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Abstract In high demand contexts, uni- or multi-modal signals are used to convey redundant in-
formation and improve performance. This is especially the case with improving the detection of
discrete peripheral signals. However, how one processes peripheral signals may change depending
on the greater environmental context. The underlying cognitive processing of signals is important
to determine how theymay influence the degree to which each signal enhances, as opposed to slows
down, detection. Until now, it was unclear if i) the introduction of, or increased difficulty of, a sec-
ond task changes how people combine peripheral signals (that is, in a parallel, serial, or coactive
fashion) and ii) if processing efficiency depends on the salience of the peripheral signals or the pres-
ence/difficulty of a centrally located and continuous tracking task. This manuscript describes an
application of Systems Factorial Technology to investigate the cognitive processing mechanisms of
redundant signals in the context of a multiple object tracking (MOT) task. The MOT task load (track
0, 1, or 4 dots) and the salience of peripheral signals (bright, dim) were manipulated. The data in-
dicate peoples’ processing of peripheral signals changed depending on the MOT task load. Under a
high MOT task load, most people processed redundant signals in a parallel fashion. Alternatively,
nearly half of people processed the signals in a serial fashion when asked to simultaneously track
0 or 1 dot. Implications for the use and design of redundant signals in multi-task contexts that vary
in task demands are discussed.
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Introduction

Whether implicit or explicit, people constantly attempt to
allocate resources to the demands of several tasks at the
same time. This is a feat referred to as multitasking. An
everyday example is driving: one must travel at the ap-
propriate speed and stay within their lane but also de-
tect, decipher, and respond to abrupt, and often peripheral,
alerts. Despite the high prevalence of multitasking in the
fast pacedworld, people have a finite amount of attentional
resources and necessarily divide their attention between
tasks (Norman & Bobrow, 1975). One particular view, re-
source theory (Norman & Bobrow, 1975; Kahneman, 1973;

Wickens, 1984), posits multiple regions of workload: re-
serve capacity and cognitive overload. Reserve capacity is
a state where one has an adequate amount of attentional
resources in their reserve to maintain performance in two
or more tasks. If demands of multiple tasks exceed the to-
tal supply of this reserve, performance decrements to one
or both tasks will occur (e.g., Howard et al., 2021) – this is a
state of cognitive overload.

The demands of one’s primary task, for example, driv-
ing, may alter how, and how efficient, they process periph-
eral signals. For instance, when central task demands are
high, people may take in more peripheral information si-
multaneously, known as parallel processing, but they may
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process each signal at a slower rate. Alternatively, when
central task demands are low, people may process periph-
eral signals in sequential fashion, known as serial process-
ing, but process each at the same rate as they would if the
signal was presented in isolation.

System designers attempt to draw attention to critical
peripheral signals by providing redundancy, referred to
as redundant signals, or increasing the perceptual distinc-
tion, known as salience, from its environment. Often re-
dundant peripheral signals are provided but only the de-
tection of one is needed for a response, for example, lights
and/or sirens of an ambulance. This is referred to as an
"OR" decision rule. Redundant signals are often within a
single modality ( e.g., multiple flashing lights) or between
two modalities (e.g., a light and sound). Peripheral signals
can becomemore salient than its surroundingswith adjust-
ments to specific attributes such as the signal brightness
or loudness. This empirical study investigates how signal
salience, focused versus divided attention, and reserve ca-
pacity affect how, and how efficiently, people process pe-
ripheral signals.

The current work is motivated following a discussion
of previous research involving redundant signals, signal
salience, and context dependencies. Then, an overview of a
cognitive-basedmathematical framework is provided. This
is paired with the argument for how and why it is neces-
sarily applied in this empirical study. This factorial design
and within-subjects experiment uncovers the underlying
cognitive processes of redundant, peripheral signals under
various multi-task demands. After a report of these data,
the implications and future directions of this work are dis-
cussed.

Redundant Signal Processing

Redundant signals are two or more pieces of information
that carry congruentmeaning, each containingwhat is nec-
essary to make a single decision. Redundant signals are
presented in either a physically (Miller, 1982) or perceptu-
ally (for example, stimulus onset asynchony or SOA, Colo-
nius & Diederich, 2004) simultaneous fashion and can en-
hance or harm performance depending on the stimuli and
context. Readers can imagine an alerting ambulance with
flashing lights and sirens that indicate an emergency. In
this example, both the lights and sirens convey the need
to bring the vehicle to a stop. How fast the car comes to a
stop is expected to speed up with the combination of lights
and sirens compared to either one alone, a mathematically
defined prediction called statistical facilitation (Raab, 1962;
Miller, 1982). However, performance with redundant sig-
nals can supersede the upper bound of what statistical fa-
cilitation can account for, meaning the pair of signals leads
to faster detection times than what is expected, called super

capacity processing (e.g., Townsend & Eidels, 2011; Yang et
al., 2018; Goulet & Cousineau, 2020). If observed perfor-
mance differs fromwhat is expected, there is evidence that
the underlying processing of each signal changedwhen the
signals were paired together versus presented in isolation
(more on this in a later section).

Alternatively, redundant signals may hinder perfor-
mance through competition for limited attentional re-
sources and reduced efficiency (Wickens, 2002). Interested
readers can refer to Fox and Houpt (2016) for an example
of limited capacity processing of complementary infrared
and visible images. Estimating the efficiency and mech-
anism of redundant signals processing will inform future
research and system design to effectively deploy multiple,
congruent pieces of information. Systems factorial technol-
ogy Townsend and Nozawa (SFT; 1995) and Houpt et al.
(2014) is a mathematical framework that can be applied
to pinpoint if, and how, people process signals differently
when they are presented alone versus together. The SFT
framework comprises multiple measures and a factorial
experimental paradigm. These are described in a later sec-
tion.

Salience

Several factors may influence the processing of redun-
dant signals, especially when embedded alongside com-
plex tasks that compete for common attentional resources.
For instance, Otto et al. (2013) found that a pair of sig-
nals with low versus high salience yields quicker andmore
accurate detection than either signal alone, a phenomena
called the principle of inverse effectiveness (Meredith &
Stein, 1986). Here, improved performance and stronger
neural responses (Senkowski et al., 2011) are attributed to
the speed-up in the processing of each when presented to-
gether and/or the reduction of signal uncertainty. There
is mixed evidence for the generalizability of this phe-
nomenon to more complex contexts or different stimulus
pairs (Leone &McCourt, 2013). Importantly, priorwork has
mainly focused on redundant signal processing in a single-
task context. Until now, no research has examined how the
salience of two task-relevant and uni-modal (i.e., two visual
signals) signals influence their combined information pro-
cessing efficiency.

Context dependence

Generalizing to a dual-task context, Thorpe et al. (2020)
found a single highly salient peripheral signal typically
leads to faster response times (RTs) and higher detection
rates. Further, recent work set in a dual-task context
demonstrates processing efficiency to a single peripherally-
presented visual signal is reduced and cognitive processing
strategies shift under high demands (Howard, Evans, et al.,
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2020; Garrett et al., 2019). They later found this may per-
sist even with complementary redundant signals (Howard
et al., 2022). The work described in this paper expands on
Howard et al. (2022) to investigate the processing mecha-
nisms of redundant signals while systematically manipu-
lating the salience of the signals and the load of a central-
ized dual-task.

Specifically, the work described here investigates i) if
the introduction of, or increased difficulty of, a centralmul-
tiple object tracking (MOT) task changes how people com-
bine two peripheral signals; both in processing capacity
(i.e., limited or super capacity) and/or structure (e.g., in par-
allel or serial), and ii) if processing efficiency depends on
the salience of the peripheral task signals or the presence/d-
ifficulty of a centralized and continuous task. An ancillary
question that is assessed is whether these effects influence
speed alone (using one measure of SFT) or jointly impacts
speed and accuracy of responses (a secondmeasure of SFT).
The next section serves as a brief overview of SFT. Those in-
terested in readingmore about the development and use of
SFT should refer to Houpt et al. (2014).

Systems Factorial Technology

The SFT framework includes multiple measures that iden-
tify the architecture, stopping rule, independence, and
workload capacity of how a cognitive system processes
two redundant signals. Architecture refers to the temporal
structure of processing each signal, whether that be one-
by-one (serial), simultaneously (parallel), or pooled into a
single unit (coactive). Stopping rule is the number (one ver-
sus all) of signals that finish processing before one chooses
to terminate a response (OR versus AND).Workload capac-
ity is the the relative change in processing speed of each
signal as the number of signals increases. Lastly, indepen-
dence is whether the processing of each signal influences
the other.

Numerous studies have applied SFT to investigate the
processingmechanisms of redundant signals. For instance,
SFT has been used in visual (Townsend & Eidels, 2011; Gla-
van et al., 2019), auditory (Lentz et al., 2014, 2017), au-
diovisual (Yang et al., 2018; Wang & Fox, 2021), memory
(Howard, Belevski, et al., 2020; Shang et al., 2021), and au-
tomation (Yamani & McCarley, 2018; Kneeland et al., 2021)
research. Many researchers have used SFT to show how
context influences not only performance but also themech-
anisms bywhich people process information (Donkin et al.,
2014; Fific et al., 2008). Such work may be thought of as
influencing the cognitive (i.e., attention) as opposed to per-
ceptual (e.g., signal brightness) human limitations, coined
"resource-limited" by Norman and Bobrow (1975). Only
in recent years have researchers applied SFT to investi-
gate how the larger task context, and hence the reserve re-

source supply,may influence the cognitive processing strat-
egy in a peripheral task involving redundant signal detec-
tion (Howard et al., 2022; Morey et al., 2018). The research
described in this paper extends previous work to investi-
gate the cognitive mechanisms for how redundant signal
are processed under various dual-task loads through the
application of SFT.

Survivor and Mean Interaction Contrast

Processing architecture and stopping rule are examinedus-
ing the Survivor Interaction Contrast (SIC) and Mean In-
teraction Contrast (MIC) (Townsend, 1974). The SIC value,
SIC(t), is estimated using the survivor function, S(t), of
RTs in conditions where the processing rate of each signal
is manipulated. The interaction contrast is taken for S(t)
of four factorial combinations of fast (high, denoted by H)
and slow (low, denoted by L) processing speeds of each sig-
nal, see Equation 1. TheHoupt-Townsend statistic (Houpt &
Townsend, 2012) is used to indicate whether positive (D+)
and negative (D-) deviations in the SIC function are signif-
icantly different than zero. Serial-AND or coactive models
have similar shaped SIC functions (an s-shape). The MIC is
used to distinguish between these models, see Equation 2,
such that a positive MIC corresponds to a coactive model
and a zero MIC represents a serial-AND process.

SIC(t) = [SLL(t)− SLH(t)]− [SHL(t)− SHH(t)] (1)

MIC = [MLL −MLH ]− [MHL −MHH ] (2)

The Capacity Coefficient

Workload capacity is how efficiently one processes sig-
nal information as the amount of information available
(that is, the number of signals) is manipulated (Houpt &
Townsend, 2012; Townsend & Nozawa, 1995). The capac-
ity coefficient quantifies workload capacity by comparing
observed performance when all signals are presented to a
UCIPmodel prediction of performance. The UCIPmodel as-
sumes Unlimited Capacity, and Independent and Parallel
processing of information; with these assumptions, the
UCIPmodel is formed using themathematical combination
of performance with each source in isolation.

The current work focuses on the processing mecha-
nisms involved in a peripheral detection task; therefore,
only the Capacity-OR coefficient is introduced and applied.
This work assumes efficiency is stable across time and
ample data is collected across multiple sessions to ap-
ply the traditional, nonparametric measure of capacity
(Houpt & Townsend, 2012) rather than a parametric model
with Bayesian updating (Fox & Houpt, 2021). The formal
comparison of performance to the UCIP model prediction
for OR processing can be stated in terms of the ratio of
integrated hazards functions, H(t), which indicates the
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amount of processing completed up to a given time, t, see
Equation 3. The capacity coefficient, C(t), indicates the
maintenance (unlimited capacity, C(t) = 1), decline (lim-
ited capacity, C(t) < 1), or improvement (super capacity,
C(t) > 1) of processing efficiency as the number of signals
increases above one.

C(t) =
H1...n(t)∑n
i=1 Hi(t)

(3)

Another measure of SFT, the assessment function, A(t)
(Townsend & Altieri, 2012), reflects changes in workload
capacity through a combination of accuracy and RT mea-
sures. Responses can be either "correct" or "incorrect" and
"slow" or "fast." Responses are considered correct if the
correct process ends before the incorrect process and vice
versa for incorrect responses. Whether a response is slow
or fast is dependent on if the response was made by time,
t. The combined observation of response type and speed
allows for a comparison with the UCIP model predictions
(Townsend & Altieri, 2012; Donkin et al., 2014). Past work
has found meaningful qualitative changes in A(t) in addi-
tion to those exhibited inC(t) across conditions (Donkin et
al., 2014; Hsieh et al., 2020). An exploratory application of
the assessment function to the data collected in this study
is reported in the Results section, and reveals whetherA(t)
can detect redundant signals changes across MOT load and
signal salience.

Current Research

The goal of the current research is to identify how people
process redundant signals in the periphery and assess if,
and how, cognitive processes change in context of three
centralized and continuous task difficulty levels. In a re-
cent study, Howard et al. (2022) suggested workload capac-
ity depends on centralized task difficulty and the stability
of the task load over time. However, further research is
needed to determine why this shift in capacity occurs. For
instance, a parallel model with limited capacity processing
may mimic performance of an unlimited and serial model
(Townsend, 1971; Townsend, 1972). Therefore, the current
study independently captures workload capacity and ar-
chitecture through the application of the capacity coeffi-
cient and SIC/MIC, respectively.

Systematic changes to the salience of each signal is nec-
essary in order to estimate the SIC/MIC. As such, this study
uses the double factorial paradigm (DFP; detailed in Houpt
et al., 2014) to present the appropriate balance of high/low
salience and single/double signal combinations. The ap-
plication of the DFP also allows for the investigation of a
secondary research question: Does the degree of impact
that peripheral redundant signals have on performance

depend on the salience of the signals? Practically speak-
ing, (how) does one’s processing of ambulance lights and
sirens change in adverse versus clear weather conditions?
This work estimates the observed redundancy gain (or lack
thereof) in a peripheral detection task andmeasures if, and
how, it changes with signal strength (salience).

Lastly, this work extends previous research by includ-
ing an additional measure of the SFT framework, the as-
sessment function, that accounts for changes in both speed
and accuracy. This is applied to characterize how the ma-
nipulation of centralized task difficulty and signal strength
influences both the speed and accuracy of peripheral signal
detection in fast and slow correct responses, respectively.

Methods

Participants

Participants included nine subject panel members and one
ad hoc from the United States and ten National Cheng Kung
University students from Taiwan, (N = 20). The US par-
ticipants were either a part of a subject panel at Wright
Patterson Air Force Base, who are long-term, part-time lis-
teners compensated at an hourly rate or were recruited
from the local area and received monetary compensation
for their time. All US participants completed the experi-
ment at home on a personal desktop computer. The partic-
ipants from Taiwan were awarded class credit or NTD 160
per hour for their time. All Taiwan participants completed
the task in a controlled laboratory.

Tasks

Multiple Object Tracking (MOT)

After every 15-second MOT trial, accuracy was measured
as the number of correctly labeled dots (10 total). To-be-
tracked dots appeared blue for 3 seconds before turning
red tomatch the non-target dots. The dotsmoved randomly
across the screen for the duration of the trial. Each dot was
≈ .286◦ of visual angle at 60 cm viewing distance. Dots
moved randomly in a box (width: ≈ 6.2◦, height: ≈ 2.19◦)
at a rate of 16.66 frames/second for the duration of the trial.
Dots could overlap briefly if their paths crossed and they
bounced randomly away if they reached the edge of the dis-
play area.

The number of dots to-be-tracked (0, 1, or 4 dots) was
manipulated in each block in a randomized fashion. Each
block consisted of 30MOT trials and two blocks of each load
type (0, 1, or 4 dots) occurred per session (180 trials/ses-
sion).

The Quantitative Methods for Psychology 872

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.1.p084


¦ 2023 Vol. 19 no. 1

Detection Reaction Task (DRT)

Performance in a detection reaction task (DRT) was mea-
sured as participants’ RT to accurately detect one or two red
squares that occasionally appeared in the periphery. Iden-
tical to previous work (Howard et al., 2022), a red square
(≈ 1.05◦ of visual angle) could appear slightly to the left
and/or right of center directly above theMOT task. Left and
right signal locations were ≈ 3.15◦ apart. The color of the
square varied for High (RGB[130, 0, 0]) and Low (RGB[55, 0,
0]) signals. Example signals are illustrated in Figure 1. Sig-
nal onset times were sampled from a uniform distribution
(3-5 seconds) (International Organization for Standardiza-
tion, 2016). Dynamic visual Gaussian noise was applied to
the entire location of the DRT for the duration of the block
regardless of signal presence. The noise was a rectangle
with approximately 6.39◦ width and 2.19◦ height, as shown
in Figure 1. High/Low salience signals and the noise distri-
bution were fixed across participants and blocks. The DRT
occurred during all MOT trials and no signals were admin-
istered between MOT trials.

The DFP informed the design of the DRT in this study
(Houpt et al., 2014). Specifically, two squares occurred on
60% of trials and High or Low (or one of each) salience
squares were equally probable. On the remaining trials, a
single High/Low salience square was presented in the left-
/right DRT location with equal probability.

Procedure

Data were collected during the COVID-19 global health cri-
sis. The US participants completed the experiment from
their home. The Taiwan participants completed the study
at the National Cheng Kung University and adhered to local
health requirements. After agreeing to participant in the
study, each participant completed three identical sessions
(2-hours/session).

Taiwan participants used a chin-rest (60 cm from mon-
itor) to prevent head movements. Following one practice
block (15 trialswith 2 dots-to-track), participants completed
2 blocks (30 trials/block) of each MOT load (0, 1, or 4 dots).
Participants took a mandatory break after every 15 trials.
Participants sent their data to the experimenter (US) or
were thanked and credited for their time (Taiwan) after
each session.

Equipment

Taiwan participants used a desktop computer equipped
with a 2.40 GHz Intel Pentium IV processor and 27-inch,
1920 × 1080 pixel resolution, LCD monitor (ACER XB273).
Each US participant used a standard desktop computer and
monitor. The US participants all self-reported that they
used the same computer and work station setup to com-
plete all sessions of the experiment.

Results

A Bayesian analysis of variance (ANOVA; Rouder et al.,
2012) was used for group-level analyses. A noninforma-
tive Jeffreys prior (

√
2
2 : “medium” amount of dispersion

around the mean) was used to scale expected effect size
(Rouder et al., 2012). In brief, Bayesian analyses examine
the credibility and probability of a factor despite the shifts
in probability going from a priori to posterior parameters
(Kruschke & Liddell, 2018). The Bayes Factor (BF) appraises
the likelihood of the null and the alternative hypotheses by
determining the probability of obtaining the observed data
under the null versus the alternative hypothesis. The BF
demonstrates evidence in favor of one hypothesis versus
the other. The BayesianANOVA comparesmultiple compet-
ingmodels and returns a BF for eachmain effectmodel and
their interaction(s). Thus, this approach compares mod-
els and adequately penalizes each regarding its complex-
ity. Model comparisons are reported using BF ratio. The
Highest Density Interval (HDI) is the interval that has the
most credible parameter values. Where appropriate, the
95% HDI is provided in brackets in the results reported be-
low.

Following a report of how the data were cleaned and
a check of experimental manipulations, the results of the
capacity coefficient and SIC/MIC are illustrated and sum-
marized. The results section closes with a report of the
findings from the exploratory reanalysis of the data using
the assessment function, specifically for correct and fast or
slow responses.

Data Cleaning

For the DRT task, RTs were constrained to be within a 100
to 1000 ms interval in order to eliminate false alarms (FAs)
and anticipatory responding. In what follows, all RTs will
be reported in ms. One participant was removed due to a
high FA (15.1%) and miss rate (22.0%). In what follows, all
accuracy, FA, and miss rates will be reported in percent-
ages (0-100). The remaining participants achieved a 1.57
FA and a 3.73 miss rate. Session 1 was treated as practice;
all results reported here only include the data from Session
2 and 3. Similarly, practice trials at the beginning of each
Session (tracking load of 2 dots) were excluded.

Manipulation Checks

Controlling for within-participant variability and condi-
tion type, there was strong evidence for no difference in
RTs between the US (Participant 1-10, 7 was excluded),
M = 475.7 [429.3, 522.8], and Taiwan (Participant 11-20),
M = 487.3 [441.4, 534.9] participants, BF = 0.22. There-
fore, participants were combined for all further analyses.
Controlling for within-participant variability, MOT perfor-
mance varied across conditions as expected. Specifically,
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Figure 1 Example DRT and MOT task signals. Left: dual-target HH DRT signal. Right: dual-target LL DRT signal.

accuracy in the MOT task was lower when tracking 4 dots
M = 76.6, [72.5, 80.7] compared to the 1 dot condition
M = 98.7, [94.7, 100.0], BF > 1000.

DRT

Similarly, accuracy (Acc) and speed (RT) in theDRT task var-
ied as a function of tracking load and salience, as shown
in Figure 2 (left: RT, right: accuracy). Further, the results
of a Bayesian ANOVA with a noninformative Jeffrey prior
(
√
2
2 ) revealed support for a model that included both main

effects (salience, dots to track) and their interaction to pre-
dict DRT accuracy (ACC) and RT, BF > 1000, compared to
the next most likely model with both main effects, ACC :
BFratio > 1000, RT : BFratio = 7.7. More specifically,
participants achieved very high accuracy to detect DRT sig-
nals in the 0 dot, M = 98.6 [95.9, 100], and 1 dot condi-
tions, M = 97.8 [95.0, 100], with slightly lower accuracy
in the 4 dot condition, M = 90.5 [87.8, 93.1]. Generally
this did not vary depending on whether the signals were of
HH, M = 96.8 [93.8, 99.6], or LL, M = 95.2 [92.3, 98.0],
salience levels. Participants RTs to DRT signals varied
across conditions. Participant RTs were fastest in the 0 dot
condition, M = 415.0 [389.7, 442.6], followed by the 1 dot

condition, M = 492.2 [466.9, 520.0], and slowest in the 4
dot condition M = 556.2 [530.7, 584.1]. Responses to re-
dundant HH stimuli,M = 461.2 [434.6, 490.1], were faster
than LL signals,M = 499.9 [473.2, 528.8].

To interpret SIC/MIC results, individuals’ RT distribu-
tions per condition must be ordered such that the HH con-
dition was fastest and the LL was the slowest, or S(t)HH ≥
S(t)HL, S(t)LH ≤ S(t)LL. The Kolmogorov–Smirnov
(K–S) testwas applied to indicatewhichparticipants exhibit
an incorrect pattern of results such that at least one of HL,
LH > HH or HL, LH < LL is found. No participants were
excluded from the 0 dot condition, 2 participants (Partici-
pant 4 & 16) were excluded from the 1 dot condition, and
1 participant (Participant 6) was excluded from the 4 dot
condition.

Survivor Interaction Contrast (SIC) and Mean Interac-
tion Contrast (MIC)

The SIC results in a function where D+/D- values indicate
the positive/negative deviation from zero and the Houpt-
Townsend statistic tests whether that differencewas signif-
icant. A p = .33 significance criteria was used to ensure an
unbiased result (Houpt & Burns, 2017)
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Figure 2 Influence of MOT task load on dual-target DRT RTs (left) and accuracy (right).

Overall, a parallel-OR processing architecture was
found across tracking loads. Further, 6 participants (Par-
ticipant 1, 3, 10, 15, 17, 18) processed redundant signals in
a parallel-OR fashion in all tracking load conditions. For
the remaining participants, processing architecture (and
sometimes stopping rule) changed depending on the num-
ber of dots to track in the MOT task. The most notable
finding here is that more parallel processing of redundant
visual signals was found as the task demands increased.
Specifically:
• 0 dots (10 parallel, 9 serial): 10 participants processed
redundant signals in a parallel fashion when presented
in the periphery, all of which used an OR stopping rule;
9 participants processed redundant signals in a serial
fashion when presented in the periphery, 3 of which
used an AND stopping rule.

• 1 dot (12 parallel, 5 serial): 12 participants processed
redundant signals in a parallel fashion, 1 of which used
an AND stopping rule; 5 participants processed redun-
dant signals in a serial fashionwhen pairedwith a 1 dot
tracking task, all of which used an OR stopping rule.

• 4 dots (16 parallel, 2 serial): 16 participants processed
redundant signals in a parallel fashion when paired
with a 4 dot tracking task, 3 of which used an AND stop-
ping rule; 2 participants processed redundant signals in
a serial fashion when paired with a 4 dot tracking task
and both used an OR stopping rule.

Interested readers can refer to theAppendix for further sta-

tistical reporting of these SIC/MIC findings.

Capacity Coefficient

Next, individuals’ capacity to process DRT signals is re-
ported. To recapitulate, the capacity coefficient is used to
measure workload capacity. It is defined as the ratio of ob-
served hazard function of RTs when both squares are pre-
sented to the UCIP model, which is formed using the com-
bination of one’s hazard function of RTs with each square
when presented alone (left and right). A separate UCIP
baseline was derived per individual and salience combina-
tion. Generally, the individualized model results indicate
most participants maintained the same capacity (i.e., lim-
ited) across all MOT and salience conditions, see Figure 3.

A Bayesian ANOVA on MOT load and salience indicated
evidence against any main effect or interaction, maximum
BF = 0.43. Individuals’ C(t) z-score, Cz, was no dif-
ferent across conditions: 0 dot, M = −3.7 [−4.2, −3.2],
1 dot, M = −3.8 [−4.3, −3.4], and 4 dot, M =
−3.6 [−4.1, −3.1]. Similarly, there was evidence against
an effect between HH, M = −3.8 [−4.2, −3.4] and LL,
M = −3.6 [−4.0, −3.2], Cz estimates.

Assessment Functions

Assessment function results,A(t), are interpreted in a way
similar to C(t) except in the case of slow RTs where A(t)
> 1 indicates limited and A(t) < 1 indicates super capacity.
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Figure 3 Group-level capacity z-scores, Cz, by MOT load (0, 1, 4) and redundant signal salience combination (HH, HL,
LH, LL).

In sum, A(t) for correct and fast RTs was limited capacity
across all conditions - a result found with C(t).

However, A(t) becomes less limited as MOT task diffi-
culty increased: A(t)4dots > A(t)1dot > A(t)0dots. In con-
trast, A(t) for correct and slow RTs consistently indicated
unlimited to limited capacity performance across all condi-
tions. These findings are considered alongside the SIC and
C(t) results in the Discussion below.

Discussion

This application of the DFP and measures of SFT allowed
for the investigation of the underlying cognitive mecha-
nisms of redundant signals in single- and multi-task con-
texts. Specifically, the conditions collected from a con-
trolled and counterbalanced paradigm served as the basis
to develop individualized and cognitive-based mathemati-
cal models of UCIP performance. This allowed for the in-
vestigation of how peripheral and redundant signal pro-

cessing change depending on centralized task load and sig-
nal salience. Before this study, researchers found peoples’
capacity to process peripheral redundant signals changed
depending on the presence and difficulty of a dual-task
(Howard et al., 2022). The findings of Howard et al. (2022)
suggested context influences redundant signal processing
in the periphery. However, the currentworkwas necessary
to determine how and why the changes in cognitive pro-
cessing occurred. Specifically, this work necessarily sep-
arated workload capacity from architecture and stopping
rule.

In sum, themajority of bothUS and Taiwanparticipants
processed redundant visual signals in a parallel-OR fash-
ion; a finding in linewith existing literature. Moreover, Fox
and Houpt (2016) found redundant visual information pre-
sented side-by-side (in an isolated task context) was pro-
cessed in a parallel and self-terminating fashion, catego-
rized as Parallel-OR processing. In the current study, six
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participants consistently processed redundant signals in a
parallel-OR fashion regardless of MOT task load. The re-
maining participants’ mechanism for processing the DRT
signals changed as MOT load increased. Specifically, more
participants processed redundant visual signals in a paral-
lel fashion as demands increased.

Delving into this finding a bit moremay offer some use-
ful insights regarding the cognitive processing and design
of peripheral signals in multi-task contexts. Further, these
data suggest the design of the 0 dot condition provided the
opportunity for participants to effectively ignore the cen-
tral task and fixate on where DRT signals were presented.
In this condition, about half (n = 9 of 19 total) of the partici-
pants processed redundant signals in a sequential fashion,
andmost of those (n = 6) effectively ignored one signal (i.e.,
serial-OR: n = 6; serial-AND: n = 3), and used that (those)
to make a decision. Serial processing violates the parallel
assumption of the UCIP model prediction, thereby demon-
strating that the limited capacity findings for these partic-
ipants is attributed, at least in part, to their less efficient
architecture to process the redundant signals. Further, a
serial-ANDmechanism implies that people waited until the
processing of both signals was finished tomake a response.
AnANDprocess pairedwith sequential processing is highly
inefficient. Indeed, the participants with Serial-AND pro-
cessing exhibited slower performance than expected by the
individualized UCIPmodel prediction. However, the extent
of peoples’ limited capacity Cz was consistent across all
MOT load and salience conditions.

An important distinction among the MOT load condi-
tions was the degree to which one could divide their visual
resources among the two tasks (MOT and DRT) while main-
taining high accuracy in the centralized MOT task. In the 0
dot condition, theMOT task did not demand any attentional
resources - all dots were red (to-be-ignored) at the start of
each trial. Participants were not instructed where to fixate,
nonetheless, motivated participants would maximize per-
formance by fixating directly where the DRT signals may
appear.

For the 1 dot condition, participants necessarily at-
tended to the central MOT task. Indeed, participants
achieved highMOT task accuracy, demonstrating adequate
attentionwas allocated to track the target dot as instructed.
While participants tracked the single dot, they peripher-
ally monitored for DRT signals which may appear directly
above the location of the MOT dots. In this condition, more
participants utilized a parallel (n = 12 ofN = 17), specifically
Parallel-OR (1 Parallel-AND), mechanism to process the re-
dundant DRT signals. Most notably, fewer participants uti-
lized a serial process in the dual-task condition (n = 5) com-
pared to the single-task condition (0 dots).

Lastly, for the 4 dot condition, nearly all (16 of 18 total)

participants processed the DRT signals in a parallel fash-
ion (13 parallel-OR; 3 parallel-AND). Only two participants
processed the stimuli in a serial-OR fashion. Similar to the 0
and 1 dot conditions, all participants exhibited a limited ca-
pacity and the extent of their limited capacity performance
did not depend on the tracking load of the MOT task.

In this work, two conditions required participants to
continuously track 1 or 4 dots to accurately respond in the
MOT task. Therefore, the participants had to use periph-
eral vision to simultaneously monitor and respond to sig-
nals in the DRT. Although eye-trackingmeasurements were
not used in this study, it is reasonable to suspect partici-
pants fixated on the target dots in the MOT task. The MOT
dots moved in such a way that depending on their location
at a given time the DRT signals could be simultaneously de-
tected using (para)foveal vision (within 6 degrees of visual
angle). Thus, DRT signals presented while target dots were
closer to the top of theMOT task areaweremore likely to be
processed with central vision, and with higher acuity than
the periphery. Furthermore, in the 4 dot condition partici-
pants were more likely to have fixate in the middle of the
MOT task area in order to effectively track all of the tar-
get dots, leaving less opportunity to move central attention
closer to the location of where DRT signals may appear.

In future work, researchers may consider the useful-
ness of physiologicalmonitoring of attentional focus. These
measures may more specifically assess if, and how, one’s
dual-tasking strategy predicts how peripheral redundant
signals are processed. For example, attention tracking can
be achieved in real-time through the use of eye-tracking
(Durant et al., 2021) or neural activity (Fox et al., 2022).
Based on the findings presented here, one may hypothe-
size that people process two side-by-side visual signals in
a more parallel fashion as eccentricity from central vision
increases. Further, the number of eyemovements between
the DRT and MOT task may decrease as a function of the
MOT task load. Alternatively, participants may indeed fix-
ate on the MOT task but a higher load decreases their func-
tional field of view (Crundall et al., 2002; Williams, 1982,
1985; Wittmann et al., 2006). If such a case occurs, no rela-
tionship between eye fixations, load, and processing mech-
anisms would be found. Rather, the size of the functional
field of view would drive the mechanism by which people
process the DRT signals from serial to parallel processing.

People exhibited no benefit from two redundant ver-
sus one visual DRT signal(s). In fact, participants processed
each less efficiently than predicted by an unlimited capac-
ity, independent, and parallel model. This result is not new;
for instance,Morey et al. (2018) conducted a series of exper-
iments examining the question of how peripheral, redun-
dant signal processing is influenced by its dual-task con-
text. Similar to Howard et al. (2022) and the work reported
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here, Morey et al. (2018) manipulated the load of a central-
ized and continuousmoving object tracking task. However,
their participants used a joystick to maneuver a cursor to
follow a dynamic signal for the duration of the trial under
various task loads. This differs from the current and re-
cent work which required participants to hold their focus
on the location of to-be-tracked dots and report their loca-
tion only after a 15 second tracking period – hence, no re-
quired manual tracking of a dynamic signal(s). The signals
and decision rule used in the peripheral task of Morey et
al. (2018) also differed from the current study. Their par-
ticipants simultaneously monitored two peripheral visual
signals, presented in the top left and/or right corners of the
screen, and pressed a button when signals (but not distrac-
tors) appeared. Here, mean RTs to the peripheral task in-
creased with changes to the central task. They found that
redundant signal processing was limited capacity – slower
than one would predict with UCIP processing of both sig-
nals. Importantly, this limited processing capacity of re-
dundant left and right signals did not significantly change
depending on the difficulty of task, or even when the par-
ticipants were instructed to ignore the central tracking al-
together.

More recently, Howard et al. (2022) investigated
whether peoples’ limited capacity performance, as shown
in Morey et al. (2018), to process peripheral redundant sig-
nalsmay changewhen the presence, difficulty, and stability
of the centralized and continuous task was manipulated.
Howard et al. (2022) manipulated how long participants
completed the centralized task at a level of difficulty before
switching to a higher or lower load; shifts occurred from
0 or 1 (low) to 3 or 4 (high) dots to track after 15 (short)
or 30 (long) trials, respectively. They found that contrary
to Morey et al. (2018), capacity decreased with higher de-
mands in a centralized and continuous task, and this de-
crease depended on the type of demandmanipulation. Sur-
prisingly, they found that less stable conditions (frequent
shifts in centralized task difficulty) led to greater capacity
compared to less frequent changes. Their work not only
suggests redundant signal processing is influenced by the
degree to which tasks compete for common attentional re-
sources (Kahneman, 1973; Wickens, 2002) but also that the
environmental stability impacts the overall level and fluc-
tuation of integration efficiency across time. While this is
beyond the scope of the current manuscript, future work
could investigate if, and how, processing architecture may
change depending on the stability of cognitive demands
across time.

In the current study, fewer participants exhibited pat-
terns of performance that indicate a serial processing strat-
egy to process redundant signals as the difficulty of the con-
text increased. Violations of independence in a serial pro-

cess could affect detection rates; for instance, a serial sys-
temmay work harder to process the source of information
and increase the rate that each source finishes processing
(Townsend & Wenger, 2004) resulting in limited capacity
performance. Such processing strategy may contribute, in
part, to participants’ limited capacity performance under
no and low dual-task demands (0 and 1 dot conditions, re-
spectively); which is a violation of the parallel and indepen-
dence assumptions of the UCIP model prediction.

On the other hand, participants more often, and almost
entirely, processed redundant signals in parallel when si-
multaneously performing a 4 dot tracking task. Interest-
ingly, participants still exhibited limited capacity perfor-
mance, a finding similar to Townsend and Nozawa (1995)
and Morey et al. (2018). Townsend and Nozawa (1995)
found parallel and self-terminating (OR) processing to de-
tect two visual, centrally-located dots with a limited ca-
pacity. The current findings suggest that a cognitive sys-
tem with high overall demands will process redundant sig-
nals in parallel when presented in the periphery, but each
source may be processed at a slower rate; which is a vi-
olation of the unlimited capacity assumption of the UCIP
model prediction.

Principles of attentional resource theory can further ex-
plain these data. Resource theory suggests that humans
have a finite amount of attentional resources (Kahneman,
1973). Specific to the work presented here, multiple visual
tasks tax the same pool of resources more so than those
with noncompeting modalities (Wickens, 1984). Hence, vi-
sual resources are highly taxed when attempting to track 4
moving dots, leaving fewer residual resources to detect pe-
ripheral signals than the 0 or 1 dot conditions. When fewer
resources are available to recruit to a peripheral task, peo-
ples’ cognitive system will utilize an efficient processing
strategy (parallel) to accommodate the increase in overall
task demands. The findings reported here support this the-
ory.

The data collected in the current work were re-
examined using the assessment function to model joint ef-
ficiency using speed and accuracy to redundant signal de-
tection. This additional exploratory analysis indicated that
i) the extent of limited capacity for correct and fast RTs
depended on the MOT task load, and ii) unlimited to lim-
ited capacity performance was exhibited in correct and
slow RTs. These findings did not depend on whether the
squares were of a High or Low salience. Specifically for
correct and fast RTs, A(t)4dots > A(t)1dot > A(t)0dots.
This result, in combination with the SIC, suggests the pres-
ence and load of a central and continuous task influences
not only how peripheral redundant signals are processed
structurally (i.e., parallel vs. serial) but also the degree to
which redundant signals provide a joint benefit to speed
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and accuracy. Specifically, people more often processed
redundant signals in parallel and, in the case of fast re-
sponses, with less limited capacity than when competing
attentional demands are lower (1 dot) or absent (0 dots).

Readers should take note that the experiment was de-
signed to enable participants to achieve high accuracy. As
such, accuracy was near ceiling-level for single and dual
DRT signals in the 0 and 1 dot condition, and slightly lower
accuracy was found in the 4 dot condition. A very small de-
crease in accuracy was found between a single High versus
Low salience DRT signal. Therefore, there was no room for
improved accuracy in the 0 dot condition, very little in the 1
dot condition, and the most potential for redundancy gain
in the 4 dot condition. Further investigation iswarranted to
examine contexts where demands are higher than the con-
ditions reported here, and there is a larger potential benefit
from redundant visual signals.

Limitations and Future Research

It is important to consider limitations and directions for
future research. One consideration is that this study re-
quired high performance in theMOT task but performance
decreased as the MOT difficulty level increased. The DRT
was present in all conditions, therefore, baseline MOT task
performance was not collected nor compared across con-
ditions; hence, the degree of change in dual-task trade-off
was not measured between the MOT task and DRT in this
study. Further mathematical modeling development that
involves the combination of the capacity coefficient (and/or
assessment function) and a recently derived measure of
Multitasking Throughput (MT; Fox et al., 2021) could offer
a tool to investigate workload capacity in a peripheral task
and account for dual-task trade-offs. In short, the MT coef-
ficient provides an estimate of efficiency and includes the
trade-off in performance when completing multiple tasks
simultaneously. Further expansion of MT could account
for one’s redundancy gains (or lack thereof) andmulti-task
efficiency within and between several competing tasks de-
mands.

Note that potential shifts in capacity and multi-task
strategy may have occurred over time. The performance
reported in this study was collected over multiple days in
order to achieve adequate statistical power. Future re-
search may leverage recent advances in mathematical psy-
chology to characterize cognitive processes with fewer ob-
servations of performance in each condition type. For in-
stance, Fox and Houpt (2021) use the Weibull distribution
and its conjugate prior to develop a Bayesian model of the
capacity coefficient that allows for the real-time estima-
tion of capacity across trials. This Bayesian modeling ap-
proach easily extends to other measures of efficiency, such
as Multi-tasking Throughput, andmay serve as a way to in-

vestigate when and how shifts in strategy to process redun-
dant signals occur as the broadermulti-task context change
over time.

Conclusions

The questions addressed in this study were i) does the
introduction of, or increased difficulty of, a second task
change how people combine multiple peripheral signals
and ii) does processing efficiency depend on the salience of
peripheral signals and/or the presence/difficulty of a sec-
ond task. Findings suggest that the introduction of, and
difficulty of, another task does influence how people pro-
cess side-by-side redundant signals in a peripheral detec-
tion task. Specifically, more people utilize efficient paral-
lel processing strategies when competing task demands are
high versus low or absent. Nonetheless, peoples’ workload
capacity to process the signals remains severely limited
across these contexts. In this study, peoples’ workload ca-
pacity changed across conditionswhen accounting for both
speed and accuracy, an effect that should be explored in fu-
ture work. This novel work builds on previous findings by
applying a framework which allowed for the investigation
of the underlying processingmechanisms of redundant sig-
nals in multi-task contexts. This work provides insights for
what may drive more or less efficient processes. Next steps
are provided to further investigate how multitask context
influences one’s trade-off between tasks and the joint effi-
ciency to complete multiple tasks simultaneously.
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Appendix A

The following sections provide the statistical details that complement the high-level description of the SIC/MIC findings
reported in the Results section.

0 dots

For the 0 dot condition (Table 1), positive, MD+ = 0.185, [0.059, 0.332], negative, MD− = 0.083, [0.008, 0.180], and
overall,MMIC = 11.097, [−20.733, 69.434], deviations from zero for each participant were examined. Ten participants
had significant positive SIC deviations from zero, (D+ [0.146, 0.332], p [.002, .300]), and non-significant negative SIC
deviation from zero, (D- [0.008, .116], p [.477, .996]). Of those 10, seven had significant MIC deviations, (MIC [-5.480,
69.434], p [.000, .279]), while two had non-significant MIC deviations from zero, (MIC [3.574, 22.122], p [.506, .674]).
The significant positive SIC deviations and non-significant negative SIC deviations from zero demonstrate a parallel-OR
architecture in these participants. Six participants hadnon-significant positive SIC deviations fromzero, (D+ [0.059, 0.121],
p [.447, .834]), non-significant negative SIC deviations from zero, (D- [0.067, 0.129], p [.404, .768]), and non-significant
MIC deviations from zero, (MIC [-13.381, 9.023], p [.498, .976]). The non-significant positive and negative deviations from
zero identify the processing architecture as serial-OR. Lastly, three participants had significant positive SIC deviations, (D+

[0.167, 0.221], p [0.091, 0.235]), significant negative SIC deviations, (D- [0.143, 0.180], p [.206, .322]), and non-significant
MIC deviations from zero, (MIC [-20.733, -0.664], p [.435, .715]). Both significant positive and negative SIC deviations
from zero could be either coactive processing or serial-AND processing, however, the MIC values were not significantly
different than zero, so the processing architecture was identified as serial-AND.

1 dot

In the 1 dot condition (Table 2), the positive, MD+ = 0.181, [0.059, 0.367], negative, MD− = 0.083, [0.003, 0.195],
and overall, MMIC = 19.756, [−21.887, 82.510], deviations from zero of the 17 participants were examined. Eleven
participants had significant positive SIC deviations from zero, (D+ [0.153, 0.367], p [.001, .316]), and non-significant SIC
deviations from zero, (D- [0.003, 0.116], p [.526, 1.00]). Nine of those 11 had significant MIC deviations, (MIC [-3.462,
82.510], p [.000, .257]), while two had non-significant MIC deviations from zero, (MIC [5.983, 33.994], p [.612, .826]). All
11 participants had parallel-OR processing due to the significant positive SIC deviations and non-significant negative SIC
deviations. Five of the participants had non-significant positive SIC deviations, (D+ [0.059, 0.130], p [.406, .835]), non-
significant negative SIC deviations, (D- [0.103, 0.143], p [.347, .566]), and non-significant MIC deviations, (MIC [-16.728,
16.454], p [.612, .965]). The lack of significant positive or negative SIC deviations indicates serial-OR processing for the five
participants. One participant had non-significant positive SIC deviations, (D+ [0.101], p [ .589]), and significant negative
SIC deviations, (D- [0.195], p [.0137]). This participant did not have significant MIC deviation from zero, (MIC = -21.887, p
= .643), a pattern of results that indicates a parallel-AND processing architecture and stopping-rule.

4 dots

In the 4 dot condition (Table 3), the positive, MD+ = 0.194 [0.010, 0.368], negative, MD− = 0.097 [0.010, 0.225], and
overall,MMIC = 14.962 [−60.274, 60.493], deviation fromzero for 18 participantswere examined. Thirteen participants
had significant positive SIC deviations, (D+ [0.154, 0.368], p [.001, .326]), and non-significant negative SIC deviations,
(D- [0.010, 0.111], p [.531, .995]). Of these 13 participants, 10 had significant MIC deviations from zero, (MIC [8.763,
60.493], p [.000, .260]), while three had non-significant MIC deviations from zero, (MIC [3.582, 25.951], p [.342, .527]).
Despite the differences in the MIC deviations, all 13 of these participants have parallel-OR processing. Two participants
had non-significant positive SIC deviations, (D+ [0.093, 0.128], p [.478, .691]), non-significant negative SIC deviations,
(D- [0.096, .147], p [.394, .659]), and non-significant MIC deviations, (MIC [-14.010, 1.655], p [.663, .816]). These two
participants’ interaction contrast indicated serial-OR processing of redundant DRT signals. Three participants had non-
significant positive SIC deviations from zero, (D+ [0.010, 0.119], p [.536, .996]), and significant negative deviation from
zero, (D- [0.160, 0.225], p [.145, .304]). One of the three participants had a significant MIC deviation, (MIC = -60.274, p
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= .092), while two did not have significant MIC deviations from zero, (MIC [-2.669, -0.876], p [.756, .855]). These three
participants interaction contrast indicated parallel-AND processing due to the lack of significant positive SIC deviations
and the presence of significant negative SIC deviations.

Table 1 The SIC and MIC results for architecture in 0 dot tracking load.

Subject D+ D- MIC Predicted model Cz HH Cz LL

1 0.332* 0.008 35.7* Parallel-OR -4.53* -5.13*
2 0.077 0.067 4.63 Serial-OR -1.61 -0.98
3 0.295* 0.017 69.4* Parallel-OR -4.45* -5.33*
4 0.167* 0.148* -8.017 Serial-AND -2.77* -2.76*
5 0.116 0.077 -2.284 Serial-OR -3.89* -3.49*
6 0.221* 0.180* -0.664 Serial-AND -2.57* -5.30*
8 0.176* 0.089 22.122 Parallel-OR -3.51* -3.95*
9 0.173* 0.143* -20.733 Serial-AND -2.24* -2.15*
10 0.285* 0.050 10.501* Parallel-OR -5.15* -2.00*
11 0.061 0.104 -5.445 Serial-OR -3.66* -2.11*
12 0.068 0.120 -13.381 Serial-OR -4.40* -4.02*
13 0.121 0.129 9.023 Serial-OR -4.00* -4.64*
14 0.258* 0.019 21.479* Parallel-OR -4.41* -3.62*
15 0.146* 0.088 3.574 Parallel-OR -2.41* -3.70*
16 0.201* 0.056 16.483* Parallel-OR -3.56* -4.04*
17 0.240* 0.058 42.449* Parallel-OR -4.86* -4.38*
18 0.302* 0.021 28.593* Parallel-OR -5.37* -3.96*
19 0.217* 0.116 -5.480* Parallel-OR -3.74* -3.44*
20 0.059 0.093 2.887 Serial-OR -4.50* -3.18*

Note. *: p < criterion, where the D+/D- criterion is p < 0.33 and the Cz (HH/LL) criterion is p < .05. Participant 7 was
excluded.
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Table 2 The SIC and MIC results for architecture in 1 dot tracking load.

Subject D+ D- MIC Predicted model Cz HH Cz LL

1 0.331* 0.019 38.844* Parallel-OR -4.85* -4.04*
2 0.080 0.117 -3.309 Serial-OR -3.77* -3.66*
3 0.333* 0.008 76.666* Parallel-OR -4.62* -4.23*
5 0.059 0.143 -7.481 Serial-OR -2.59* -3.90*
6 0.068 0.143 -16.728 Serial-OR -3.17* -4.86*
8 0.274* 0.003 82.510* Parallel-OR -3.66* -4.98*
9 0.179* 0.011 36.276* Parallel-OR -4.24* -3.15*
10 0.367* 0.020 54.263* Parallel-OR -3.75* 4.38*
11 0.235* 0.085 29.651* Parallel-OR -5.33* -5.29*
12 0.130 0.103 16.454 Serial-OR -2.13* -5.09*
13 0.184* 0.053 19.676* Parallel-OR -4.64* -4.07*
14 0.101 0.195* -21.887 Parallel-AND -4.26* -1.86
15 0.159* 0.079 -3.462* Parallel-OR -5.03* -2.30*
17 0.177* 0.103 3.656* Parallel-OR -3.28* -3.91*
18 0.187* 0.116 33.994 Parallel-OR -3.75* -3.39*
19 0.067 0.132 -9.262 Serial-OR -4.42* -0.94
20 0.153* 0.078 5.983 Parallel-OR -3.49* -4.08*

Note. *: p < criterion, where the D+/D- criterion is p < 0.33 and the Cz (HH/LL) criterion is p < .05. Three participants
(4, 7, 16) were excluded.

Table 3 The SIC and MIC results for architecture in 4 dot tracking load.

Subject D+ D- MIC Predicted model Cz HH Cz LL

1 0.349* 0.010 60.493* Parallel-OR -3.43* -3.91*
2 0.194* 0.081 3.582 Parallel-OR -3.88* -1.91
3 0.214* 0.041 44.582* Parallel-OR -3.17* -4.54*
4 0.172* 0.110 8.763* Parallel-OR -3.43* -2.02*
5 0.277* 0.045 21.636* Parallel-OR -3.70* -4.07*
8 0.128 0.096 1.655 Serial-OR -2.95* -3.02*
9 0.179* 0.111 6.542 Parallel-OR -4.65* -3.72*
10 0.207* 0.095 25.951 Parallel-OR -3.82* -2.86*
11 0.116 0.160* -2.669 Parallel-AND -3.69* -4.12*
12 0.192* 0.050 39.025* Parallel-OR -4.58* -4.29*
13 0.119 0.217* -0.876 Parallel-AND -4.26* -4.02*
14 0.262* 0.092 35.699* Parallel-OR -3.15* -3.51*
15 0.250* 0.062 39.782* Parallel-OR -2.53* -4.40*
16 0.010 0.225* -60.274* Parallel-AND -1.63 -3.43*
17 0.368* 0.087 14.842* Parallel-OR -4.60* -2.65*
18 0.154* 0.068 10.667 Parallel-OR -4.56* -2.58*
19 0.208* 0.040 33.924* Parallel-OR -3.59* -4.15*
20 0.093 0.147 -14.010 Serial-OR -3.38* -2.53*

Note. *: p < criterion, where the D+/D- criterion is p < 0.33 and the Cz (HH/LL) criterion is p < .05. Two participants (6,
7) were excluded.
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