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How to generate missing data for simulation studies
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Abstract Missing data are common in psychological and educational research. With the improve-
ment in computing technology in recent decades, more researchers have begun developing missing
data techniques. In their research, they often conduct Monte Carlo simulation studies to compare
the performances of different missing data techniques. During such simulation studies, researchers
must generate missing data in the simulated dataset by deciding which data values to delete. How-
ever, in the current literature, there are limited guidelines on how to generate missing data for
simulation studies. Our paper is one of the first that examines ways of generating missing data for
simulation studies. I emphasize the importance of specifying missing data rules which are statis-
tical models for generating missing data. I begin the paper by reviewing the types of missing data
mechanisms andmissing data patterns. I then explain how to specify missing data rules to generate
missing data with different mechanisms and patterns. I emphasize the advantages and disadvan-
tages of using different missing data rules and algorithms to generate missing data for simulation
studies. Next, I discuss other important aspects of simulation studies involving missing data. I end
the paper by offering recommendations for generating missing data for simulation studies.
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Introduction

Missing data are prevalent in many psychological and ed-
ucational research studies, particularly those where ques-
tionnaires are used to collect data and where participants
are studied over a period of time. Historically, statistical
analysis methods are developed assuming nomissing data,
and statistical techniques for handling missing data are
hard to implement due to intensive computation. However,
with the advance of computing technology, beginning in
the late 1980s, the problem ofmissing data began to receive
a lot of attention. In recent decades, more and more re-
search articles have studied statistical techniques for deal-
ing with missing data. Two of the most commonly studied
modern missing data techniques are the full information
maximum likelihood (FIML; Arbuckle, 1999; Schafer & Gra-
ham, 2002b) and multiple imputation (MI; Little & Rubin,
2019); a relatively less popularmethod is the two-stage (TS)
method (Savalei & Bentler, 2005; Yuan & Bentler, 2000).

In addition, due to the increase in computing power,
Monte Carlo simulation studies have become routinely

used by researchers to evaluate different statistical tech-
niques. In typical simulation studies, researchers first spec-
ify the population parameters and distribution, then gen-
erate sample data from the population distribution they
specified, and finally, analyze the data using different sta-
tistical techniques (Morris et al., 2019). With simulation
studies, researchers can compare the effectiveness of dif-
ferent statistical techniques since they know the true pop-
ulation parameters from which they generate the sample
data; therefore, simulation studies have become a valu-
able tool for comparing different existing statistical tech-
niques or for studying new statistical techniques (Morris
et al., 2019). Due to the importance of simulation studies,
how to generate data for simulation studies and how to de-
sign a good simulation study have become research topics
of their own. For example, many researchers (e.g., Fleish-
man, 1978; Foldnes & Olsson, 2016; Mattson, 1997; Olvera
Astivia & Zumbo, 2015; Reinartz et al., 2002) have exam-
ined different ways of generating normal and non-normal
data, and have provided recommendations for conducting
simulation studies involving normal and non-normal data.
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In the context of conducting simulation studies for
studying missing data techniques such as FIML and MI,
researchers not only have to generate sample data based
on the specified population parameters but also need to
generate missing data in the sample data. In other words,
researchers must decide which values in the sample data
should be deleted in order to create missingness in the
dataset; after generating missing data, researchers can
then analyze the incomplete data to compare different
missing data techniques such as FIML and MI. 1 However,
unlike the research on generating complete normal or non-
normal data, there has been almost no research that exam-
inesways of generatingmissing data and offers recommen-
dations for simulation studies. The current paper is one of
the first papers that address this gap of research.

The main purpose of our paper is to explain the differ-
ent ways of generating missing data with different proper-
ties that are important for simulation studies, with a focus
on explaining the statistical modelling behind generating
missing data. To design a good simulation study involving
missing data, researchers must first understand the mod-
elling behind missing data generation and systematically
manipulate different properties of the missing data. How-
ever, in the current missing data literature, most simula-
tion studies’ designs were done haphazardly, usually based
on what past simulation studies had done. Particularly,
most simulation studies were not designed with the miss-
ing data generation modelling in mind and do not system-
atically vary the properties of the missing data, thus cre-
ating confounds in the results of the simulation studies. In
addition, researchers are usually unaware of howdifferent
computer algorithms for generatingmissing data affect the
properties of the missing data, making it hard for them to
design a good simulation study involving missing data. In
short, when researchers want to design a simulation study
involving missing data, they are faced with a variety of de-
cisions and challenges, often unsure how to vary one miss-
ing data property while holding the other properties con-
stant. As a quantitative psychology researcher who has
published several papers involving simulation studies with
missing data, I have experienced many of these challenges
myself. The current paper will address these challenges of
generatingmissing data for simulation studies. The current
paper mainly targets those researchers who wish to con-
duct simulation studies with missing data, including those
who plan to do simulation studies withmissing data for the
first time and those who have some prior experience with
it. Furthermore, my paper can also help any students or
researchers who are interested in learning about missing
data because understanding themodelling behind generat-

ing missing data will help gain a deeper understanding of
important concepts (e.g., missing data mechanism) in the
missing data literature.

The rest of the paper is organized as follows. I first
provide background information related to missing data.
Specifically, I review important missing data concepts such
as missing data rules, missing data mechanisms, and miss-
ing data patterns. I also introduce the concept of “missing
data rule”, which is used to describe the statistical model
for generating missing data. Understanding these concepts
is essential for generating missing data, especially for re-
searchers who are doing their first simulation study in-
volving missing data. I then explain how to use different
missing data rules and their associated algorithms to gen-
erate missing data with different properties. Here, I focus
on describing how to generate missing data with different
missing data mechanisms because the type of missing data
mechanism is one of the most important properties that af-
fect the performance of modern missing data techniques,
and is almost always manipulated in simulation studies in-
volvingmissing data. I also explain the advantages and dis-
advantages of using different missing data rules and algo-
rithms to generatemissing data in simulation studies. Next,
I discuss several other important considerations for con-
ducting simulation studieswithmissing data. Finally, I con-
clude with recommendations for generating missing data
for simulation studies.

Preliminaries

What Are Missing Data Rules?

In this paper, I use the term “missing data rule(s)” tomean a
statisticalmodel for generatingmissing data. Thismodel al-
lows researchers to calculate the probability of being miss-
ing for each subject and each variable. An example of a
missing data rule is each subject has 20% probability of be-
ing missing from the variable Y . In statistical terms, this
missing data rule is P (M = 1) = 0.2 where M is a ran-
dom indicator variable with M = 1 indicating a missing
value in Y . This missing data rule assumes that the chance
of one subject being missing is independent of the chance
of another subject being missing, a common assumption
made by researchers when generating missing data (Gra-
ham, 2010). A given dataset can have a set of missing data
rules, one for each variable, or a single missing data rule
for multiple variables.

Like other kinds of statistical models, a missing data
rule has one ormore parameters associatedwith it. Specifi-
cally, these parameters are associated with the distribution
of the missing data indicator M . When researchers gen-

1Generating missing data for simulation studies is different from imputing missing data in MI. For the former, researchers need to create missing
data in simulated complete datasets; however, for the latter, they need to fill in the missing data based on the best estimates of the parameters.
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erate missing data, they have to specify these parameters
associated with the missing data rule. In the above exam-
ple of the missing data rule, the parameter associated with
the missing data rule is the 20% probability of being miss-
ing. This parameter pertains to the population. With sam-
ple data, the parameters associated with the missing data
rule can only be estimated. Although the average of the esti-
mated parameter values over repeated samples is equal to
the true parameter value, the estimated parameter in a spe-
cific sample data is usually different from the true param-
eter value. In conclusion, when generating missing data
for simulation studies, it is important to explicitly state the
missing data rule and the parameters associated with it. As
I will show later, knowing the missing data rule makes it
easy for researchers to figure out many properties of the
missing data being created.

Missing Data Mechanisms

In the missing data literature, missing data mechanism is
usually defined as the statistical relationship between sub-
jects (or variables) and the probability ofmissing data (Nak-
agawa, 2015). In this paper, I note that missing data mech-
anisms are equivalent to missing data rules. More pre-
cisely, a missing data rule is a specific missing data mech-
anism that describes how missing values are generated in
the data. An introductory course on missing data usually
explains the three types of missing data (i.e., three types
of missing data rules) described in Rubin, 1976: 1) missing
completely at random (MCAR), 2)missing at random (MAR),
and 3) missing not at random (MNAR). In this section, I re-
view these three types of missing data mechanisms in both
informal and formal terms.

Let us consider a datasetwithn subjects and p variables
denoted as Y1, . . . , Yp. When researchers do not havemiss-
ing data, their dataset should look like amatrixwithn rows
and p columns. When researchers have missing data, they
can consider the missing data as unobserved values that
create holes in the data matrix. Suppose only Y1 has miss-
ing values. If Y1 is MCAR, then the probability of a sub-
ject having a missing value of Y1 does not depend on its
unobserved value in Y1 nor its observed values of other
variables. This means that knowing the subject’s values
on any of the variables does not give you any information
about its probability of beingmissing. An example ofMCAR
data is when the paper-form questionnaire data are miss-
ing because a house cat spilled coffee on the table. In this
case, there are no observed or missing data that can pre-
dict the probability of being missing. If Y1 is MAR, then the
probability of a subject being missing depends on its ob-
served values of other variables but does not depend on its
value of Y1. In other words, MARmeans conditionally miss-
ing at random: conditional on the observed values of other

variables, the probability of beingmissing does not depend
on the value of Y1. An example of MAR data is when shy
participants are less willing to answer questions regarding
their sexuality, thus creating missing values on a sexual-
ity question in a survey. In this case, if researchers have
measured participants’ shyness, they can predict the prob-
ability of missing data on the sexuality question. If Y1 is
neither MCAR nor MAR, then Y1 is MNAR, where the prob-
ability of a subject having amissing value onY1 depends on
its value of Y1. A classical example of MNAR data is when
participants with high incomes avoid answering questions
about income. In this case, the probability of missing the
income data is related to the participants’ own income.

To define the types of missing data mechanisms for-
mally, let Y = (Y1, . . . , Yp)

T be a random vector repre-
senting the p variables in the dataset and y = (y1, . . . , yp)

T

represent the realizations of Y . Same as above, suppose Y1

is the only random variable with missing data. Let M be
a random indicator variable with M = 1 representing a
missing value in Y1; for the rest of the paper, I will call M
themissing data indicator. MCAR occurs when the distribu-
tion ofM does not depend on y:

P (M = 1|y) = P (M = 1) and P (M = 0|y) = P (M = 0).

To define MAR and MNAR, we have to break down y into
the observed (yobs) and the unobserved or missing (ymis)
parts of y; that is y = (ymis, yobs)

T . In this case, since
Y1 is the only variable with missing data, ymis = y1 and
yobs = (y2, . . . , yp)

T , MAR occurs when the distribution of
M depends on yobs but not ymis:

P (M = 1|(ymis, yobs)
T ) = P (M = 1|yobs)

and

P (M = 0|(ymis, yobs)
T ) = P (M = 0|yobs).

Lastly, MNAR occurs when the distribution of M depends
on yobs; that is when P (M = 1|(ymis, yobs)

T ) and P (M =
0|(ymis, yobs)

T ) can not be simplified further.
From the above definitions of MCAR, MAR, and MNAR

data, we can see that MCAR can be viewed as a special case
ofMAR data orMNAR data. Specifically, MAR data becomes
MCARdatawhenM ’s dependency on yobs is zero; similarly,
MNAR becomes MCAR data whenM ’s dependency on ymis

is zero. In fact, the distinction betweenMCAR andMAR lies
along a continuumwhere the missing data indicatorM in-
creases its dependency on yobs; similarly, the distinction be-
tween MCAR and MNAR lies along a continuum where M
increases its dependency on ymis (see Figure 1 for a graphic
representation of the relationships between MCAR, MAR,
and MNAR data). In other words, some data can be more
or less MAR depending on how strongM is related on yobs;
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Figure 1 Relationships between different missing data mechanisms. The differences between MCAR, MAR, and MNAR
data fall on a continuum. As the probability of missing data becomes more dependent on the values of the observed vari-
ables, MCAR becomes MAR data. On the other hand, as the probability of missing data becomes more dependent on the
values of the missing variables, MCAR becomes MNAR data.

and some data can be more or less MNAR depending how
strong M is related on ymis. In the later sections, I will fo-
cus on explaining how to generate missing data with vary-
ing degrees of being MAR.

Another important concept related to the types of miss-
ing data mechanisms is ignorability. Ignorable data are
the types of missing data that can be effectively handled by
modern missing data techniques such as FIML, MI and TS.
Missing data needs to satisfy two conditions to become ig-
norable missing data: 1) the missing data are either MCAR
or MAR; 2) parameters associated with the specific miss-
ing data rule are distinct from the parameters associated
with the distribution of the variables in the dataset (Rubin,
1976). The second condition means that the parameters as-
sociated with the distribution of M are distinct from the
parameters associated with the distribution of Y . To ex-
plain why these conditions are needed, let θ and ϕ are the
parameters associated with Y andM , respectively, and let
f(y,m; θ, ϕ) denote the joint density of Y andM . Because
θ and ϕ are distinct, when the data are incomplete, the ob-
served data likelihood can be obtained via the marginal of
yobs as follows:

f(yobs,m, θ, ϕ)

=

∫
f(yobs, ymis; θ)f(m|yobs, ymiss;ϕ)dymis

(1)

When the data are MCAR, f(m|yobs, ymiss;ϕ) = f(m;ϕ);
when the data areMAR, f(m|yobs, ymis;ϕ) = f(m|yobs;ϕ).
Since neither f(m;ϕ) nor f(m|yobs;ϕ) involves ymis, we
can take f(m;ϕ) or f(m|yobs;ϕ) out of the integral. In
other words, for MCAR or MAR data, it is sufficient to max-
imize

∫
f(yobs, ymis; θ)dymis with respect to θ if we only

want estimate θ. There are MAR data that violate the sec-
ond assumption for ignorable missing data (i.e.,θ and ϕ are
not distinct); in such cases, statistical methods assuming ig-

norability are not optimal but may still be good. Therefore,
in practice, ignorable missing data stand for MCAR or MAR
data and non-ignorable missing data implies MNAR data.
The advantage of ignorable data and their relationship
with types of missing mechanisms motivate researchers to
generate missing data with different missing mechanisms
when studying methods for handling missing data.

Missing Data Patterns

Missing data pattern refers to the arrangement of observed
and missing values in a dataset (Graham, 2010). It is of-
ten confused with missing data mechanism (e.g. Grigsby &
McLawhorn, 2019). The distinction is that a specificmissing
datamechanism is amissing data rule that describes the re-
lationship between subjects and the probability of missing
whereas a specific missing data pattern is a data configura-
tion that describes the location of the missing values in the
data.

There are generally three kinds of missing data pat-
terns. The univariate pattern occurs when missing values
are on one variable or a group of variables that is either
entirely observed or entirely missing for each case, but all
other variables are completely observed (Schafer & Gra-
ham, 2002a) (see Figure 2a). The univariate pattern has the
lowest number of missing data patterns; in other words, it
has two missing data patterns, one pattern where subjects
have complete data and the other pattern where subjects
have missing data. Another type of missing pattern is the
monotone pattern (e.g. Newman, 2003; Schafer & Graham,
2002a; Strike et al., 2001). In themonotonemissing pattern,
a group of variables Y1, . . . , Yp can be ordered in such a
way that if Yj is missing for a subject, then Yj+1, . . . , Yp is
also missing (see Figure 2b). Notice that the univariate pat-
tern can be viewed as a special case of monotone pattern.
Monotone patterns can be seen in longitudinal studies with
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Figure 2 Types of missing data patterns. Rows represent subjects; columns represent variables. The shaded cells repre-
sent the location of missing values.

attrition, where Yj representing a variable or a group of
variables collected at time j. Last, the general missing data
pattern occurs when a group of variables may be missing
for any subject, creating a dataset with missing values dis-
persed throughout the data matrix in a haphazard fashion
(Graham, 2010) (see Figure 2c).

Althoughmissing data pattern andmissing datamecha-
nism are distinct concepts, they do affect each other. Given
a specific missing data rule with a certain type of missing
data mechanism, the number and the type of missing data
patternwill be determined. For example, suppose a dataset
hasY1, . . . , Yp variables, if themissing data rule is each sub-
ject has 20% probability of being missing from the variable
Y1, then the missing data pattern is univariate, implying
two missing patterns.

When designing simulation studies examining missing
data techniques, researchers often consider missing data
patterns less important than missing data mechanisms,
probably because missing data patterns are not directly re-
lated to the ignorability property ofmissing data. However,
some researchers have found that the number of missing
data patterns can affect the performance of missing data
techniques (Savalei & Bentler, 2005; Zhang& Savalei, 2020).
Therefore, when designing simulation studies, researchers
shouldmanipulate bothmissing datamechanisms and pat-
terns; this requires researchers to know how to generate
missing data with different missing data mechanisms and
patterns, which I will explain in detail in the following sec-
tion.

Generating Missing Data for Simulation Studies

In this section, I will explain how to specify missing data
rules to generate data with different missing data mecha-

nisms and patterns and how to implement these missing
data ruleswith computer algorithms. For eachmissing data
rule, I describe the parameters and various properties as-
sociated and discuss the advantages and disadvantages rel-
ative to other types of missing data rules. I mainly focus on
MCAR and MAR data with the univariate missing data pat-
tern because they are the most commonly studied missing
data in themissing data literature, but I will also briefly dis-
cuss generating MNAR data as well as generating missing
data with a large number of missing data patterns. Table
4 at the end of the article presents a summary of differ-
ent missing data rules and algorithms, highlighting their
advantages and disadvantages. Sample R code for imple-
menting different missing data rules is posted on the Open
Science Frame (OSF) website. 2

Generating MCAR Missing Data

General Missing Data Rules for MCAR Data. Missing
data rules for MCAR data always involve each subject’s
probability of being missing from one or more variables.
The probability of being missing is the parameter value as-
sociated with the missing data rule, denoted as θ earlier.
This parameter value affects the expected percentage of
missing and the expected number of missing data patterns
in a sample dataset.

For MCAR data with univariate pattern, the missing
data rule is that each subject has π probability of beingmiss-
ing from the variable(s) with missing data. Putting it in sta-
tistical terms, this missing data rule is P (M = 1) = π
whereM is the missing data indicator, and π is the param-
eter associated with the missing data rule. Given this miss-
ing data rule, researchers can determine various proper-
ties associated with the MCAR data, including the expected

2Link to the OSF website: https://osf.io/pmn9z/
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percentage of missing values and the expected number of
missing data patterns in the MCAR data.

To explain how the missing data rule affects the miss-
ing data properties, let n be the number of subjects in the
data, andK be the random variable indicating the number
of subjects withmissing values in the data. Given this miss-
ing data rule and assuming the chance of one subject be-
ing missing is independent of the chance of another being
missing,K follows a binomial distribution: K ∼ Bin(n, π),
where 0 ≤ π ≤ 1. Since E(K) = nπ and Var(K) =
nπ(1− π), the expected percentage of missing values is

E(Π) = E(
K

n
) =

1

n
E(K) = π, (2)

where Π = K/n is the random variable denoting the esti-
mated percentage of missing values in a sample. The vari-
ance for this estimated percentage of missing values is

Var(Π) = Var(
K

n
) =

1

n2
Var(K) =

π(1− π)

n
. (3)

This variance shows that given our missing data rule, re-
searchers may not always obtain the exact π percentage of
missing values in a sample dataset.

Researchers can also determine the expected number
of distinct missing data patterns in a sample, given aMCAR
missing data rule. Consider two possible missing data pat-
terns: pattern 1 includes subjects with complete data; pat-
tern 2 includes subjects withmissing values. For j ∈ {1, 2},
let Ij be the indicator variable of the event that pattern j
is present in at least one subject in the sample. The prob-
ability that pattern 1 is present in at least one subject is
P (I1 = 1) = E(I1) = 1− πn. The probability that pattern
2 is present in at least one subject is P (I2 = 1) = E(I2) =
1− (1− π)n. LetD be the number of distinct missing data
patterns: D =

∑2
j=1 Ij . The expected number of distinct

missing data patterns is

E(D) = E(

2∑
j=1

Ij) =

2∑
j=1

E(Ij)

= (1− πn) + (1− (1− π)n)

= 2− πn − (1− π)n,

(4)

which shows that as the sample size increases, the expected
number of patterns converges very quickly to 2, which is
the maximum number of patterns for this missing data
rule.
MCAR Missing Data Rules for Creating More Missing
Data Patterns. To generate MCAR data with more missing
data patterns, researchers can allow each subject’s chance
of beingmissing on one variable to be independent of their

chance of being missing on another variable. For exam-
ple, if the variablesY1, . . . , Yl havemissing values, then the
missing data rule that can create the maximum number of
missing data patterns is each subject has πi probability of
being missing on variable Yi where i ∈ {1, . . . , l}; in other
words, the probability of being missing on Y1 is indepen-
dent of the probability of being missing on Y2, Y3, . . . , Yl.
In this case, there is a total of l parameters: π1, . . . , πl.
For each variable Yi with missing data, the expected per-
centage of missing values and the variance associated with
the estimated missing percentage are the same as those
shown in (2) and (3), respectively

(
i.e., E(Π1) = π1 and

Var(Πi) =
πi(1−πi)

n

)
.

As mentioned before, this missing data rule can create
themaximumnumber ofmissing data patternswith l num-
ber of variables (i.e., m = 2l number of patterns). How-
ever, in a given sample, some of the missing data patterns
may not be realized. The expected number of distinct miss-
ing data patterns in a sample is

E(D) = m−
m∑
j=1

(1− ηj)
n, (5)

where η1, . . . , ηm are the corresponding probabilities for
patterns 1, . . . ,m. Equation (5) is just a generalized for-
mula for Equation (4). Similar to (4), Equation (5) shows
that as the sample size increases, the expected number of
patterns converges tom, themaximumnumber of possible
patterns. This makes sense because as the sample size in-
creases, all possible patterns will eventually be realized. In
addition, since n appears as an exponent in (5), E(D) con-
verges tom at an exponential rate; therefore, for a dataset
with a relatively large sample size, this missing data rule
should create a large number of missing data patterns.
Algorithms for Implementing MCAR Missing Data
Rules. In the missing data literature, there are generally
two methods for implementing MCAR missing data rules.
The first method is randomly deleting the desired percent-
age of missing values (e.g., Enders, 2001b; Yuan & Bentler,
2000; Savalei & Bentler, 2005; Strike et al., 2001; Savalei &
Yuan, 2009). The deletion can be accomplished by deleting
every ith subject (e.g., deleting every second subject to cre-
ate 50% missing data) (e.g., Yuan & Bentler, 2000) or delet-
ing randomly until the desired percentage is reached (e.g.,
Savalei & Bentler, 2005; Savalei & Yuan, 2009; Strike et al.,
2001). One problem with this method is that the estimated
probability of being missing is equal to the expected prob-
ability of being missing across different datasets; however,
as shown in (3), there is sampling variability associated
with the estimated percentage of missing data. 3 Whether
this problemmatters for simulation studies depends on the

3I note that in planned missing design, the percentage of missing data is held constant across samples.
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purpose of the simulation study. For example, if the pur-
pose of the simulation is to examine the average perfor-
mance of a missing data technique across samples with a
large sample size, then this issue does not matter because
the sampling variability is very small for a large sample and
does not really affect the computation of statistics that are
aggregated across samples. However, if the purpose is to
examine the performance of missing data techniques un-
der small sample sizes, it may be better to incorporate the
sampling variability when implementing the missing data
rule; this will make the simulation more realistic.

The second method involves comparing the values of a
variable that has missing data with the corresponding val-
ues of a uniform random variable ranging between zero
andone (e.g., Enders, 2001a, 2004; Enders, 2010; DeRaadt et
al., 2019; Kim & Bentler, 2002; Jamshidian & Siavash, 2010).
Taking a concrete example, suppose that there are 200 sub-
jects in the data and the missing data rule is that each sub-
ject has 20% probability of being missing from the variable
Y . Given that the data of 200 subjects for variable Y are al-
ready generated, to create missing values, researchers first
draw 200 subjects froma uniform randomvariableU rang-
ing from zero to one. Then they pair 200 subjects for Y
with the 200 corresponding subjects for U . If the ith sub-
ject inU is less than 0.2, then the ith subject in Y should be
removed. This method is equivalent to implementing the
missing data rule directly by allowing each subject in Y to
have a 20% chance of being missing. In fact, researchers
can create a missing value indicator M from U by letting
M = 1 whenever U ≤ 0.2. In other words, instead of
drawing cases from a uniform variable, researchers can
draw 200 subjects from an indicator random variable M
that has a 20%chance of being one, and thendelete subjects
for Y whenM equals one. I recommend this way of imple-
menting the missing data rule because it is the most direct
and straightforward way of implementing MCAR missing
data rules. For sample R code for generating MCAR data,
please refer to the OSF website in Footnote 2.
Advantages and Disadvantages of MCAR Missing Data
Rules and Algorithms. The main advantage of the MCAR
missing data rules is that they are very easy and intuitive to
understand and implement. However, as explained previ-
ously, MCAR data are just special cases of MAR or MNAR
data where the probability of missing data does not de-
pend on any the observed or the missing variables. As the
probability of missing becomes more dependent on the ob-
served or missing variable, the missing data mechanism
changes fromMCAR toMAR orMNAR. Therefore, for a sim-
ulation study investigating the effect of different missing
data mechanisms on missing data techniques, it is insuffi-
cient to solely generate MCAR data. It is also necessary to
generate MAR and MNAR data, which I will explain in the

following sections.

Generating MAR Missing Data

For MAR data, the probability of a subject having a missing
value depends on the observed values of other variables.
In other words, researchers can predict the probability of
missing values from the observed values of other variables.
For the rest of the paper, I call the variable that can predict
the probability of missing values the missing data predic-
tor. A missing data predictor can be one single variable in
the dataset or it can be a new variable that is a linear com-
bination of several variables in the dataset.

Generating MAR data is more complicated than gener-
ating MCAR data in two ways. First, the missing data rules
for MAR data are more complicated than those for MCAR
data. Themissing data rules forMAR data can be organized
into several categories: 1) single cutoff method; 2) multiple
cutoff method; 3) percentile method; 4) logistic regression
method. The most commonly used MAR missing data rule
in psychological research is the single cutoff method (e.g.,
Yuan & Bentler, 2000; Allison, 2000; Enders, 2004; Musil et
al., 2002; Yuan & Savalei, 2014). Second, researchers can
vary the strength and shape of the dependency between
the missing data indicator and the missing data predictor.
The strength of the dependency can be weak or strong; the
shape of the dependency can be linear or curvilinear. The
dependency commonly used in simulation studies is strong
and linear (e.g., Yuan et al., 2015; Yuan & Savalei, 2014). In
addition, like MCAR data, MAR data can vary in the num-
ber and type of missing data patterns, with the univariate
pattern being the most commonly studied pattern (e.g., En-
ders, 2001b, 2010; Yuan & Bentler, 2000; Jia & Wu, 2019).

In the following sections, I will explain the different
types of missing data rules and algorithms for generating
MAR missing data. For each type of MAR missing data
rule, I explain how to create different kinds of patterns and
strengths of dependency. I focus more on the MAR data
generated using the single cutoff method with univariate
pattern and linear dependency because this kind of MAR
data is more commonly used in simulation studies involv-
ing missing data. Finally, I compare and contrast the rela-
tive advantages and disadvantages of the different types of
MAR missing data rules and algorithms.

Single Cutoff Method

Missing Data Rules for the Single Cutoff Method. Miss-
ing data rules associated with the single cutoff method in-
volves specifying one cutoff point in eachmissing data pre-
dictor. Consider a MAR dataset where Y1 is the variable
withmissing data and Y2 is themissing data predictor with
a cutoff point a. In this case, the MAR dataset has a univari-
ate pattern; the missing data rule is if a subject has Y2 ≥ a,
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Table 1 Contingency table for generating MAR data using the single cutoff method.

M
U 1 0
1 A = P (M = 1|U = 1)P (U = 1) = π1π0 B = P (M = 0|U = 1)P (U = 1) = (1− π1)π0

0 C = P (M = 1|U = 0)P (U = 0) = π2(1− π0) D = P (M = 0|U = 0)P (U = 0) = (1− π2)(1− π0)

Note. M is an indicator variable indicating whether Y1 is missing: M = 1 when Y1 is missing, and M = 0 when Y2 is
not missing. U is the indicator variable indicating whether Y2 is equal to and greater than a: U = 1 when Y2 ≥ a, and
U = 0 when Y2 < a.

then its probability of being missing on Y1 is π1, and if it has
Y2 < a, then its probability of being missing on Y1 is π2. To
define the missing data rule in statistical terms, let M be
the missing data indicator for missing data in Y1, and U be
the indicator denoting whether Y2 is above a (i.e., U = 1
when Y2 ≥ a and U = 0 when Y < a). Notice since
U is a direct function of Y2, U is also a missing data pre-
dictor. Therefore, the missing data rule can be written as
P (M = 1|U = 1) = π1 and P (M = 1|U = 0) = π2. Since
this missing data rule just involves the two indicators M
and U , it can be best illustrated using a contingency table
for the two indicators; this contingency table is shown in
Table 1.

There are three parameters associated with this miss-
ing data rule. Two of the parameters are π1 and π2, the
conditional probabilities of being missing on Y1. The third
parameter is the probability that Y2 is equal to or greater
than a: P (Y2 ≥ a) = P (U = 1) = π0. Notice that the
third parameter is directly related to the cutoff point a; this
means that to set a value for this parameter, researchers
only need to specify the value for a. For each parameter,
researchers can calculate the variance associated with the
estimated value (see Equation (3) for derivation). If n is the
total number of subjects and n1 = nπ0 is the number of
subjects with Y2 values above a, then the respective vari-
ances for the estimated π0, π1, and π2 are

Var(Π0) =
π0(1− π0)

n
, (6a)

Var(Π1) =
π1(1− π1)

n1
(6b)

and

Var(Π2) =
π2(1− π2)

n− n1
. (6c)

Now, I explain how to use these parameter values to deter-
mine the expected percentage of missing values in Y1 and
the strength of dependency between the missing data indi-
cator M and the missing data predictor U . To find the ex-
pected percentage of missing values, we first calculate the
unconditional probability of a subject being missing from

Y1:

πmiss = P (M = 1)

= P (M = 1|U = 1)P (U = 1)

+ P (M = 1|U = 0)(1− P (U = 1))

= π1π0 + π2(1− π0).

Then letK be a random variable indicating the number of
subjects with missing data in a sample dataset. We know
K ∼ Bin(n, πmiss). Thus, the expected percentage of miss-
ing data across samples is

E
(K
n

)
= πmiss = π1π0 + π2(1− π0), (7)

and the variance for this estimated percentage of missing
date is

Var
(K
n

)
=

πmiss(1− πmiss)

n
. (8)

Notice Equations (7) and (8) are the same as Equations (2)
and (3), expect that π in (2) and (3) is replaced by πmiss

in (7) and (8). Similarly, by replacing π in (4) to πmiss, re-
searchers can find the expected number of patterns for the
MARmissing data rule: E(D) = 2−πn

miss − (1−πmiss)
n.

Measuring the Strength ofDependencyUnder the Single
Cutoff Method. As mentioned in the preliminaries sec-
tion, the difference between MCAR and MAR data can be
viewed as a continuumwhere themissing data indicatorM
increases its dependency on the missing data predictor U .
When there is no dependency betweenM andU , the miss-
ing data are MCAR, but as M and U become more depen-
dent, themissing data becomemoreMAR. As a result, when
conducting simulation studies involving missing data, it is
important to know how to measure the strength of depen-
dency betweenM andU in order to manipulate the degree
of MAR in the missing data.

Since M and U are two binary variables, researchers
can measure the strength of dependency between M and
U using the absolute risk difference (ARD) or odd ratio (OR),
which are standard association measures for binary vari-
ables. The respective equations for ARD and OR are

ARD = |π1 − π2|, (9)

TheQuantitativeMethods forPsychology 1072

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.2.p100


¦ 2023 Vol. 19 no. 2

Figure 3 MAR data created by the single cutoff method, varying in the strength of dependency. M is the missing data
indicator with M = 1 indicating Y1 is missing, and M = 0 indicating Y1 is not missing. Y2 is the missing data predictor,
which follows the standard normal distribution. SinceM is a binary variable while Y2 is a continuous variable, boxplots
can be used to show the strength of dependency betweenM and Y2. The strength of dependency decreases as the boxplox
for M = 0 overlaps more with the one for M = 1. In other words, the strength of dependency decreases as the graph
goes from (a) to (d). Each graph is based on a large simulated dataset.

and

OR =
P (M = 1|U = 1)/(1− P (M = 1|U = 1))

P (M = 1|U = 0)/(1− P (M = 1|U = 0))

=
π1/(1− π1)

π2/(1− π2)
.

(10)

Large ARD values indicate strong dependency; OR values
farther away from one indicate strong dependency. Notice
that OR is not defined when 1 − π1 = 0 or 1 − π2 = 0;
therefore, if any of these cases occurs, ARD should be used
to measure the strength of dependency.

Equations (9)-(10) measure the strength of dependency
between M and U at the population level. At the sam-
ple level, the estimated strength of dependency may vary
from sample to sample. The variances associated with the
estimated ARD and estimated log(OR) are as follows (see

Agresti & Kateri, 2011, for derivation):

Var(Π1 −Π2) = Var(Π1) + Var(Π2)

=
π1(1− π1)

n1
+

π2(1− π2)

n− n1
.

(11)

Var(logOR) =
1

A
+

1

B
+

1

C
+

1

D
, (12)

where A,B, C andD are defined in Table 1.
Since OR is closely related to the logistic regression

model, we can also define the relationship betweenM and
U using the logistic regression framework. In other words,
the log-odds ofM can be predicted by U :

log
( P (M = 1)

1− P (M = 1)

)
= β0 + β1U, (13)

where β0 is the log-odds ofM given U = 0:

β0 = log
( P (M = 1|U = 0)

1− P (M = 1|U = 0)

)
= log

( π2

1− π2

)
,
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and β1 is the log of the OR:

β1 = log(OR) = log
(π1/(1− π1)

π2/(1− π2)

)
.

In the logistic regression, the higher the β1 value, the
stronger the dependency is. Note that Equation (13) shows
that the missing data rule specified using the single cut-
off method is actually equivalent to a logistic regression
model, which can be directly used to generate MAR data
using the logistic regression method. I will explain more
about the connections between these two methods in the
section about the logistic regression method.
Examples of Missing Data Rules with Different
Strengths of Dependency Under the Single Cutoff
Method. Since the strength of dependency is one impor-
tant property for MAR data, in this section, I show with
a few examples how to specify missing data rules that
vary in the strength of dependency between the missing
data indicator (M ) and the missing data predictor (U or
Y2). I begin by explaining the missing data rules with the
strongest dependency. If a missing data rule specifies the
strongest dependency betweenM andU , then the value of
M can always be accurately predicted given the value of
U , a case that occurs when P (M = 1|U = 1) = π1 = 1
and P (M = 1|U = 0) = π2 = 0 or when P (M = 1|U =
0) = π2 = 1 and P (M = 1|U = 1) = π1 = 0. In this case,
ARD equals one, but OR and the logistic regression model
are undefined.

An example of a missing data rule with the strongest
dependency is if a subject has Y2 ≥ 0, then its Y1 value is
always missing (see Table 2a for the contingency table for
this missing data rule). The cutoff point used in this miss-
ing data rule is Y2 = 0. The three parameters associated
with this rule are π0 = P (U = 1) = P (Y2 ≥ 0) = 0.5,
π1 = 1, and π2 = 0, assuming Y2 follows the standard
normal distribution. To demonstrate the property of this
missing data rule, I have simulated a large sample dataset
(n = 1, 000, 000) and then generated missing values in the
dataset according to the above missing data rule. Since Y2

is a continuous variable while M is a categorical random
variable, I used boxplots to show the assication between
Y2 andM . Figure 3a shows the association between Y2 and
M based on this missing data rule. Figure 3a shows a com-
plete separation of the boxplot forM = 0 from the one for
M = 1 along the Y2 = 0 cutoff point; this indicates that re-
searchers can accurately predict the value of M based on
the value of Y2; in other words,M and Y2 are highly associ-
atedwith each other. In addition, another interesting prop-
erty for missing data rules with the strongest dependency
is that the percentage of missing values only depends on
the parameter π0. For the missing data rule in our exam-
ple, the expected percentage of missing values calculated
using Equation (7) is πmiss = π0 = 0.5.

As the strength of dependency decreases, it is harder to
predict the missing data indicator from the missing value
predictor; ARD value decreases, but OR and the logistic re-
gression model are no longer undefined. An example of
a missing data rule with a weaker dependency is if a sub-
ject has Y2 ≥ 0, then its Y1 value has 80% probability of
being missing; otherwise, its Y1 has 20% probability of be-
ing missing (see Table 2b for the contingency table for this
rule). The three parameters for this rule are π0 = 0.5,
π1 = 0.8 and π2 = 0.2. In this case, the ARD and OR are
0.5 and 16, respectively. The logistic regression model is
log

(
P (M=1)

1−P (M=1)

)
= log(0.25)+ log(16)U . Figure 3b shows

the boxplots of Y2 values for this missing data rule. With
this missing data rule, the boxplot of Y2 for subjects with
M = 1 overlaps with the boxplot for M = 0, making it
impossible to accurately predictM from Y2.

An example missing data rule with an even weaker de-
pendency is if a subject hasY2 ≥ 0, then itsY1 value has 60%
probability of being missing; otherwise, its Y1 has 40% prob-
ability of being missing (see Table 2c for contingency table).
The parameters are π0 = 0.5, π1 = 0.6 and π2 = 0.4.
The ARD and OR are 0.2 and 2.25. The logistic equation
is log

(
P (M=1)

1−P (M=1)

)
= log(0.67) + log(2.25)U . Figure 3c

shows that the boxplot of Y2 for subjects with M = 1 al-
most completely overlaps with the one forM = 0, making
the prediction of M based on Y2 only slighter better than
chance.

Theweakest dependency occurswhenπ1 equalsπ2 (see
Table 2d as an example). In this case, the data become
MCAR; the ARD value is 0 and OR is 1. With MCAR data,
as shown in Figure 3d, the boxplot for M = 1 completely
overlaps with the one for M = 0, making the prediction
of M based on Y2 no better than chance. In summary, re-
searchers can generate MAR data with different strengths
of dependency by varying the parameters π1 and π2 in the
missing data rule. ARD and OR can be used to measure the
strength of dependency. The strongest dependency has an
ARD value of 1; as the strength of dependency decreases,
the ARD value decreases and the OR values get closer to
1; the weakest dependency occurs when the data become
MCAR, in which case ARD is 0 and OR is 1.
Creating More Missing Data Patterns Under the Single
Cutoff Method. To generate MAR data with many missing
data patterns, I can let the differentmissing data indicators
depend on different missing data predictors. For example,
if two variables, Y1 andY2, haveMARmissing data, I can let
the probabilities of missing values for Y1 and Y2 depend on
the observed values of Y3 and Y4, respectively. In fact, this
way of creating missing data patterns can be used in com-
bination with the single-cutoff, multiple-cutoff, percentile,
or logistic regression method for generating MAR data. In
the case of the single-cutoff method, an example missing
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Figure 4 MAR data created by the multiple cutoff method, varying in the strength of dependency. M is the missing data
indicator with M = 1 indicating Y1 is missing, and M = 0 indicating Y1 is not missing. Y2 is the missing data predictor,
which follows the standard normal distribution. SinceM is a binary variable while Y2 is a continuous variable, boxplots
can be used to show the strength of dependency betweenM and Y2. The strength of dependency decreases as the boxplox
forM = 0 overlaps more with the one forM = 1. In other words, the strength of dependency in graph (b) (AARD=0.33)
is stronger than that in graph (a) (AARD=0.10). Each graph is based on large a simulated dataset.

data rule that can create themaximum number of patterns
(i.e., four patterns) for two variablesY1 andY2 withmissing
data is if the subject has Y3 ≥ a1, then its Y1 has π1 probabil-
ity of beingmissing, otherwise, Y1 has π2 probability of being
missing; if the subject has Y4 ≥ a2, then its Y2 has π3 prob-
ability of being missing; otherwise Y2 has π4 probability of
being missing. With this missing data rule, we can still use
Equation (5) (with m = 4) to calculate the expected num-
ber of patterns in a sample dataset. However, forMARdata,
the probability of each missing data pattern (i.e., η1, . . . , η4
in Equation (5)) also depends on the correlation between
the missing data predictors Y3 and Y4. In the most extreme
case, if Y3 and Y4 have a correlation of one and a1 equals
a2, then this missing data rule creates data with only two
patterns (i.e., univariate pattern); in other words, the prob-
abilities of the other two patterns are both zero. Therefore,
to maximize the number of patterns in a sample, I suggest
generatingmissing data predictors that aremoderately cor-
related so that the probability of each pattern is greater

than zero, making Equation (5) quickly converges tom, the
maximum number of patterns, as n → ∞.
Algorithms for Implementing Missing Data Rules Using
the Single Cutoff Method. In the missing data literature,
there are three different algorithms to implement missing
data rules associated with the single-cutoff method, each
with some drawbacks. The first method involves setting
a missing data rule, and then applying this rule subject
by subject until the desired percentage of missing data is
reached (e.g., Enders, 2004). This method is highly prob-
lematic because it violates the assumption that each subject
is coming from the same population. Assuming that each
subject comes from the same population and thus follows
the same missing data rule, then it does not make sense to
apply the missing data rule to some subjects but not to oth-
ers. A consequence of this method is that the percentage of
missing data in a samplemay be very different from the ex-
pected percentage ofmissing data givenby themissing data
rule (see Equation (7)). Another problem with this method
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Table 2 Contingency tables for MAR data with different strengths of dependency

(a) M
U 1 0
1 A = 0.50 B = 0
0 C = 0 D = 0.50

(b) M
U 1 0
1 A = 0.40 B = 0.10
0 C = 0.10 D = 0.40

(c) M
U 1 0
1 A = 0.30 B = 0.20
0 C = 0.20 D = 0.30

(d) M
U 1 0
1 A = 0.25 B = 0.25
0 C = 0.25 D = 0.25

Note. M is the missing data indicator withM = 1 indicating Y1 is missing, andM = 0 indicating Y1 is not missing. U is
the missing data predictor with U = 1 when Y2 ≥ 0, and U = 0 when Y2 < 0. Suppose Y2 follows the standard normal
distribution. The missing data rule for (a) is if a subject has Y2 ≥ 0, then its Y1 value is always missing; the rule for (b) if
a subject Y2 ≥ 0, then its Y1 has 80% probability of being missing; otherwise, Y1 has 20% probability of being missing; the
rule for (c) is if a subject has Y2 ≥ 0, then its Y1 has 60% probability of being missing; otherwise, its Y1 has 40% probability
of being missing; the rule for (d) is each subject has 50% probability of being missing from Y1. As the table goes from (a) to
(d), the strength of dependency goes from the strongest to the weakest.

is that it is impossible to determine the strength of depen-
dency between the missing data indicator and the missing
data predictor since the missing data rule is not applied to
every subject.

The second method involves deleting a subject when-
ever its percentile ranking in a sample is higher than the
desiredmissing data percentage (e.g., Savalei & Yuan, 2009;
Enders, 2001b, 2010). For example, suppose that each sub-
ject’s probability of being missing from Y1 depends on its
Y2 value, and researchers want k percent of subjects in a
sample to have missing values in Y1. Using this method,
subjects whose Y2 values are in the top k percent will have
their Y1 values deleted. This is equivalent to the missing
data rule that sets a cutoff point corresponding to the quan-
tile point for the top k percent values of Y2 and that says
if a subject’s Y2 value is greater than the cutoff point, then
its Y1’s probability of being missing is one, otherwise, Y1’s
probability of being missing is zero. Notice that this miss-
ing data rule is the one with the strongest dependency be-
tween the missing data indicator and the missing data pre-
dictor. Therefore, one disadvantage of this method is that
it does not allow researchers to vary the strength of depen-
dency. Another problem with this method is that the cutoff
point may vary across datasets. In other words, the esti-
mated percentage ofmissing values is forced to be the same
across datasets by shifting the cutoff point. Shifting the
cutoff point violates the assumption that the same missing
data rule should be applied to datasets that come from the
same population; thus, I suggest setting a cutoff point and
holding it constant across datasets when generating MAR
data.

The thirdmethod involves deleting the desired percent-

age of subjects that are above or below a specific cutoff
point (e.g., Savalei & Bentler, 2005; Yuan & Bentler, 2000).
This method allows researchers to generate MAR data with
different strengths of dependency and is almost equiva-
lent to implementing the missing data rule directly to all
subjects. However, one problem with this method is that
the estimated values for the parameters (i.e., π1 and π2

in Equation (6)) associated with the missing data rule are
held constant across datasets. However, as shown in (6),
there should be variances associated with the estimated
values across samples. This problem is trivial if researchers
are only interested in large-sample simulations, but if re-
searchers want to study small samples with missing data,
it may be important to incorporate the variances of param-
eter estimates.

Since each of the three methods mentioned above has
drawbacks, I do not recommend any of these methods. I
recommend researchers to explicitly specify amissing data
rule, and then apply this missing data rule to every sub-
ject in the dataset. If researchers have the desired percent-
age of missing data, they should manipulate the parame-
ters associated with the missing data rule so that the ex-
pected percentage ofmissing equals the desired percentage
of missing values. Specifically, researchers can manipulate
the parameters π0, π1 and π2 in Equation (7) so that πmiss

in (7) equals to the desired percentage of missing values.
Similarly, if researchers have the desired strength of depen-
dency between missing data indicator and predictor, they
can manipulate the parameter values so that the AR and
OR in Equations (9)-(10) show the desired strength of de-
pendency (see the OSF website in Footnote 2 for sample R
code).
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Multiple Cutoff Method.

When using the multiple cutoff method to generate MAR
data, researchers need to specify multiple cutoff points in
a missing data predictor. One advantage of the multiple
cutoff method is that it can be used to create a nonlinear
relationship between the missing data indicator and the
missing data predictor (e.g., Collins et al., 2001; Graham,
2010). A nonlinear relationship occurs when subjects with
extreme values on themissing data predictor have a higher
or lower probability of being missing than subjects with
mid-range values on the predictor. In contrast, a linear
relationship occurs when the probability of being missing
gradually increases or decreases as the value of the miss-
ing data predictor increases. In the following subsections,
I explain how to specify the missing data rules associated
with the multiple cutoff method to create a linear and non-
linear relationship between the missing data indicator and
the missing data predictor.
Missing Data Rules for the Multiple Cutoff Method.
When using the multiple cutoff method to create a non-
linear relationship between the missing data indicator and
the missing data predictor, I need to specify an upper cut-
off and a lower cutoff. Suppose the probability of missing
values on Y1 depends on two cutoff points, a and−a, in the
variable Y2. LetM be the missing data indicator, and U be
the indicator denotingwhetherY2 value is between the two
cutoff points: U = 1 when Y2 ≥ a or Y2 ≤ −a, and U = 0
when −a < X < a. In statistical terms, the missing data
rule isP (M = 1|U = 1) = π1 andP (M = 1|U = 0) = π2.
Notice that this missing data rule is the same as the one for
the single cutoff method. In other words, in the case of a
nonlinear relationship, a missing data rule associated with
the multiple cutoff method can be framed to be the same
as the missing data rule associated with the single cutoff
method. As a result, in this case, all equations for the single
cutoff method can be used for the multiple cutoff method.

On the other hand, to create a linear relationship be-
tween the missing data indicator and the missing data
predictor, researchers need to specify at least two cutoff
points in the missing data predictor. Most of the times,
researchers specify three or four cutoff points, which are
usually the quartile or quantile points of the missing data
predictors (e.g., Strike et al., 2001; Graham, 2010). In other
words, researchers can use the quartile or quantile points
to divide the values of the missing data predictor into four
or five groups, and each subject’s value on themissing data
predictor has an equal chance to be in any of the groups.
Going from the group with the lowest values to the group
with the highest values, the probability of being missing
usually increases or decreases at a constant rate (e.g., Strike
et al., 2001; Graham, 2010).

To give an example, suppose the probability of a subject
beingmissing from Y1 depends on the three quartile points
in the missing data predictor Y2 (i.e., Y2 values is divided
into four groups). One possible missing data rule is that if a
subject’s Y2 value falls into the 1st, 2nd, 3rd or 4th group of
Y2 values (i.e., ordered from the lowest Y2 value to the high-
est), then its probability of being missing from Y1 is 0.3, 0.4,
0.5 or 0.6, respectively. To define the missing data rule in
statistical terms, let M be the missing data indicator, and
V be a discrete uniform random variable created based on
the values of Y2 (i.e., V can be considered a missing data
predictor):

V =


1 if Y2 < Q1

2 ifQ1 ≤ Y2 < Q2

3 ifQ2 ≤ Y2 < Q3

4 if Y2 ≥ Q3,

(14)

where Q1, Q2, and Q3 are the quartile points in Y2. The
missing data rule is that

P (M = 1|V = 1) = π1,
P (M = 1|V = 2) = π2,
P (M = 1|V = 3) = π3,

and
P (M = 1|V = 4) = π4,

(15)

where π1 = 0.3, π2 = 0.4, π3 = 0.5 and π4 = 0.6 in this
example. There are five parameters associated with this
missing data rule. Four of them, of course, are π1, π2, π3

and π4. The fifth parameter is the one related to the prob-
ability of V : P (V = i) = π0 = 0.25 where i ∈ {1, 2, 3, 4}.
Note that the value for π0 is set when researchers decide
to use the quartile cutoff points. For each parameter, re-
searchers can calculate the variances associated with the
estimates of the parameters. Let n be the total number of
subjects, and n0 = 0.25n be the number of subjects in each
quartile group. The variance for the estimated π0 is

Var(Π0) =
π0(1− π0)

n
. (16)

The variance of the estimated πj where j ∈ {1, 2, 3, 4} is

Var(Πj) =
πj(1− πj)

n0
. (17)

Table 3 shows contingency table for M and V . Us-
ing this contingency table, researchers can calculate each
subject’s probability of being missing by calculating the

TheQuantitativeMethods forPsychology 1122

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.2.p100


¦ 2023 Vol. 19 no. 2

Table 3 Contingency table for generating MAR data using the multiple cutoff method

M
V 1 0
1 π1π0 = (0.3)(0.25) = 0.075 (1− π1)(π0) = (1− 0.3)(0.25) = 0.175
2 π2π0 = (0.4)(0.25) = 0.100 (1− π2)(π0) = (1− 0.4)(0.25) = 0.150
3 π3π0 = (0.5)(0.25) = 0.125 (1− π3)(π0) = (1− 0.5)(0.25) = 0.125
4 π4π0 = (0.6)(0.25) = 0.150 (1− π4)(π0) = (1− 0.6)(0.25) = 0.100

Note. M is the missing data indicator with M = 1 indicating Y1 is missing, and M = 0 indicating Y1 is not missing.
V be a discrete uniform random variable indicating which quartile the Y2 value is in: V = 1 when Y2 < Q1; V = 2
whenQ1 ≤ Y2 < Q2; V = 3 whenQ2 ≤ Y2 < Q3; and V = 4 when Y2 ≥ Q3, whereQ1,Q2 andQ3 are the quartile
points in Y2.

marginal probability ofM = 1:

πmiss = P (M = 1)

= π1π0 + π2π0 + π3π0 + π4π0

= (0.3)(0.25) + (0.4)(0.25) + (0.5)(0.25) + (0.6)(0.25)

= 0.45.

(18)

Let n be sample size and K be the number of subjects
with missing data. We know thatK ∼ Binomial(n, πmiss).
Therefore, the expected percentage of missing values is

E

(
K

n

)
= πmiss = π1π0 + π2π0 + π3π0 + π4π0

= 0.45.

(19)

The variance of this estimated percentage over repeated
samples is

Var
(
K

n

)
=

πmiss(1− πmiss)

n
. (20)

The expected number of distinct missing patterns can be
calculated by Equation (4) by setting π = πmiss. Over-
all, the multiple cutoff method is very similar to the single
cutoff method. The main difference is with the single cut-
off method, the missing data predictor only has one cutoff
point, whereas with the multiple cutoff method, the miss-
ing data predictor usually has three or four cutoff points.
Measuring Strength of Dependency Under the Multiple
Cutoff Method. One problem with the multiple cutoff
method is that there is no straightforward way to measure
the strength of dependency between the missing data indi-
cator and the missing data predictor. I propose two possi-
ble ways to measure the strength of dependency for miss-
ing data rules with the same number of cutoff points. One
way is to calculate the average change in the probability of
missing values as the missing data predictor V increases. I
call this the average absolute risk difference (AARD), which

is analogous to the ARD for the single cutoff method. For
missing data rules that use quartile points (i.e., three cutoff
points), AARD is

AARD =
|π4 − π1|

3
, (21)

where π4 and π1 are defined in (15).
Similar to the single cutoff method, as the AARD in-

creases, the strength of dependency increases. With quar-
tile points, the maximum AARD is 1/3 = 0.33. In this
case of maximum AARD, the parameters need to be set as
π1 = 0, π2 = 0.33, π3 = 0.67 and π4 = 1. Figure
4a shows the relationship between the missing data pre-
dictor Y2 and the missing data indicator M for our previ-
ous example with AARD = 0.1, and Figure 4b shows the
relationship between Y2 and M for the example with the
maximum AARD (i.e., AARD = 0.33). As expected, as the
strength of dependency increases (i.e., comparing Figure
4a and 4b), the boxplot for M = 1 overlaps less with the
one forM = 0. However, with the multiple cutoff method,
it is no longer possible to obtain the case where the box-
plot for M = 1 is completely separate from the boxplot
for M = 0 (as shown in Figure 3a); this means that with
the multiple cutoff method, researchers can never achieve
the strongest dependency which they can do with the sin-
gle cutoffmethod. In fact, as the number of cutoff points in-
creases, themaximum strength of dependency researchers
can create decreases. The reason is that the possible range
of the probability of missing values is from 0 to 1, and as
the number of cutoff points increases, researchers need to
divide this range into smaller and smaller pieces, thus the
maximum AARD decreases.

Another way to measure the strength of dependency is
to build a logistic regression model using the missing data
predictor V to predict the missing data indicator M , and
then use the regression coefficient from the model to de-
termine the strength of dependency. When researchers use
this logistic regression model, they need to make two as-
sumptions: 1) V is a continuous variable, and 2) the re-
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Figure 5 MAR data that are generated using the percentile method. M is the missing data indicator with M = 1 indi-
cating Y1 is missing, andM = 0 indicating Y1 is not missing. Y2 is the missing data predictor, which follows the standard
normal distribution. Since M is a binary variable while Y2 is a continuous variable, boxplots can be used to show the
dependency betweenM and Y2. In graph (a), the relationship between the probability of being missing from Y1 and the
percentile rank on Y2 is a direct relationship; in graph (b), this relationship is an inverse relationship. Each graph is based
on a large simulated dataset.

lationship between V and log-odds of M is linear. Since
V is really an ordinal variable that follows a uniform dis-
tribution, these two assumptions are violated. As a result,
researchers can only approximate the relationship using a
logistic regression model. For the missing data rule in (15),
the approximate logistic regression model is

log
( P (M = 1)

1− P (M = 1)

)
= −1.25 + 0.42V, (22)

where the regression coefficients are obtained by fitting
a straight line describing the relationship between V and
log-odds of M . As the the regression coefficient for V in-
creases, the strength of dependency increases. However,
similar to the single cutoff method, in the case of the maxi-
mum strength of dependency (i.e., when AARD = 0.33), the
logistic regression model cannot be estimated because the

log-odds ofM for V = 4 (or for V = 1) is not defined.4
In conclusion, researchers can use AARD or the coef-

ficient from the logistic regression model to measure the
strength of dependency when using the multiple cutoff
method to specify missing data rules. A higher AARD or
regression coefficient value indicates a higher strength of
dependency; however, in the case of the maximum depen-
dency, researchers can only calculate AARD as the regres-
sion coefficient is undefined.
Implementing Missing Data Rules for the Multiple Cut-
off Method. In the missing data literature, to imple-
ment missing data rules associated with the multiple cut-
off method, researchers usually just delete the desired per-
centage of subjects that are below the lowest cutoff or
above the highest cutoff or between two cutoffs (e.g., Strike
et al., 2001; Graham, 2010). For example, to implement the

4If the parameters in (15) are set as π1 = 0, π2 = 0.33, π3 = 0.67 and π4 = 1, when V = 4, the log-odds is log
(

P (M=1)
1−P (M=1)

)
= log( 1

0
), which is

undefined. If the parameters are set as π1 = 1, π2 = 0.67, π3 = 0.33 and π4 = 0, then the log-odds is undefined for V = 1.
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missing data rule in (15), researcherswill delete 30%of sub-
jects with Y2 < Q1, 40% of subjects with Q1 ≤ Y2 < Q2,
and so on. With this method, the estimated values for the
parameters π1, π2, π3 and π4 are held constant across the
datasets; in other words, there is no sampling variability
for the parameter estimates. This issuemay be a problem if
researchers want to study small samples. Once again, I rec-
ommend researchers specify a missing data rule and then
apply this missing data rule to every subject in the dataset.

Percentile Method

Missing Data Rules for the Percentile Method. The
percentile method is an extension of the multiple cutoff
method. In the percentile method, each subject’s probabil-
ity of being missing depends on its percentile rank in the
missing data predictor, therefore, it can be viewed as the
multiple cutoff method where each subject has its own cut-
off point based on its percentile rank.

To define the missing data rule formally, suppose that
a subject’s probability of being missing from Y1 is related
to their percentile rank on the missing data predictor Y2.
Again, let M be the missing data indicator. If there is a di-
rect relationship between the missing data indicator and
the missing data predictor, then the missing data rule is
if a subject is at kth percentile on Y2, then it has k% prob-
ability of being missing from Y1 or P (M = 1|Y2 = qk) =
k/100where qk is theY2 value corresponding to its kth per-
centile. If there is an indirect relationship, then the miss-
ing data rule is if a subject is at kth percentile on Y2, then
it has (100 − k)% probability of being missing from Y2 or
P (M = 1|Y2 = qk) = 1 − k/100. These two missing data
rules are the only possible missing data rules associated
with the percentile method. Since the percentile method
only involves these twomissing data rules, there are no pa-
rameter values researchers need to consider when gener-
ating MAR data using the percentile method.

To calculate the probability ofmissing data, researchers
need to determine the distribution of the percentile ranks
of Y2. According to the universality of the uniform, when
plugging any continuous random variable into its own cu-
mulative distribution function (CDF), I get a standard uni-
form distribution:

F (Y2) ∼ Unif(0, 1). (23)

Since CDF is a function that maps a value of a random vari-
able to its percentile rank, this means the percentile ranks
of all possibleY2 values are distributed as the standard uni-
form distribution. As a result, the expected percentile rank
of a subject is the 50th percentile; thus, the probability of
missing data is always 50% or P (M = 1) = 0.5. Let n be
sample size andK be the number of subjects with missing
data. We know K ∼ Bin(n, 0.5). Therefore, the expected

percentage of missing values is

E
(K
n

)
= 0.5. (24)

The variance of the estimated percentage over repeated
samples is

Var
(K
n

)
=

0.5(1− 0.5)

n
=

0.25

n
. (25)

The expected number of distinct missing patterns can be
calculated by Equation (4) by setting π = 0.5.

With the percentile method, researchers cannot vary
the strength of dependency. The reason is that the twomiss-
ing data rules associated with the percentile method only
vary in the direction of dependency between the missing
data indicator and the missing data predictor, and do not
vary in the strength of dependency. Since the percentile
method can be viewed as the multiple cutoff method with
a large number of cutoffs, the strength of dependency cre-
ated by the percentile method is less than the maximum
strength created by the single cutoff method (see Figure
3a) or by the multiple cutoff method with quartile cutoffs
(see Figure 4b). Figure 5 shows the relationship between Y
andM for the two missing data rules under the percentile
method. As expected, relative to the boxplots in Figure 3a
and 4b, the boxplots forM = 0 andM = 1 in Figure 5a or
5b have more overlap with each other.

Perhaps, one way to quantify the strength of depen-
dency created by the percentile method is to find a logistic
regression model that approximates the missing data rule.
Based on a large sample simulation (n = 1, 000, 000) where
Y2 follows the standard normal distribution, if the prob-
ability of being missing from Y1 is directly related to the
percentile rank of Y2, an approximate logistic regression
model is

log
( P (M = 1)

1− P (M = 1)

)
= 1.70Y2. (26)

If the probability of being missing from Y1 is inversely re-
lated to the percentile rank of Y2, then the logistic regres-
sion is the same as the above except that the coefficient 1.70
is replaced with -1.70. Equation (26) shows that themissing
data rule specified using the percentile method can also be
specified using the logistic regression method (which will
be explained in the next section). Therefore, the percentile
method can also be viewed as a part of the logistic method.

The advantage of using the percentile method is that
the probability of missing values gradually increases or de-
creases as the value of the missing data predictor Y2 in-
creases. This gradual change in probability as Y2 is more
realistic than the sudden change in probability as Y2 passes
a certain cutoff, which is used in the single or multiple cut-
off method. However, I do not recommend the percentile
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method to generateMARdata because thismethod does not
allow researchers to vary the strength of dependency and
the expected percentage of missing data. Alternatively, ac-
cording to Equation (26), researchers can use the logistic re-
gression method to generate MAR data equivalent to those
created by the percentile method. With the logistic regres-
sion method, researchers can vary the strength of depen-
dency and the percentage of missing values (see the next
section for details).
Implementing Missing Data Rules for the Percentile
Method. In the missing data literature, to implement the
missing data rule associatedwith the percentilemethod, re-
searchers usually apply the missing data rule in an ascend-
ing order according to the value of the missing data predic-
tor (i.e., from the lowest Y2 value to the highest Y2 value)
until the desired percentage ofmissing data is reached (e.g.,
Enders, 2001a). This implementation is very problematic.
If researchers believe that each subject comes from the
same population and thus follows the same missing data
rule, it does not make sense that they apply the missing
data rule to only a fraction of the subjects. As I have men-
tioned above, the expected percentage of missing data is
50% when the percentile method is used. However, with
this implementation, the percentage of missing data in a
dataset is commonly set to 5% or 15%, which is highly un-
likely given this missing data rule.

If researchers want to use the percentile method, they
should apply the missing data rule to each subject. In addi-
tion, they should calculate each subject’s percentile rank on
Y2 based on the population distribution of Y2, not based on
the sample distribution of Y2 values (see our OSF website
for sample R code).

Logistic Regression Method

As shown before, the missing data rules associated with
the single cutoff, multiple cutoff, and percentile methods
can be reframed as logistic regression models (see Equa-
tions (13), (22), and (26)). In other words, the single cutoff,
multiple cutoff, and percentile methods are all related to
the logistic regression method for generating MAR data. In
this section, I explain how to directly use logistic regression
models to generate MAR data.
Missing Data Rules for the Logistic Regression Method.
Whenusing the logistic regressionmethod to generateMAR
data, researchers can view the logistic regression model as
the missing data rule, and the population regression coef-
ficients associated with the model as the parameters of the
missing data rule. For example, if each subject’s probabil-

ity of being missing from Y1 is related to the missing data
predictor Y2, then the logistic regression model for subject
i is

log
( P (Mi = 1|y2,i)
1− P (Mi = 1|y2,i)

)
= β0 + β1y2,i, (27)

whereM is the missing data indicator and y2,i is subject i’s
value on Y2. The parameters associated with the missing
data rule are β0 and β1.5 Conditional on the value of Y2,
each subject’s (or subject i’s) probability of being missing is
given by

P (Mi = 1|y2,i) =
1

1 + e−β0−β1y2,i
. (28)

Because the above function is continuous, it means the
probability of being missing for Y1 gradually increases or
decreases as the value ofY2 increases, an advantage shared
with the percentile method.

With the logistic regression, there is no simple formula
for calculating the expected percentage of missing data.6
Researchers can use computer simulation to estimate the
expected percentage of missing by calculating the mean of
the probabilities in a sample with a large sample size (e.g.,
n = 100, 000):

πmiss =
1

n

n∑
i=1

1

1 + e−β0−β1y2,i
. (29)

In terms of the strength of dependency, higher β1 values in-
dicate stronger dependency between Y2 andM . However,
the logistic regression model cannot be estimated when
P (M = 1|y2) = 1 or P (M = 0|y2) = 1 because the log-
odds ofM is undefined or equals to infinity in those cases.
Thismeans researchers cannot generateMARdatawith the
strongest dependency with the logistic regression method.

In conclusion, researchers can generate MAR data by
specifying a logistic regression model that predicts the
probability of missing values given the value of the miss-
ing data predictor. The advantage of this method is that
the probability of missing values gradually changes as the
value of the missing data predictor changes, creating a
more realistic situation relative to the single cutoff and
multiple cutoff methods. However, the disadvantage of
the logistic regression method is that it does not allow re-
searchers to set a very strong dependency between the
missing data indicator and predictor.
Implementing Missing Data Rules for the Logistic Re-
gression Method. In the missing data literature in psy-
chological sciences, researchers rarely generate missing

5With sample data, the regression coefficients and the variances associated with the coefficients can be estimated using the maximum likelihood
method. More details can be found in any textbook on logistic regression (e.g., Hilbe, 2009).

6The reason is that it is hard to solve P (M = 1) = E( 1

1+e
−β0−β1Y2,i

) analytically since it involves finding the expected value of a nonlinear
transformation of a random variable.
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data directly from a logistic regression model. Researchers
in the statistics area are more likely to use logistic regres-
sion models to generate missing data (e.g., White & Carlin,
2010; Preisser et al., 2002; Miao et al., 2016). In addition, the
mice package in the computer software R has a function
called ampute that generates missing data using the logis-
tic regression model (van Buuren & Groothuis-Oudshoorn,
2011). However, this package does not provide much in-
formation regarding its algorithm for generating missing
data. To directly use a logistic regression model to gener-
ate missing data, I recommend researchers calculate each
subject’s probability of being missing based on the logistic
regression model they have specified, and then apply the
corresponding probability of being missing to each subject
(see our OSF website for sample R code).
Advantages and Disadvantages of Different Types of
MAR Missing Data Rules and Algorithms. Comparing
the different types of MAR missing data rules and algo-
rithms, there are several important advantages and dis-
advantages to highlight. Table 4 summarizes these advan-
tages and disadvantages. First, themain advantage of using
the single cutoff method is the only method that can pro-
duce the strongest dependency between the missing data
indicator and the missing data predictor; in other words,
it is the only method that can produce the most MAR data,
enabling researchers to maximize the difference between
MCAR and MAR data, creating the strongest manipulation
of missing data mechanisms. This advantage of the single
cutoff method is one of the reasons why it is the most pop-
ular method for generating MAR data. Another reason for
its popularity is that the single cutoff method is very easy
to understand and implement.

However, themain disadvantage of using the single cut-
offmethod is that theMARdata it generates are not very re-
alistic because it is hard to imagine that with real-life data,
the probability of missing data depends on one single cut-
off point of the missing data predictor. In contrast, the per-
centile and the logistic regression methods, although can-
not generate themostMAR data, can generate more realis-
tic MAR data, where the probability of missing data gradu-
ally increases or decreases as the value of the missing data
predictor increases. As mentioned previously, one main
disadvantage of the percentile method is that it can only
create 50% missing data; therefore, if researchers want to
create more realistic MAR data, I recommend using the lo-
gistic regression method, which can also approximate the
percentile method according to Equation 26.

Finally, the multiple cutoff method has advantages and
disadvantages that fall between the single cutoff and logis-
tic regression methods. Since the multiple cutoff method
involves specifying two or more cutoff points and allows
the probability of missing data to change across the multi-

ple cutoff points, it generates MAR data that are more real-
istic than those by the single cutoff method; on the other
hand, it creates less realistic MAR data generated by the
logistic regression method, where the probability of miss-
ing data varies gradually with the value of themissing data
predictor. Furthermore, another unique advantage of the
multiple cutoff method is that it makes it easier to create
nonlinear relationship between the missing data indicator
and the missing data predictor, usually a curvilinear rela-
tionship where the probability of missing data depends on
the missing data predictor in one way for the high and low
values of the missing data predictor but in another way for
the middle values of the missing data predictor.

In conclusion, each type of missing data rule and algo-
rithm for generating MAR data comes with its own advan-
tages and disadvantages. If researchers wish to maximize
the difference betweenMCAR andMAR data, I recommend
using the single cutoff method; if researchers wish to cre-
atemore realisticMAR data, I recommend using the logistic
regression method.

Generating MNAR Missing Data

MNAR data are less studied in the missing data literature
relative to the MCAR and MAR data because most statisti-
calmethods for handlingmissing data are unable to handle
MNAR data. Generating MNAR data is very similar to gen-
erating MAR data. Recall that the only difference between
MAR andMNAR data is that in MAR data, the probability of
missing values for one variable depends on the observed
values of another variable, but inMNAR data, the probabil-
ity of missing values depends on the variable’s own underly-
ing missing value. Therefore, when generating MNARmiss-
ing data for simulation studies, researchers can change the
missing data predictor to the variable with missing values,
and thenuse one of themethods for generatingMARdata to
generate MNAR data. For example, suppose a missing data
rule that generates MAR data sayswhen Y2 value is above a
cutoff point a, Y1 has π1 probability of being missing, other-
wise, Y1 has π2 probability of being missing. To change this
MAR missing data rule to one that generates MNAR data,
researchers simply have to change the variable Y2 to Y1;
therefore, the corresponding missing data rule for gener-
ating MNAR data is when Y1 value is above a cutoff point a,
Y1 has π1 probability of being missing, otherwise, Y1 has π2

probability of being missing. In summary, by changing the
missing data predictor to the variable with missing data,
researchers can change all the MAR missing data rules to
MNAR missing data rules and then generate MNAR miss-
ing data accordingly. This implies that the advantages and
disadvantages for each type of MARmissing data rules also
apply to for MNAR missing data (see Table 4).
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Other Important Considerations for Conducting Simu-
lation Studies Involving Missing Data

Beyond applying missing data rules to generate missing
data, conducting simulation studies with missing data in-
volves many other important considerations. Morris et al.,
2019 provided a comprehensive tutorial on how to conduct
simulation studies to evaluate statistical methods. The gen-
eral procedure and important considerations explained in
Morris et al., 2019 are also relevant to simulation studies in-
volving missing data; therefore, readers who wish to gain
more understanding of simulation studies are encouraged
to refer to Morris et al., 2019. In this section, I highlight a
few important considerations specifically relevant to sim-
ulation studies involving missing data.

First, the correlations among the variables in the
dataset may affect how well missing data techniques (e.g.,
FIML and MI) handle MAR data. On the one hand, as men-
tionedpreviously, the correlations among variablesmay af-
fect the number of missing data patterns in a MAR dataset.
Specifically, if researchers want to create more missing
data patterns by letting the different missing data indica-
tors depend on different missing data predictors, then the
more correlated the missing data predictors become, the
fewer the number of missing data patterns will be. The
number of missing data patterns, in turn, may affect the
performance ofmissing data techniques (Savalei & Bentler,
2005; Zhang & Savalei, 2020).

On the other hand, the correlation between the miss-
ing data predictor and the variable with missing data may
affect how well missing data techniques such as MI pre-
dict the values of the missing data in a MAR dataset. In
the special case of uncorrelated MAR data, the correlation
between the missing data predictor and the variable with
missing data is zero, but the probability ofmissing values is
related to the values of the missing data predictor. For ex-
ample, suppose Y2 is the missing data predictor such that
for subjects with Y2 ≥ 0, their Y1 values are missing (i.e.,
single cutoff method with the strongest dependency), but
Y2 and Y1 has a correlation of zero. In this case, subjects
with missing values on Y1 have high values on Y2 but had
researchers observed their values on Y1, the distribution of
their Y1 values would be the same as the one for the sub-
jects without missing values. In other words, given the Y2

values, it is possible to predict which subjects have miss-
ing values on Y1 but not their missing values of Y1. Al-
though relative to MCAR data, which cannot even predict
which subjects have missing data, uncorrelated MAR data
provide researchers with slightly more information about
the variable with missing data relative to MCAR data, they

provide less information about the missing data relative to
MAR data where the missing data predictor and the vari-
able with missing data are moderately or strongly corre-
lated. Therefore, if researchers wish to generate MAR data
that are more different from MCAR data, I recommend re-
searchers generate correlated MAR data.

The second factor that may affect the performance of
missing data techniques is the location of the variableswith
certain properties (e.g., variables withmodel misfit or vari-
ables with nonnormality) relative to the location of the
variables with missing data. When there are missing data,
researchers loss information about the features of the data
that have missing values.7 Therefore, the location of the
variables with certain properties may interact with the lo-
cation of the variables with missing data to affect the per-
formance of missing data techniques. For example, Zhang
and Savalei, 2020 showed that when the variables that are
misspecified are the same as those with missing data (i.e.,
the location of the model misfit overlaps with the location
of missing data), the model fit improves relative to the fit
for data without missing values because some of the infor-
mation regarding the model misfit is lost due to missing
data. In contrast, when the variables that are misspecified
are different from the ones with missing data, the model
fit does not change much because the information regard-
ing model misfit is not affected by the missing data. Of
course, depending on the purpose of the simulation study,
researchers may only be interested in a small number of
properties of the data; nonetheless, when designing the
study, they should think carefully about how the location
of these properties may interact with the location of miss-
ing data.

Third, when conducting simulation studies with miss-
ing data, it is important to decide the percentage of miss-
ing data in each variable. Common percentages of miss-
ing data used in simulation studies are 5%, 15%, 20%, 25%,
30%, and 50% per variable with missing data (e.g., Zhang
& Savalei, 2023; Savalei & Bentler, 2009; Yuan & Savalei,
2014; Enders, 2001b). According to Peugh andEnders, 2004,
in psychological and educational research, the percentage
of missing data can range from 1% to 67%, with a mean of
7.60% (SD = 8.07%), therefore, it makes sense that almost
all previous simulation studies’ percentages ofmissing data
ranged from 5% to 50%.

Fourth, throughout the paper, I have emphasized that
missing data rules are the underlying statistical models
used to generate missing data; this implies that if the miss-
ing data rule is applied to the population level, researchers
can theoretically envision a population dataset with miss-
ing values. Therefore, when conducting simulation stud-

7I am not using the term “information" in a technical sense (e.g., it does not mean Fisher information). I use ‘information" in a loose sense to mean
things about the dataset (e.g., covariance structure of the data) that will allow us to predict values of missing data.
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ies to evaluate the effectiveness ofmissing data techniques,
researchers may consider first conducting at the popula-
tion level so that they can show a proof of concept that
the missing data technique is at least effective at the pop-
ulation level. It is important to first demonstrate the ef-
fectiveness of the missing data technique at the popula-
tion level because if the missing data technique does not
work at the population level, it definitely will not work at
the sample level. In previous simulation studies that in-
clude a population-level simulation (e.g., Zhang & Savalei,
2023, 2020; Savalei & Bentler, 2005), researchers usually
first generate a dataset with a very large sample (e.g., n =
1, 000, 000) to mimic the population data, then create miss-
ing valueswithin this large sample, and finally evaluate the
missing data technique.

Finally, conducting simulation studies involving miss-
ing data also requires researchers to make decisions re-
garding the number of simulation runs, sample sizes
needed for eachmissing data condition, how to handle non-
convergency issues, etc. Decisions regarding these issues
should be handled similarly to those with complete data
(see Morris et al., 2019, for a detailed tutorial). In terms
of the simulation runs, if researchers conduct the simu-
lation study at the population level, only one simulation
run with a very large sample is needed (e.g., Zhang &
Savalei, 2023). If researchers conduct the simulation study
at the sample level, the number of simulation runs is usu-
ally around 1000 in previous studies (e.g., Zhang & Savalei,
2023), which is the same for simulation studies with com-
plete data (e.g., Morris et al., 2019). For sample-level simu-
lation studies (e.g., Enders, 2001b; Savalei & Bentler, 2009;
Zhang & Savalei, 2023), the sample size was usually manip-
ulated to vary from 200 to 500, which are the common sam-
ple sizes seen in psychological and educational research
and used in simulation studies with complete data. In con-
clusion, in this section, I have discussed several important
considerations for conducting simulation studies involv-
ing missing data that are not related to generating missing
data. Of course, the factors that affect the results of simu-
lation studies are not limited to those discussed in this sec-
tion, but the main message is that researchers should also
pay careful attention to aspects of simulation studies unre-
lated related to missing data generation when they design
their simulation studies.

Summary and Final Recommendations

Simulation studies play a crucial part in the development
and evaluation of many statistical methods, including sta-
tistical techniques for handling missing data (e.g., FIML
or MI). To conduct simulation studies involving missing
data, researchers must sample data from a known popu-
lation distribution and then generate missing data in the

sample data (i.e., deciding which values to delete in the
data). The main purpose of the current paper is to provide
guidelines on generating missing data for simulation stud-
ies, which have never been done in past research. Specifi-
cally, I have provided detailed explanations regarding the
statistical models, also known as “missing data rules”, for
generating missing data with different missing data mech-
anisms and patterns. For each type of missing data rules,
I have also explained the computer algorithm that can im-
plement the rules and provided R code for algorithms. I
conclude the paper by providing the following summary of
recommendations for generating missing data for simula-
tion studies.
• Researchers should always specify the missing data
rule and identify the parameters associated with the
rule before generating missing data on the computer.
Knowing the specific missing data rule makes it easier
for researchers to figure out and understand the miss-
ing data properties, such as the expected percentage of
missing values, the type of missingmechanism, and the
number of missing data patterns.

• Researchers should apply the missing data rule subject
by subject when generating missing data on the com-
puter. It is the easiest and most straightforward way to
apply the missing data rule to generate missing data.

• Researchers should maximize the difference between
MCAR and MAR data to achieve a strong manipulation
of the type of missing data mechanism. To maximize
the difference betweenMCAR data andMAR data, I sug-
gest that researchers include a MAR dataset with the
strongest dependency (between the missing data indi-
cator and the missing data predictor) using the single
cutoff method, and make sure that for all MAR data,
there is a moderate correlation between the missing
data predictor and the variable with missing data (i.e.,
avoid uncorrelated MAR data).

• If researchers wish to include more realistic MAR data
that do not involve sudden changes in the probability of
missing values as the value of the missing data predic-
tor increases, I suggest that they generate MAR data us-
ing the logistic regression method rather than the per-
centile method because the percentile method does not
allow researchers to manipulate the strength of depen-
dency between themissing data indicator and themiss-
ing data predictor.

• If researchers want to manipulate the type of missing
data mechanism, they should control for the number
of missing data patterns between conditions with dif-
ferent missing data mechanisms. In other words, they
should compare MCAR and MAR data with approxi-
mately the same number of missing data patterns.

• When conducting a simulation study involving miss-
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ing data, researchers also need to take into considera-
tions others aspects of the simulation study beyond gen-
erating the missing data. In this paper, I highlighted
a few important considerations including correlations
among variables, locations of variables with certain
properties, percentages of missing data, population-
versus sample-level simulation, etc. Many aspects of
simulation studies with missing data are also similar
to those with complete data. Readers who want to get
more guidance on how to conduct a simulation study
are recommended to refer to Morris et al., 2019.
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Table 4 Summary of missing data rules and algorithms for generating MCAR, MAR, MNAR data

Type of Missing Data Rule
and Algorithm

Example Advantages Disadvantages

Generating MCAR Data
General MCAR: involves
specifying a certain
percentage of missing data in
a variable.

Each subject has 20%
probability of being missing
on Y1 , where Y1 is the
variable with missing data.

• Easy to understand and implement •MCAR data are special cases of MAR or MNAR
data; thus, researchers cannot only generate
MCAR data if they want to study the effect of
missing data mechanisms.

Generating MAR Data
Single Cutoff: involves
specifying one cutoff point in
each missing data predictor.

If a subject has Y2 ≥ 1, then
their probability of being
missing on Y1 is 80%,
otherwise, the probability of
being missing is 20%, where
Y2 is the missing data
predictor.

• Easy to understand and implement relative to
other types of MAR missing data rules.
• Can create the strongest dependency between
the missing data indicator and predictor.
• Easy to quantify the strength of dependency
between missing data indicator and predictor
using indices such as ARD or OR.

• Create unrealistic MAR data; real-life MAR
data probably do not involve one single cutoff
point.

Multiple Cutoffs: involves
specifying multiple cutoff
points in each missing data
predictor.

If a subject’s Y2 value falls
into the 1st, 2nd, 3rd or 4th
quartiles of Y2 values, then
its probability of being
missing from Y1 is 0.3, 0.4,
0.5 or 0.6, respectively.

• Can create nonlinear relationship between the
missing data indicator and predictor.
• Relative to the single cutoff method, generates
more realistic MAR data where the percentage
of missing data gradually changes as the value of
the missing data predictor increases.

• Cannot create the strongest dependency
between the missing data indicator and
predictor.
• Relative to the single cutoff method, harder to
quantify the strength of dependency between
the missing data indicator and predictor.
• Relative to the percentile and logistic
regression methods, generate more unrealistic
MAR data based on two or more cutoff points.

Percentile: involves
specifying each subject’s
probability of being missing
to be their percentile rank in
the missing data predictor.

If a subject is at k%
percentile on Y2 , then it has
k% probability of being
missing on Y1 .

• The probability of missing data changes as the
value of the missing data predictor increases,
creating more realistic missing data relative to
the single and multiple cutoff methods.

• Can only produce 50% of missing data.
• Cannot vary the strength of dependency
between the missing data indicator and
predictor.

Logistic Regression:
involves specifying a logistic
regression that describes the
relationship between the
missing data indicator and
predictor.

Each subject’s probability of
being missing from Y1 is
related to the Y2 according
to the logistic regression
model:
log

(
P (Mi=1|Y2)

1−P (Mi=1|Y2)

)
=

1.8Y2, whereM is the
missing data indicator.

• The probability of missing data changes as the
value of the missing data predictor increases,
creating more realistic missing data relative to
the single cutoff and multiple cutoff methods.
•Can vary the strength of dependency between
the missing data indicator and predictor, an
advantage relative to the percentile method.

• Cannot create the strongest dependency
between the missing data indicator and
predictor.

Generating MNAR Data
Types for MNAR: the same
as the types of MAR missing
data rules. The only
difference is that the missing
data predictor is the same as
the variable with missing
data.

The same as the ones for
MAR data, except replacing
the missing data predictor
Y2 with the variable with
missing data Y1 .

• Share the same advantages as the types of
MAR missing data rules

• Share the same disadvantages as the types of
MAR missing data rules
•May not be included in simulation studies that
examine the effectiveness of missing data
techniques because most missing data
techniques (e.g., FIML and MI) cannot handle
MNAR data theoretically.

Note: ARD: absolute risk difference; OR: odd ratio; FIML: Full Information Maximum Likelihood; MI: Multiple Imputation
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