated average effect is itself negligible.
Thus, the “inefficiency” of equivalence-based approaches
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Figure 4 neg.reg Function Output: Negligible Association Testing Results for Example 2. Results from the equivalence
test are presented at the top of the figure and a graphical illustration of the Symmetric Confidence Interval (CI) Approach
is presented at the bottom. Here, we cannot reject the null hypothesis that the effect size falls outside of the SESOI bounds.
Thus, we do not find inferential evidence in support of a statistical and practical negligible association between stability
and identification among participants in the control affirmation condition.

with small sample sizes may actually function as a protec-
tive mechanism against such dangers.

Finally, the traditional difference-based test may seem
more effective in small sample sizes. However, they do
not require a high level of precision surrounding the ob-
served effect; as long as the effect size-to-error ratio is suf-
ficiently large, the null hypothesis is rejected, regardless of
thewidth of the CI. Although the existence of an effect is de-
clared, our estimation of the effect’s magnitude can be ex-
tremely imprecise. In contrast, tests of equivalence require
a specific amount of precision to declare a negligible associ-
ation. Namely, the 90% CI around the observed effect must
neither exceed the upper nor lower bounds of the SESOI.
This requirement manifests in the aforementioned “ineffi-
ciency,” but alsowarrants us to have less uncertainty in our

effect size estimates and conclusions. Importantly, focusing
on the magnitude of effects, precision, and uncertainty be-
yond the decision to reject or not to reject the null hypoth-
esis is in line with recommended practices (e. g., Amrhein
et al., 2019; Cumming, 2012, 2014; Farmus et al., 2022; Fi-
dler & Loftus, 2009). In fact, we strongly encourage readers
to take stock of the magnitude of the relationship between
a predictor and outcome, its precision, and the proportion
and location of the confidence band in relation to the SESOI
region, regardless of the NHST decision.

The Quantitative Methods for Psychology 732

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.1.p059


¦ 2023 Vol. 19 no. 1

ImportantConsiderations forResearchersTestingNeg-
ligible Effects

Thinking More About Units of Measurement

In Example 1, wedemonstratedhow tests of negligible asso-
ciation can be used on either unstandardized or standard-
ized (in SupplementalMaterials) effects. But, it is necessary
to be consistent with the units of measurement: A raw re-
gression coefficient (b) must be used only with its associ-
ated error and an unstandardized SESOI, whereas a stan-
dardized coefficient (β) should only be used with its asso-
ciated error and standardized SESOI. Mixing unstandard-
ized and standardized units when using an equivalence (or
difference-based) test would yield inaccurate results and
likely lead to invalid conclusions. Thus, researchers must
be cognizant of the measurement units of the effects and
their compatibility. For instructions and details about con-
verting one form to another, see Supplemental Materials.

In Example 2, we demonstrated how to determine a
negligible association when probing the simple slopes fol-
lowing a statistically significant interaction in multiple re-
gression. The use of equivalence testing to probe a signif-
icant interaction is no different than when used on any
other predictor. But, equivalence testing can also be ap-
plied to test whether a modelled interaction (the higher-
order effect or product term) is statistically and practically
negligible. The procedure would be similar to that of an
individual predictor (first-order effect) in multiple regres-
sion. However, the units of measurement are slightly dif-
ferent because the interpretation of an interaction’s effect
is different than that of a predictor. Recall that the SESOI
must be of the same units as the interaction term. There-
fore, an interaction term’s SESOI represents the minimum
meaningful change in simple slopes for the relationship
of interest per one-unit difference on the moderator. Re-
searchers must then consider their SESOI in these terms
when testing for a negligible interaction. There is a lotmore
to be said about testing for a negligible interaction which is
beyond the scope of this paper. However, we recommend
that interested readers refer to Cribbie et al. (2016) for test-
ing an interaction with categorical predictors and to Jab-
bari and Cribbie (2021) for continuous predictors.

Selecting Your SESOI

Selecting the right SESOI is perhaps the most important re-
quirement when testing for a negligible effect. This topic
has been covered in previous research (see earlier section
on Defining Negligible Association), and recommendations
for selecting the right SESOI are no different in a multi-
ple regression framework than it is in other forms of sta-
tistical analyses. Selecting a SESOI value is independent

of the methodology discussed in this study; it is a deci-
sion that is field- and context-specific, and it may be dif-
ferent from one researcher to another. In pharmaceutics,
standardizedmethods and guidelines exist for determining
SESOI bounds. For example, the Food and Drug Adminis-
tration (FDA) specifies that the differences in efficacy be-
tween two drugs (e. g., an established and a new, exper-
imental drug) must not exceed 20% (after applying a log
transformation) for the twodrugs to be declared equivalent
(Food andDrugAdministration, 2021). In psychology, speci-
fying standardized values of negligible effects for one scale
might not be appropriate for another, which makes iden-
tifying the right value a difficult task. Rogers et al. (1993)
rightfully noted, “as with any statistical analysis, equiva-
lency procedures must involve thoughtful planning by the
investigator” (p. 564). However, due to the lack of stan-
dardized methods for identifying a SESOI value in psychol-
ogy, deciding on such values may be subjective and natu-
rally introduce some biases. The SESOI value directly af-
fects equivalence test results whereby larger SESOI values
(wider equivalence interval) would make it easier to reject
the null hypothesis and conclude negligible effects. There-
fore, to avoid researchers’ self-serving bias and question-
able research practices (see John et al., 2012), it is crucial
that researchers select a SESOI a priori, independently of
the sample or test results (i. e., statistical significance), and
with a strong justification grounded in theory and/or prac-
tical implications.

Focusing on Effect Size, Precision, and Practical Impli-
cations

Equivalence testing is a method designed within the NHST
framework. NHST has been heavily criticized for its over-
reliance on the dichotomous results of p values with little,
or no consideration of the effect’s magnitude or its impli-
cations in practice (e. g., Cumming, 2012; Fidler & Loftus,
2009; Harlow, 1997; Kirk, 2003; Lee, 2016). Researchers
must be mindful of the limitations of NHST and disentan-
gle the practical and statistical aspects of the test results.
Equivalence testing has the added benefit of comparing
an effect size with a value of practical significance (i. e.,
SESOI). To that extent, the hypotheses from an equivalence
test inherently include information about themagnitude of
meaningful effects. However, equivalence testing results
and conclusions are still tied to p values and are, therefore,
not immune to criticisms about relying on binary decisions
(“reject the null hypothesis” or “fail to reject the null hy-
pothesis”).

To minimize the limitations of p values, it is more in-
formative to interpret the observed effect’s magnitude and
precision beyond the conclusion of “negligible effects” or
“insufficient evidence for negligible effects,” as demon-
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strated in Examples 1 and 2. Observed effects should be
construed in relation to the SESOI bounds, the extent of
their uncertainty (i. e., width and limits of the confidence
interval), and their practical implications (or lack thereof;
Amrhein et al., 2019). For example, if a researcher finds
p = .05 from their test of negligible association, they have
insufficient evidence in favour of the alternative hypothe-
sis (i. e., negligible effects). In this case, however, the prac-
tical implications of the (negligible) effect would probably
not be meaningfully different than if p = .049, despite the
conflicting NHST decisions. Furthermore, because p val-
ues are directly influenced by sample size and variability,
Type I error rate, SESOI value, and observed effect size, the
slightest change in one of these factors might lead to a dif-
ferent binary inferential conclusion. These aspects must
be taken into account and considered when interpreting
the observed effects and test results. For this reason, the
negligible R package (Cribbie et al., 2022) introduced
in this paper also includes a graphical representation of the
observed effect and its associated uncertainty in relation to
the SESOI. The resulting plots aid in illustrating how close
or far and wide or narrow the observed effect and its mar-
gins of error are from the SESOI bounds; inferring the pro-
portion and position of the confidence band in relation to
the SESOI bounds can help interpret the results over and
above p values.

Limitations of the Simulation Study

Naturally, the current study has limitations. One limi-
tation is that the simulated data were all normally dis-
tributed, with no missing data, or threats to the assump-
tions underlying multiple regression. Here, test perfor-
mance for the two approaches was assessed under ideal
conditions whereas data analyzed in psychological stud-
ies often demonstrate different degrees of skewness, kurto-
sis, missing data, assumption violations etc. Therefore, the
generalizability of the findings in this study is constrained
to the conditions specified above. Another potential limi-
tation is that other simulation conditions could have been
tested. For example, different SESOI levels, additional sam-
ple sizes, or varying Type I error rates. However, results
from any additional conditions are more than likely pre-
dictable from the equations and simulation results in this
or previous studies.

Conclusion

Traditional difference-based tests are methodologically in-
appropriate for testing hypotheses about negligible asso-
ciations. Instead, researchers should use the suitable al-
ternative of negligible effect testing. We demonstrated
these claims in a Monte Carlo simulation study, dis-
cussed the theoretical underpinning and implications of

using negligible effect testing, and provided recommen-
dations for researchers. Using user-friendly tools such as
the negligible package and neg.reg Shiny app, re-
searchers have free and easy access to appropriate meth-
ods to test negligible associations in regression. All mate-
rials, including R code, results, and slides are available on
OSF: osf.io/w96xe/.
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Appendix A: Supplementary Materials

Allmaterials, including results, code, and slides, are publicly available on theOpenScience Framework (OSF): osf.io/w96xe/.

Simulation Code in R
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# --------- Loading Packages ---------
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library(SimDesign)
library(tidyverse)
library(RColorBrewer)

# --------- Creating local functions (a prerequisite) ---------

# modelstats: estimates regression model + extracts results of difference-based test

modelstats <- function(dat){
y <- dat["y"]
model <- lm(y~., dat)
modsum <- summary(model)
b <- model$coefficients[2] #Beta weights estimates extraction
se <- modsum$coefficients[2,"Std. Error"] #Standard error extraction per predictor
df <- model$df.residual
t <- modsum$coefficients[2,"t value"]
p <- modsum$coefficients[2,"Pr(>|t|)"]
## traditional difference-based test
ret <- data.frame(b=b,

se=se,
df=df,
t=t,
p=p)

ret
}

# TOST: performs Schuirmann’s Two One-Sided Test on the predictor
# and provides the results (the largest p value)
TOST <- function(dat){

b <- modelstats(dat)$b
se <- modelstats(dat)$se
df <- modelstats(dat)$df
t.value.1 <- (b - l.delta)/se
t.value.2 <- (b-u.delta)/se
p.value.1 <-stats::pt(t.value.1, df, lower.tail=FALSE)
p.value.2 <-stats::pt(t.value.2, df, lower.tail=TRUE)

# finding the smaller t to present
ifelse(abs(t.value.1) <= abs(t.value.2), t.value <- t.value.1, t.value <- t.value.2)
# finding the larger p to present
ifelse(p.value.1 >= p.value.2, p.value <- p.value.1, p.value <- p.value.2)
ret <- data.frame(p=p.value)
ret

}

# AH: performs the Anderson-Hauck test on the predictor and provides the p value
AH <- function(dat){

b <- modelstats(dat)$b
se <- modelstats(dat)$se
df <- modelstats(dat)$df
t.value <- (b - (l.delta+u.delta)/2)/se
H.A.del <- ((u.delta-l.delta)/2)/se #this is the delta as defined in Hauck and Anderson (1986)
p.value <- stats::pt(abs(t.value)-H.A.del,df) - stats::pt(-abs(t.value)-H.A.del, df)
ret <- data.frame(p=p.value)
ret

}
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######### SIMULATION CODE #########

# --------- Fixed parameters ---------

alpha <- 0.05
SESOI <- 0.15
l.delta <- -abs(SESOI)
u.delta <- abs(SESOI)
mu <- c(0,0,0,0,0)

# --------- Design stage ---------

Design <- createDesign(N = c(50, 75, 100, 250, 500, 1000),
test= c("DB", "TOST", "AH"),
beta=c(1, 2, 3, 4, 5),
cors= c(0, 0.25, 0.5, 0.75))

# --------- Generate stage ---------

Generate <- function(condition, fixed_objects = NULL ) {
Attach(condition)
sigma <- matrix(data=c(1,cors,cors,cors,cors,

cors,1,cors,cors,cors,
cors,cors,1,cors,cors,
cors, cors, cors, 1, cors,
cors, cors, cors, cors, 1),

nrow=5,ncol=5)
xs <- rmvnorm(N, mean = mu, sigma = sigma)
e <- rnorm(N)
xs <- as.data.frame(xs)
y <- 1 + 0*xs$V1+ 0.05*xs$V2 + 0.1*xs$V3 + 0.15*xs$V4 + 0.2*xs$V5 + e
dat <- data.frame(xs,y)
dat

}
# --------- Analyse stage ---------

Analyse <- function(condition, dat, fixed_objects = NULL) {
Attach(condition)
if(test=="DB"){
p<- modelstats(dat, beta)$p

}
if(test=="TOST"){
p <- TOST(dat, beta)$p

}
if(test=="AH"){
p <- AH(dat, beta)$p

}
ret <- c(p=p)
ret

}

# --------- Summarise stage ---------

Summarise <- function(condition, results, fixed_objects = NULL) {
Attach(condition)
ifelse(test=="DB",neg <- 1 - EDR(results, alpha=alpha), neg <- EDR(results, alpha=alpha))
ret <- c(concluding_negligible=neg)
ret

}

# --------- Run stage ---------

res <- runSimulation(design=Design, replications=5000, generate=Generate,
analyse=Analyse, summarise=Summarise)
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######### SAVING RESULTS #########

write.csv(res, "Alter_Counsell_Simulation_Results.csv")

######### VISUALIZING RESULTS #########

simresults <- res
simresults["beta"][simresults["beta"] == 1] <- 0
simresults["beta"][simresults["beta"] == 2] <- 0.05
simresults["beta"][simresults["beta"] == 3] <- 0.1
simresults["beta"][simresults["beta"] == 4] <- 0.15
simresults["beta"][simresults["beta"] == 5] <- 0.2
simresults$cors <- factor(simresults$cors)
simresults$label <- paste("β =", as.character(simresults$beta))

# --------- Figure 1 ---------

simresults |>
filter(beta == 0.15 | beta==0.2 ) |>
ggplot( aes(x = factor(N), y = concluding_negligible.p,

group= interaction(test, cors),
colour= test, linetype = cors))+

geom_line(linewidth=1.5, alpha=0.8)+
scale_linetype_manual(values = c("solid", "longdash", "dotdash", "dotted"))+
facet_wrap(~label)+
theme_minimal()+
theme(axis.text = element_text(size = 15),

legend.text = element_text(size = 15),
legend.title = element_text(size = 15),
axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
strip.text = element_text(size = 18),
text=element_text(family="Times"))+

labs(color = "Test", linetype="Correlations")+
scale_colour_brewer(palette = "Dark2")+
scale_y_continuous(breaks=seq(0,1,0.1))+
geom_hline(yintercept=0.05, linetype=’dotted’, col = ’red’)+
labs( y="Rate of Incorrect Negligible Association Conclusions", x = "Sample Size")+ #title = "

Incorrectly Concluding Negligible Association by Test, Effect, Correlation, and Sample Size",
annotate("text",x="50" , y = 0.05, label = "\u03B1 = .05", vjust=-.7,hjust=.55, family="Times", size

= 5)
#ggsave("Incorrect_in_colour.png", width = 20, height=15, units = "cm")
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# --------- Figure 2 ---------

simresults |>
filter(beta == 0 | beta==0.05 | beta == 0.1) |>
ggplot( aes(x = factor(N), y = concluding_negligible.p,

group= interaction(test, cors),
colour= test, linetype = cors))+

geom_line(linewidth=1.5, alpha=0.8)+
scale_linetype_manual(values = c("solid", "longdash", "dotdash", "dotted"))+
facet_wrap(~label)+
theme_minimal()+
theme(axis.text = element_text(size = 15),

legend.text = element_text(size = 15),
legend.title = element_text(size = 15),
axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
strip.text = element_text(size = 18),
text=element_text(family="Times"))+

labs(color = "Test", linetype="Correlations")+
scale_colour_brewer(palette = "Dark2")+
scale_y_continuous(breaks=seq(0,1,0.1))+
geom_hline(yintercept=0.8, linetype=’dotted’, col = ’blue’)+
labs(y="Rate of Correct Negligible Association Conclusions", x = "Sample Size")+ #title = "Correctly

Concluding Negligible Association by Test, Effect, Correlation, and Sample Size"
annotate("text",x="50" , y = 0.8, label = "1-\u03B2 = .80", vjust=-.7,hjust=.2, family="Times", size=

5)
#ggsave("Correct_in_colour.png", width = 20, height=15, units = "cm")

######### END #########

Example 1 Using Standardized Units

We can conduct the same tests using standardized effects instead. The standardized regression coefficient estimate for
MW-D from the samemodel can be found in Seli et al. (2017), βMW-D = −.008, and the standardized SESOI can be converted
from its raw form (0.23) mathematically:

∆ = δ × SDx

SDy
(S1)

where∆ is the standardized form of SESOI, δ is the unstandardized SESOI, and SDx and SDy are the standard deviations
for the predictor and outcome variables, respectively. Using our predefined unstandardized SESOI of 0.23, we obtain a
standardized SESOI of .10. To use this standardized value in the neg.reg function, we can use the exact same function
input, with adjusting only the SESOI to .1 and setting the argument std = TRUE. Accordingly, a researcher would enter:

library(negligible)
neg.reg(data = ocd, # name of dataset

formula = ocd_cont~MWD+MWS, # regression formula
predictor = MWD, # name of the predictor of interest
eiu = 0.1, # upper bound of SESOI (standardized)
eil = -0.1, # lower bound of SESOI (standardized)
std = TRUE, # using unstandardized units
bootstrap = FALSE) # not using bootstrap in example

Importantly, negligible association testing results using standardized units of the regression coefficient and SESOI
provide identical inferential statistics and conclusions as the tests conducted on the unstandardized units.

More About Using Standardized or Unstandardized Effects

Using unstandardized regression coefficients as an effect size is both strongly recommended (e. g., Pek & Flora, 2018)
and most commonly implemented in psychology (Farmus et al., 2022). Unstandardized regression coefficients and their
associated standard errors are also usually the default output from most statistical software and therefore the easiest
to retrieve. However, researchers might be more inclined to define the SESOI in standardized units due to the intuitive
judgment of the effect’s magnitude and uniformity across previous studies or meta-analyses. If researchers are interested
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in using standardized SESOI units and are inputting a dataset into the neg.reg function, they only need to specify std
= TRUE as one of the arguments in the function. However, if no dataset is fed into the function, users can rearrange
Equation S1 to

δ = ∆× SDy

SDx
(S2)

to convert their desired standardized SESOI to unstandardized units. Then users should plug in the newly calculated
SESOI (now in unstandardized units) into the function and specify std = FALSE.

It is important to note, however, that the process of converting the units from one form to another arithmetically
may yield slightly higher rates of incorrectly concluding negligible effect than expected (Campbell, 2022). Although this
difference in error rate is minor, it should be acknowledged. And, more importantly, the SESOI we select should (ideally)
be independent of the sample characteristics. By converting the SESOI fromunstandardized to standardized or vice versa,
we introduce some of the sample’s characteristics into the hypotheses (which contains the SESOI) because the conversion
equation includes the standard deviations of X and Y. Instead, if researchers opt for running the test in standardized units,
they should define their SESOI originally in standardized units.
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Figure S1 Graphical Illustration of the Simulation Procedure. Population-level effects (in the large rectangle) are
measured in standardized regression coefficients (β). 120,000 multiple regression models of N observations were
constructed to estimate the true, population-level relationships per sample size level and between-predictor relation-
ship (which are not presented in the figure). The six models (each of which has a different sample size level, N =
50, 75, 100, 250, 500, 1000) are represented by small rectangular structures. Although not reflected in the figure, each
of the six models is estimated four times, each time with a different association strength between predictor variables
(variables were correlated at 0, 0.25, 0.5, and 0.75), for a total of 24 models. Each model was estimated 5000 times and
includes five predictors. Each of the five predictor effects (β̂) is tested with both difference-based and equivalence-based
approaches. The amount of nonsignificant (p ≥ α) results is counted for difference-based tests, whereas the number
of significant results (p < α) is counted for equivalence-based tests, two one-sided tests (TOST) and Anderson-Hauck
(AH). The number of significant and nonsignificant results are used to compare the statistical performance of both testing
approaches.
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