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Analysis of frequency data:
The ANOFA framework
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Abstract Analyses of frequencies are commonly done using a chi-square test. This test, derived
from a normal approximation, is deemed generally efficient (controlling type-I error rates fairly
well and having good statistical power). However, in the case of factorial designs, it is difficult to
decompose a total test statistic into additive interaction effects andmain effects. Herein, we present
an alternative test based on the G statistic. The test has similar type-I error rates and power as the
former one. However, it is based on a total statistic that is naturally decomposed additively into
interaction effects, main effects, simple effects, contrast effects, etc., mimicking precisely the logic
of ANOVAs. We call this set of tools ANOFA (Analysis of Frequency data) to highlight its similarities
with ANOVA. We also examine how to render plots of frequencies along with confidence intervals.
Finally, quantifying effect sizes and planning statistical power are described under this framework.
The ANOFA is a tool that assesses the significance of effects instead of the significance of parameters;
as such, it is more intuitive to most researchers than alternative approaches based on generalized
linear models.
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Introduction

Analyzing frequencies is a complicated task with no
agreed-upon solutions. In the psychological sciences, it is
typically done using a chi-square test in which the differ-
ences between the observed and the predicted frequen-
cies are transformed into approximate z scores. As the
sum of squared z scores follows a χ2 distribution, this re-
sults in an easy-to-perform test. However, the chi-square
test is limited when the data are classified using two or
more dimensions (2-way frequency tables or beyond): in-
deed, orthogonal decomposition of the total test score is
difficult. Castellan (1965) and others presented convoluted
techniques to analyze portions of two-way tables (e.g., Bres-
nahan & Shapiro, 1966; Fagen & Mankovich, 1980; ; see the
review by Sharpe, 2015). As Shaffer (1973a) puts it: "when
relationships among variables are defined in an intuitively
acceptable manner, the partitioned chi-square values do
not correspond to tests of these relationships" (p. 127).
In the linguistic sciences, one approach uses the general-
ized linear model (GLM, initially developed by McCullagh

& Nelder, 1989; ; also see Venables & Ripley, 2002). In ed-
ucation, we find other approaches including the one pro-
posed in Light and Margolin (1971) called CATANOVA (also
see D’Ambra et al., 2005). However, this last technique is
limited to two-factor designs and is rigid as effects cannot
be decomposed into simple effects or contrast effects; it will
therefore not be discussed further.

Yet an exact approach has been around since the early
days of statistical testing. This approach is not based on
approximations as it uses the true underlying multinomial
distribution, and tests of hypotheses use the likelihood ra-
tio test. Cochran (1936) mentions that Fisher (1922) and
Neyman and Pearson (1928) examined this alternative. It
results in procedures akin to log-linear modeling (Shaf-
fer, 1973a, 1973b). See Mood et al. (1974), Agresti (2013),
and Fienberg (2007) for formal derivations, and Hoeffding
(1965) for an examination of statistical power.

Herein, we expand this approach and show how main
effects and interaction effects can be tested in frequency
tables with any number of dimensions. We also show that
simple effects can easily be obtained, owing to the decom-
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position of the test statistic. Finally, we also show how or-
thogonal contrasts can be performed on frequency data, a
novel application.

This approach to frequency analysis is versatile and
covers almost the entire range of applications that classi-
cal ANOVA allows. Hence, we propose to name the present
framework the Analysis of Frequency data (ANOFA) to em-
phasize the similarities. We also present a method to plot
the frequencies alongwith confidence intervals. Finally, ef-
fect sizes and statistical power planning can be performed
within theANOFA frameworkusing the same tools and con-
cepts that are already familiar to ANOVA users.

Themost salient strength of the ANOFA is that it focuses
on effects. Other approaches such as GLM are efficient at
estimating parameters, however, when asking simple ques-
tions such as "Is there an interaction?", they are not very
potent because the interaction effect is spread across mul-
tiple parameters estimated by the GLM procedure. We will
return to this key distinction when we present the third il-
lustration.

TheG statistic

TheANOFA takes its root in themultinomial probability dis-
tributionwhereby a total ofN observations are distributed
across C classes. The multinomial model is an extension
of the binomial model to more than two outcomes. The
probability of belonging to a certain class i, say πi, may
be different across classes as long as 0 < πi < 1 and∑C

i=1 πi = 1. Under a multinomial model, the probability
of observing the given cell counts (n1, n2, . . . , nC) (where∑C

i=1 ni = N ) is given by

Pr{n1, n2, . . . , nC | π1, . . . , πC} =

N !

n1!n2! . . . nC !
πn1
1 πn2

2 . . . πnC

C .

In cases where there are only two classes, this reduces to
the binomial probability model. The πi parameters are un-
known, but they can be estimated by π̂i = ni/N ; these pro-
portions π̂i are the maximum likelihood estimators of the
corresponding πi (Mood et al., 1974). Using these estimates,
the likelihood (or conditional probability) of the set of esti-
mated parameters given the observed counts is maximal
and equal to

ℓ{π̂1, . . . , π̂C | n1, n2, . . . , nC} =

N !

n1!n2! · · ·nC !
π̂n1
1 π̂n2

2 · · · π̂nC

C

which is consequently the likelihood of the best-fitting
model.

In the presence of a hypothesis H0 specifying the ex-
pected cell probabilities under the “null model”H0 : π1 =

π01, π2 = π02, . . . πC = π0C , and in particular the hypoth-
esis of no difference across categories, H0 : π0i = 1/C ,
it is possible to contrast the best-fitting model to this null
model using the ratio of their likelihoods, sometimes noted
LR, with

LR =
ℓ{π01, . . . , π0C | n1, . . . , nC}
ℓ{π̂1, . . . , π̂C | n1, . . . , nC}

=
N !

n1!n2!···nC ! π
n1
01 π

n2
02 · · ·πnC

0C

N !
n1!n2!···nC ! π̂

n1
1 π̂n2

2 · · · π̂nC

C

=

(
π01

π̂1

)n1
(
π02

π̂2

)n2

· · ·
(
π0C

π̂C

)nC

=

C∏
i=1

(
π0i

π̂i

)ni

and twice the negative of the log likelihood ratio, hereafter
namedG, can compactly be written as

G = −2

C∑
i=1

ni (log π0i − log π̂i) . (1)

This G statistic is an exact and sufficient test statistic. Its
distribution follows asymptotically a χ2 distribution with
C − 1 degrees of freedom (df ; Black & Laurencelle, 1987;
Laurencelle, 2022; Wilks, 1938, this measure is sometimes
noted G2, L or −2 logLR). Williams (1976) examined
this formula and found that, for small cell counts, the chi-
square critical values are biased downward. Williams sug-
gested a correction factor cW , whose generic form is

cW (ncells, ν, N) = 1 +
n2
cells − 1

6 ν N
, (2)

inwhichncells is the number of cells involved in theG statis-
tic to be corrected, ν are the associated df (equal toC−1 in
one-way frequency tables), and N is the total sample size.
TheWilliams correction factor is used to divide theG statis-
tic; it yields a number larger than 1 but tends to 1 asN gets
large.

Eq. (1) is analogous to an ANOVA equation. It applies in
cases of a single "factor", i. e., where the observations are
classified along a single dimension. However – and we will
showexamples in the subsequent section – this formula can
be generalized to any number of classification dimensions.
A table is a case where there are two classification dimen-
sions (e.g., in general terms, the rows and the columns), but
there can also be three dimensions (a classification within
a cube having multiple layers), etc. More importantly, in
situation presenting two or more dimensions, the formula
can be generalized for analyzing, for instance, main effects,
interaction effects, and components of these in the form of
simple or interaction effects.

In what follows, we present examples of the use of the
ANOFA for a two-way design. The appendix provides the
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Figure 1 The Landis et al. (2013) observed frequencies as a function of the financing source for three family medicine
residency programs. Error bars shows the difference-adjusted 95% confidence intervals of the observed frequencies.

Table 1 Counts for the participants based on the Source of their financing and type of health service factors.

Collocated
behavioral
health(CBH)

Primary-care be-
havioral health
(PBH)

Blended model
(BM)

Medicare / Medicaid (MC/MA) 19 18 2
Medicare (MC) 24 53 3
Medicaid (MA) 44 57 5
Self-paid ($P) 20 57 3
Personal insurance (PI) 63 165 20

Note. The total sample size is 553, an important sample size.

equations for designs with a single, two, three, or four fac-
tors; they can be generalized to any number of factors.
We conclude by briefly reviewing Monte Carlo simulations
that examined type-I error rates, specificity, and statistical
power of the ANOFA. In a nutshell, type-I error rates match
the decision threshold when the correction factor (Eq. 2)
is used. Without the correction factor, they can reach up
to .062 for a .05 decision threshold (similar excess of type-I
error rates are found for the chi-square test; e. g., Lauren-
celle, 2022). As for statistical power, tests of the G statistic
equal or surpass slightly the Pearson’s chi-square tests on
the tests that the chi-square test can perform (as demon-
strated in Hoeffding, 1965).

We preserve four significant digits in the calculations
exemplified herein, although this is unrealistic in most
practical applications (Cousineau, 2020): this is to allow in-

terested readers to check computations if they wish to re-
produce them.

Three illustrations

In this section, we go through three examples. The first is
a 5 × 3 design examining modality of care (Landis et al.,
2013). A two-way omnibus ANOFA is performed, and the
significant interaction is decomposed using two different
strategies. The second is a 2 × 5 example examining ed-
ucation vocation of boys and girls in the 1960s (first pre-
sented in Light & Margolin, 1971). Following an omnibus
ANOFA, simple effects are examined. The last example is
a 3 × 2 × 2 × 2 example of detergent use (Ries & Smith,
1963). This last example is more complex, with four factors
resulting in 24 cells. Yet, ANOFA readily and easily locates
the significant effects, making the data interpretable.
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Table 2 ANOFA results of data from Table 1.

Omnibus ANOVA G df Gcorrected p-value
Total 533.187 14

Source of financing (A) 206.568 4 206.196 < .00001
Residency program (B) 307.773 2 307.403 < .00001
A×B 18.8455 8 18.6878 .01662

Simple effects G df Gcorrected p-value
Total 533.187 14

Source of financing (A) 206.568 4 206.196 < .00001
Within Medicare/Medicaid (B|a1) 18.6486 2 18.6261 .00009
Within Medicare (B|a2) 54.6429 2 54.5777 < .00001
Within Medicaid (B|a3) 54.2676 2 54.2023 < .00001
Within Self-paid (B|a4) 61.9825 2 61.9079 < .00001
Within Personal insurance (B|a5) 137.077 2 136.912 < .00001

Note. The top part shows the omnibus analysis with main effects and their interaction; The correction factors cW are
1.0018, 1.0012 and 1.0084 for the factor Source of financing, the factor Residency program, and for the interaction re-
spectively. The bottom part shows the analysis with simple effect for each source of financing. The correction factor
for the simple effects are all identical, cW = 1.0012.

An example from Landis et al. (2013)

Consider the Landis et al. (2013) data examined in Sharpe
(2015) and based on a 5 × 3 frequency table. Landis et al.
were interested in different modalities of care in a family
medicine residency program. They compared a Collocated
Behavioral Health service (CBH) with a Primary-Care Be-
havioral Health service (PBH) and a Blended Model (BM).
They also considered how a patient’s care was financed:
Medicare (MC),Medicaid (MA), amix ofMedicare/Medicaid
(MC/MA), personal insurance (PI), or self-paid ($P). The data
are presented in Table 1. We also illustrate the counts in
Figure 1, after reordering the financing sources to better
see the trends (how the error bars were obtained will be
discussed in the next section).

As hinted at by Figure 1, the counts are generally
increasing from Medicare/Medicaid to private insurance.
Also, CBH (red line) seems to have intermediate counts in
most situations. There might be two exceptions to this gen-
eral finding: Recipients of Medicare/Medicaid are equally
numerous to opt for PBH than they are for CBH services. A
similar exception seems to occur for Medicaid.

Following the indications given in the Appendix, we
conducted a standard, omnibus, ANOFA (main effects and
interaction); it was suspected from the Figure that the in-
teraction would be statistically significant. In Supplemen-
tary materials on OSF at https://osf.io/q3yem/, we provide
the computations made using R. We first report the results
as if this was a typical research report, and then we high-
light a few key properties of the analyses.

As seen in Table 2 (top part), the interaction is statis-
tically significant (G(8) = 18.85, Gcorrected(8) = 18.69,
p = .0166). To untangle the interaction, two options are
possible: decompose the interaction effects into interaction
components (when there are 2 or more df at play), or run
simple effects. We present these two options in turn as il-
lustrations of what ANOFA can perform.
First option: Decomposition of the interaction effect.
The data can be examined by decomposing the 8 df into
two orthogonal interaction effects, one comparing CBH to
PBH along all the levels of the financing sources (hence, a
2 × 5 interaction with df = (2 − 1) × (5 − 1) = 4), and
another one comparing jointly CBH and PBH to BM along
all the levels of financing sources (here again a 2× 5 inter-
action with df = 4).

Summing the two CBH and PBH program frequencies
vs. BM and then running an ANOFA, we get for this inter-
action, G(4) = 3.7340, Gcorrected = 3.7063, p = 0.4472. As
for the analysis of CBH vs. PBH, we find G(4) = 15.1112,
Gcorrected = 14.9997, p = 0.0047. This second comparison
is obviously the one responsible for the global interaction
significance. The uncorrected Gs are additive, the two G
(15.1112 and 3.7340) yielding 18.8452, the G of the global
interaction. This additivity shows that the G-test complies
numerically with the independence (or formal orthogonal-
ity) of the calculations, contrarily to the chi-square test.
Second option: Examination of the simple effects.
As an alternative approach, we examine the simple main
effects within each source of financing (see Jaccard &
Guilamo-Ramos, 2002, for the nomenclature). The results
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Table 3 ANOFA results of the data from Table 1 with the main effects broken down into contrasts.

Source of variation G df Gcorrected p-value
Total 533.187 14

Source of financing (A) 206.568 4 206.196 < .00001
Service for MC/MA (B|a1) 18.6486 2 18.6261 .00009

(PBH& CBH) vs. BM 18.6216 1 18.5992 .00002
PBH vs. CBH 0.02703 1 0.02700 .86953 n.s.

Service for Medicare (B|a2) 54.6429 2 54.5771 < .00001
(PBH& CBH) vs. BM 43.4467 1 43.3944 < .00001
PBH vs. CBH 11.1962 1 11.1827 .00083

Service for Medicaid (B|a3) 54.2676 2 54.2023 < .00001
(PBH& CBH) vs. BM 52.5897 1 52.5264 < .00001
PBH vs. CBH 1.67792 1 1.67590 .19561 n.s.

Service for $P (B|a4) 61.9825 2 61.9079 < .00001
(PBH& CBH) vs. BM 43.4467 1 43.3944 .00002
PBH vs. CBH 18.5358 1 18.5134 .00002

Service for PI (B|a5) 137.077 2 136.912 < .00001
(PBH& CBH) vs. BM 89.7868 1 89.6787 < .00001
PBH vs. CBH 47.2905 1 47.2335 < .00001

are listed in the second part of Table 2. As seen, the services
are significantly different and that for (1) Medicare/Medi-
caid condition where the frequencies 19, 18 and 2 are com-
pared: G(2) = 18.6; (2) Medicare conditino where fre-
quencies 24, 53 and 3 are compared: G(2) = 54.6; (3) Med-
icaid condition where frequencies 44, 57 and 5 are com-
pared: G(2) = 54.3; (4) self-paid condition where frequen-
cies 20, 57, and 3 are compared: G(2) = 62.0; and finally,
(5) personal insurance conditionwhere frequencies 63, 165
and 20 are compared: G(2) = 137.1 (all p < .00001).

To better characterize the interaction noted previously,
we further decomposed each simple main effect into two
simple main effect contrasts having 1 degree of freedom
each. Note that we are multiplying the analyses in this ex-
ample for illustrative purposes only. Within every source
of financing, we compared CBH to PBH in a first contrast,
and these two merged to BM in a second contrast. For ex-
ample, in the Medicare/Medicaid class, the frequencies 19
and 18 are compared on the first contrast, whereas 18.5
(the combined frequency for two classes containing 19 and
18 observations) is compared to 2 on the second contrast.
The results are given in Table 3. All are highly significant
except two: The difference between PBH and CBH is not
significant at the .05 level for Medicare/Medicaid and for
Medicaid. These two exceptions pinpoint the locus of the
interaction.

This ANOFA is based on a total G statistic which is de-
composed. As a check, note that, in Table 2 (top part), the
main effects Gs + interaction G totalize GTotal. If instead
the Modality of care effects and the interaction are decom-
posed into the associated main effects as done in Table 2

(bottompart), again theGs of all these effects totalizeGTotal.
Finally, if a main effect contrast is further decomposed into
orthogonal main effect contrasts, the sum of those con-
trasts’G equals the global main effectG; the same equality
also applies to the df . Thus, all along, we ran tests obeying
strict numerical additivity.

One needs to read Sharpe (2015) to realize that the
ANOFA framework is far more potent to describe the pat-
tern found in these data than any of the past attempts. Once
more, the logic underlying ANOFA is the same as the one
underlying ANOVA, a framework that is familiar to many
readers.

An example from Light and Margolin (1971)

Light and Margolin (1971) reanalyzed unpublished data
they attributed to Lesser and colleagues in which they ex-
amined educational aspiration of a large sample of N =
617 adolescents. The participants are classified by their
gender (2 levels) and by their educational aspiration (com-
plete secondary school, complete vocational training, be-
come college teacher, complete gymnasium, or complete
university; 5 levels). The data are therefore from a 2 × 5
design. The counts are for Boys: 62, 121, 26, 33, 84; and for
Girls: 61, 149, 41, 20, 20. The frequency data are illustrated
in Figure 2.

As seen in the Figure, the two groups of teenagers had
nearly identical educational aspiration except for their as-
piration to go to university. This suggests an interaction,
confirmed by an ANOFA analysis. The omnibus ANOFA and
the decomposition into five simple main effects along vo-
cational aspiration are given in Table 4. The interaction is
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Figure 2 The Lesser et al. observed frequencies (unpublished) as a function of educational aspiration and gender. Error
bars shows the difference-adjusted 95% confidence intervals of the observed frequencies.

important (Gcorrected = 49.55, p < .0001). The largest dis-
crepancy between boys and girls is for university aspira-
tion (Gcorrected = 42.33, p < .0001).

To characterize the magnitude of the effects, it is pos-
sible to compute effect sizes (how this is done will be de-
scribed below). The eta square is a method to quantify the
proportion of explained variance by each factor which is
often found along ANOVA analyses. The eta square (η2) for
the gender effect is 0.02146 (2.146% of the variance is ex-
plained by this factor), a result also found in Light andMar-
golin (1971) using a different methodology. The vocational
aspiration factor explains 14.86% of the variance, but the
interaction explains more, i.e. 22.83%. This last effect size

is qualified as a very large effect by some researchers (e.g.,
Cohen, 1992).

An example from Ries and Smith (1963)

As a last example, we consider the Detergent data initially
published in Ries and Smith (1963) found in the R package
library vcdExtra (Friendly, 2023, dataset Detergent).
In this example, consumers are classified on four factors:
Softness of water used (3 levels: soft, medium or hard), Ex-
pressed preference for brandM or X after blind test (2 levels:
BrandM or Brand X), Previously used brandM (2 levels: yes
or no), and Temperature of landry water (2 levels: hot or
cold). It is therefore a 3× 2× 2× 2 design with 24 cells.

Table 4 ANOFA results of the data from Figure 2.

G df Gcorrected p
Total 266.8894 9

Aspiration (A) 215.0163 4 214.6684 < 0.0001
Gender (B) 1.9865 1 1.9849 0.1589
A×B 49.8867 4 49.5554 < 0.0001

Decomposition of the interaction and Aspiration effects:
Gender within Secondary school 0.0081 1 0.0081 0.9282
Gender within Vocational training 2.9089 1 2.9078 0.0881
Gender within Teacher college 3.3868 1 3.3855 0.0658
Gender within Gymnasium 3.2214 1 3.2201 0.0727
Gender within University 42.3478 1 42.3307 < 0.0001

Note. Top part shows the omnibus analysis withmain effects and their interaction; the bottom part shows the analysis
of the simple effect for each vocational aspiration.
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Figure 3 A mosaic plot (Meyer et al., 2006) of the Detergent dataset showing the frequencies in each of the 24 cells in
the design. Larger rectangles indicates larger frequencies. The factors are read clockwise, starting with the factor on the
left size of the plot.

The data can be seen and the plots generated using the
Supplementary materials on OSF at https://osf.io/q3yem/.
We illustrate the frequencies using amosaic plot in Figure 3
(Meyer et al., 2006). In amosaic plot, the area of the squares
is proportional to the frequencies in the cells. From that
plot, we see that roughly two-thirds of the participants use
low temperature laundry water. Regarding Softness of wa-
ter, it seems to be divided evenly between the three levels,
suggesting a lack of difference on that factor. Finally, note
that the preferred use of Brand M is more than half only
when participantswere previously using BrandM. This last
result suggests an interaction between these two factors.
These intuitions will be confirmed by an ANOFA.

The ANOFA analysis is given in Table 5. As seen, the 4-
way interaction is not significant (G(2) = 0., p > .999). The
computations returned aG below zero due to a cumulative
rounding error. Examining the four 3-way interactions,
none are significant (all p > .05). There is one strongly
significant two-way interaction involving Expressed prefer-
ences for Brand M or Brand X and whether Brand M was
used in the past (Gcorrected(1) = 18.79, p < .001). Another

interaction is significant (p = .046) but this last effect is
small (effect size below0.01) and reaching significance only
because the sample is quite large (N = 1008), so the practi-
cal significance of this result is limited and we may ignore
it. Finally, the main effect ofWater temperature is the only
significant main effect (Gcorrected(1) = 66.86, p < .0001,
η2 = 0.067).

We show in Figure 4 these two results, the main effect
on the left and the interaction on the right. We see that the
interaction is a near cross-over effect, with a confirmation
of the preferences as those who previously used a certain
brand still prefer that brand after a blind test.

On the OSF web site, https://osf.io/q3yem/, you can find
the R code to analyze this example.

Various authors have proposed alternative methods.
On OSF, you will find the code to perform a GLM analysis
with a Poisson link function (as suggested by Agresti, 2013).
As youwill see, whereas ANOFA analyses effects, indicating
their significance, GLM estimates parameters. For this ex-
ample, there are 24 cells (3×2×2×2) so that a GLMmodel
may have up to 24 free parameters, all relative to a baseline

TheQuantitativeMethods forPsychology 1792

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.2.p173
https://osf.io/q3yem/
https://osf.io/q3yem/


¦ 2023 Vol. 19 no. 2

Table 5 ANOFA results of the data from Figure 3.

G df Gcorrected p η2

Total 118.6269 23
Softness of water (A) 0.5015 2 0.4787 .7871 0.0007
Expressed preference (B) 0.0635 1 0.0580 .8097 0.0001
Previously used (C) 1.9212 1 1.7545 .1853 0.0017
Water temperature (D) 73.2121 1 66.8559 <.0001∗∗ 0.0667
A×B 0.3952 2 0.3774 .8281 0.0011
A× C 1.0751 2 1.0263 .5986 0.0030
A×D 6.0991 2 5.8223 .0544 0.0185
B × C 20.5815 1 18.7946 <.0001∗∗ 0.0367
B ×D 4.3616 1 3.9829 .0460∗ 0.0085
C ×D 1.2531 1 1.1443 .2847 0.0024
A×B × C 5.2201 2 4.9832 .0828 0.0296
A×B ×D 0.0701 2 0.0669 .9671 0.0004
A× C ×D 1.6757 2 1.5997 .4494 0.0103
B × C ×D 2.2265 1 2.0332 .1539 0.0090
A×B × C ×D −0.0294 2 −0.0281 >.9999 −0.0004

Note. *: p < .05, **: p < .01. TheG statistic of the 4-way interaction is negative owing to rounding errors;G statistics
cannot be negative.

condition chosen arbitrary by the software. (for example,
the effect of high temperature relative to low temperature
included in the baseline is 0.69, p = .0011 whereas the
effect of low temperature relative to high temperature in-
cluded in a different baseline is+1.10, p < .00001; see OSF
script for more). From there, finding which parameters
to remove to get a parsimonious model is difficult. Fien-
berg (2007), following Goodman (1971), suggests a stepwise
approach, adding and removing parameters based on the
model fits. However, Flom and Cassell (2007) argue against
this technique which is too dependent on random fluctua-
tions.

We also use the alternative analysis based on GLMwith
a multinomial link (proposed by Venables & Ripley, 2002).
This model returns hundreds of estimates, with no clear in-
dications how to locate a more parsimonious one from the
initial estimations.

What these alternative approaches illustrate is that
they are not geared toward identifying effects. ANOFA, on
the other hand, examines only effects, returning their sig-

nificance. Among other beneficial consequences, it is easy
to verify that the results fromanANOFA analysis are totally
unaffected by a change in the baseline condition.

Error bars in plots

Error bars are a most useful addition to any summary
statistics plot. However, the G statistic being a global lack-
of-fit measure, it is not possible to assign “pieces of mis-
fit” to every frequency category and, therefore, theG value
cannot be used to derive specific confidence intervals. We
advocate here an approach based on the pivot method de-
veloped by Clopper and Pearson (1934) and given in an an-
alytic form in Leemis and Trivedi (1996). Such confidence
intervals are commonly non-symmetrical around the esti-
mate; they are also exact or conservative, the width of the
interval tending to be too wide when the frequencies are
small (Chen, 1990).

Given a total sample size N , an observed frequency n
is used to get lower and upper confidence bounds around
the proportion π̂ = n/N with the formula:

π̂low =

(
1 +

N − n+ 1

nF1−α/2(2n, 2(N − n+ 1)

)−1

< π <

(
1 +

N − n

(n+ 1)Fα/2(2(n+ 1), 2(N − x)

)−1

= π̂high
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Figure 4 Illustration of the main effect of Temperature on frequencies (left) and of the interaction of Brand used ×
Previously used Brand M on frequencies (right) in the Detergent dataset illustrated in Figure 3.

in which F1−α denotes the 100(1 − α) % quantile of
an F distribution where 1 − α is the desired coverage
of the interval, often 95%. The interval {nlow, nhigh} =
N × {π̂low, π̂high} is then used as a 100(1 − α) % con-
fidence interval of the observed frequency n which can
be used to compare one frequency to an expected or the-
oretical frequency. Such an unadjusted confidence inter-
val is termed a stand-alone confidence interval (Cousineau
et al., 2021). More commonly, we wish to compare an
observed frequency to another observed frequency, thus
a difference-adjusted confidence interval is sought. To
obtain a difference-adjusted confidence interval, it is re-
quired to multiply the interval width by 2,

n∗
low = 2(n− nlow) + n

n∗
high = 2(nhigh − n) + n

where the asterisk denotes difference-adjusted confidence
interval limits.1 Thus, the interval {n∗

low, n
∗
high} is the

difference-adjusted 100(1−α)% confidence interval (Bag-
uley, 2012). The difference-adjusted confidence intervals
allow comparing the frequencies pairwise rather than to
a theoretical frequency. Just keep in mind that precise in-
ference is only warranted using the relevant G statistic.
The error bars were obtained in Figures 1, 2, and 4 using
superb, a general-purpose tool for generating summary
plots with error bars for R (Cousineau et al., 2021). The
scripts are found on OSF at https://osf.io/q3yem/.

Better confidence intervals can be obtained knowing
that the proportions are not distinct but must sum to one.

Such intervals are called simultaneous confidence intervals
(SCI; Glaz, 1999; Wang, 2000; Hou & Tai, 2003). Hou and Tai
(2003) performed a review of these techniques. These im-
proved confidence intervals will be exact or conservative,
but when they are conservative, they will be less conser-
vative than the Clopper-Pearson confidence intervals used
here, and therefore slightly shorter. Informal comparison
found the best SCI to be about 5% shorter than the Clopper
and Pearson intervals. Considering that each SCI requires
extensive calculations (taking many seconds), we favored
the Clopper-Pearson intervals.

Effect size and statistical power for the ANOFA test

The effect size proposed by Cohen (1992) for chi-square
family variables is called Cohen’s w; it is inspired by the
Pearson’s chi-square formula. There is however two limi-
tations to the w formula. First, it assumes that the changes
in predicted frequencies are additive. This poses a problem
for small frequencies, as subtracting a quantity from these
frequencies could bring some to negative values. Second,
Cohen’s w is one more effect size measure: there are al-
ready many, and so whenever possible, we should seek to
stick to the existing ones. As it turns out, one well-known
effect size measure is suitable in the present situation. In-
deed, we show hereafter that an effectivemeasure of effect
size for the study of frequencies is Cohen’s f2 and its related
η2 (Cohen, 1992). These effect sizemeasures are commonly
used in ANOVA settings where they represent the ratio of
the effect variance onto the error variance and the propor-

1The reason for themultiplication by 2 is two-fold. First, to obtain a difference-adjusted confidence interval (CI), it is necessary tomultiply the CIwidth
by

√
2 (under the assumption of homogeneous variance). Second, the observed classifications are correlated and this correlation equals −1/(C − 1)

where C is the number of class (Cousineau, 2019). As this CI is meant for pair-wise comparisons, C is replaced by 2, resulting in a second, correlation-
based, correction of

√
1− r =

√
1− (−1/(2− 1)) =

√
2. To better understand the correlation, consider that if a participant is in a certain class, then

he is not in the other classes. Coding class membership with 1 and 0, a perfect correlation of 1 ensues. Both corrections to the CI width aremultiplicative.
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tion of effect variance onto the total variance, respectively.
In the present situation, we know that the corrected

G statistics follows approximately a χ2 distribution, from
which ensues that G divided by its df follows a F distri-
bution with infinite denominator degrees of freedom (e.g.,
Forbes et al., 2010, p. 71). The standardized F , that is, F
divided by the number of observations per group (or its
harmonic mean ñ when class sizes are unequal, which is
almost certainly the case with frequencies) returns f2 and
the total sample size times f2 is the non-centrality parame-
ter (often noted λ) needed to assess statistical power. Once
f2 is known, it can be converted to an eta square (η2) mea-
sure. Thus,

f2 =
1

ñ
F =

1

ν ñ
G

λ =N f2

η2 =f2/(1 + f2)

(3)

Using the data from the first example, we find that the
corrected G for the main effect of Source of financing is
206.1956. This translates into an F statistic of 51.5489 (the
G statistics divided by the degrees of freedom). Dividing
this F by the harmonic mean of the marginal number of
participants (which are 170, 350, and 33; that is 76.8393), we
get f2 = 0.670866 and η2 = 0.4015, that is, a huge effect
size. The noncentrality parameter, λ = 553 × 0.670866 =
370.989, is again, a large noncentrality parameter.

Regarding the interaction effect, the correctedG statis-
tic was 18.6878 for an F of 2.3360. Dividing by the har-
monicmean of the number of participants per cell (8.7457),
we obtain a f2 of 0.2671, a moderate-to-large effect size ac-
cording to Cohen’s guidelines. The corresponding noncen-
trality parameter is λ = 553× 0.2671 = 147.707.

If we have an a priori effect size in mind (from doc-
umented or prior test results), it is possible to conduct a
power analysis. For example, regarding the interaction ef-
fect above, feeding f =

√
f2 = 0.5168 to G*Power (Faul

et al., 2009), we get that the power to detect such an inter-
action is above 99%. Thus, the Landis et al. (2013) study col-
lected a sample of such a size that it had ample statistical
power.

When predicted class probabilities are accessible, it is
possible to determine f2

predicted. Indeed, suppose that the
predicted probability of falling in each ith class is πi. Com-
puting theG index on these predictions, we find

Gpredicted = − 2

C∑
i=1

fi (log gi − log fi)

= 2

C∑
i=1

(N πi) log (C × πi)

= N × f2
predicted

in which the fi are the predicted frequencies, equal to
N ×πi, and gi are the expected frequencies under the null
hypothesis of equality, that is, gi = N/C . From the last line,
we derive an alternate way to compute f2

predicted:

f2
predicted = 2

C∑
i=1

πi log(C × πi). (4)

As an illustration, we consider the scenario where the
observations will be classified in one of four classes (C =
4). Assuming that the predicted πππs are .35, .25, 25 and .15
for classes 1 to 4, we find f2

predicted = 0.08228. Feeding this
value f =

√
0.08228 = 0.28685 into G*Power, we are in-

vited to recruit a total of 140 participants to reach a statis-
tical power of 80%: G*Power recommends 35 participants
per group as the software only assumes an integer number
of participants per group, but with a noncentral F distri-
bution calculator, the exact number is 34.1181 participants
per group, for a total number of participants of≈ 136. This
number is slightly overestimated because, when running
a power computation from a f2, G*Power assumes that
the denominator df are taken from a standard ANOVA (i.e.,
P (n−1) ), which is not the case for theG statisticwhere de-
nominator degrees of freedom should be infinite. Using a
non-central chi-square calculator instead, we find that the
recommended number of participants is 132.5 ≈ 132.

For the interested reader, we placed in the OSF site
https://osf.io/q3yem/ a script, ComputePower.R, that au-
tomatizes this exact search.

We checked this result by running a simulation. We
generated datasets from a multinomial distribution under
the above πi’s as the population proportions, generating
132 observations per sample, and ran an ANOFA test with
the correction factor. We repeated this 500,000 times and
recorded the number of rejections of the null hypothesis of
equal probabilities. We found 80.7% rejection, well in line
with the theoretical power analysis.

With 136 participants, power is estimated to be 81.8%
and, with 140 participants, it rises to 83.1%. Hence, in the
current context, G*Power recommendations are a bit con-
servative compared to the exact computation.

The major benefits of using f2and its related η2 (rather
than w or other effect size measures) is that it is better
known, is used in other statistical procedures and is inter-
preted in the exact same manner and implies exactly the
same power planning procedure.

A short examination of Type I error rates, specificity
and statistical power

Because the ANOFA test is based on formal mathematical
arguments (Mood et al., 1974), because its likelihood ratio is
asymptotically chi-square distributed (Wilks, 1938) and be-
cause a correction is available for small samples (Williams,
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1976), there really is no reason to question this procedure
for testing inference. Nonetheless, we decided to run some
Monte Carlo simulations examining three issues: (i) the
Type I error rate, that is, the fact that, for a certain deci-
sion threshold α, the proportion of rejection of the null hy-
pothesis under no-difference conditions should not exceed
this α: (ii) the specificity of the test, that is, in the presence
of a complex design where some of the effects may be sta-
tistically significant, will the test of other null effects still
respect the type-I error rate and, finally (iii): the statistical
power, that is, the test’s ability to reject the null hypothesis
if an effect is indeed present.

We first considered the case with a single classifica-
tion factor. However, the Type I error rates and statisti-
cal power results did not differ from the two-classification
design and, as the issue of specificity is not relevant when
there is a single factor, we chose not to report these results.

Methodology

Type I error rates. To examine Type I error rates in a
two-way classification design, we generated in one simula-
tion a total of N observations that were classified in one
of the C × R cells of the design using a multinomial ran-
dom number generator. In this simulation, all the obser-
vations had an equal chance 1/(C × R) of falling in any
cell so that the null hypothesis of no difference between
the cells is true. We then ran an ANOFA on the simu-
lated data for the main and interaction effects, recording
the decisions made. In distinct set of simulations, we var-
ied the following conditions: the total sample size (N =
50, 75, 100, 150, 200, 250, 300, 500, 750, 1000, 2000: 11 lev-
els), the number of levels C of the first factor (3, 4, 5, 8: 4
levels), and the number of levels R of the second factor (3,
4, 5: 3 levels), for a total of 11 × 4 × 3 = 132 conditions.
The simulations within a given condition were repeated
250,000 times. Each simulation was run twice, the first in
which the statistical significance is calculated with no cor-
rection factor on the G statistic, the second with Williams
(1976) correction.
Specificity. To test for specificity, we ran the exact same
conditions as abovewith one exception: we added an effect
on the first factor. The effect was simulated in the popula-
tion by increasing by∆p the proportion of the first level of
the first factor, and decreasing the proportion of the last
level of that factor by the same amount. The effect size
usedwas Cohen’sw = 0.1, whichwas converted to∆p with
w/

√
2C R where C is the number of levels of the first fac-

tor andR, of the second factor. This corresponds to a small-
to-medium effect size f ≈ 0.100 (the subsequent decimals
depend on the number of classes). The second factor is un-
affected as well as the interaction, both complying with the
null hypothesis being tested. Except for the variation added

to the first factor, everything else is as in the Type I error
rate simulations.
Statistical power. Finally, we also ran a power analysis,
that is, how frequently the null hypothesis was rejected in
each simulation context. To keep the number of conditions
manageable, we removed the second factor and introduced
instead an effect size w with three levels (w = 0.1, 0.2 or
0.3) which correspond to f ’s of approximately 0.100, 0.20,
and 0.3 depending on the number of classes (for example,
for w = 0.3, f goes from 0.03036 to 0.3104). The first is la-
beled (arbitrarily) small by Cohen (1992) whereas the third
is declared medium. Everything else is as in the previous
simulations. In this round of simulations, we also recorded
the decisions reached by the Pearson’s chi-square test to
compare it to those of the ANOFA test.

Results

The results regarding Type I error rates are seen in Figure 5.
As seen, with smaller sample sizes, the uncorrected ANOFA
test tends to overshoot, having Type I error rates too large
compared to the decision threshold of .05, reaching in some
cells up to 6.2% of false rejection of the null hypothesis. As
the samples get large, the situation is corrected, as expected
since likelihood ratio tests are asymptotic tests (i.e., exact
for large samples). UsingWilliams correction, the situation
is entirely corrected, the test never exceeding the .05 limit.
When the samples are too small, the test is very conserva-
tive, not rejecting the null on almost all simulations (some-
thing to be seen also in the power simulations below).

How large should a sample be depends on the number
of levels, but a rough rule of thumbwould suggest 10 times
the number of cells in the design. The first example had 533
participants for 15 cells (a 5×3 design). This number is far
sufficient to render the correction factor optional (and as
seen, the corrected G statistics were barely different from
the uncorrectedG statistics).

The specificity results are presented in Figure 6. The
rejection rate of the effect on the first factor (not reported)
is increasing with sample sizes so that the test is behaving
as expected (see next section on statistical power). In Fig-
ure 6, we show the rejection of the interaction effect (the
rejections of the main effect of the second factor were also
examined and found similar). As before, the uncorrected
test may exceed the .05 limit, whereas it never does once
corrected. We see in general that the error rate is now con-
servative, not quite reaching the .05 limit, hovering around
.04. Thus, the test is not lured by the presence of an effect in
the design, but it loses a bit of sensitivity on the remaining
null effects, making it more ‘cautious’.

The power results are presented in Figure 7. As seen, re-
jection rates increase steadily as the sample sizes get larger.
They also rise faster when the effect sizes are larger, as
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Figure 5 Type I error rate for ANOFA test at the .05 level as a function of the total sample size simulatedN and as a func-
tion of the number of levels in the first classification factor (color) and the number of levels in the second classification
factor (panels). The top row is done without correction factor; the bottom rowwithWilliams (1976) correction factor. The
red dashed line at .05 is the decision threshold used.

expected. Indeed, the summands in the G statistics are
composed of two terms, a deviance term (log π0i − log π̂i)
which indicates the effect size in the ith group, and a mag-
nifier, ni, based on the sample size in that group. When
any of these is increased, the totalG statistic deviates more
from theG expected under the null hypothesis, increasing
the chance of a correct rejection.

The dashed lines and + symbols show the chi-square
test rejection rates. As seen, they are barely different
from the rejection rates of the ANOFA test. The only
place where we see a difference is when there are many
groups, when the population effect size is large and when
the sample is small. In this optimal situation, the ANOFA
test has a power advantage reaching about 5%. We
placed in the OSF site https://osf.io/q3yem/ an alternate
version of Figure 7 where the effect size is plotted along
the x-axis and the sample size is seen across panels (file

Figure7-AsAFunctionOfN.png).

Discussion of the simulation study

As seen, the ANOFA test with Williams correction respects
the Type I error rate dictated by the decision threshold; it
gets slightly conservative when other effects are present in
the dataset or when the sample is small. In terms of sta-
tistical power, it equals or slightly surpasses the chi-square
test in the conditions tested herein (Hoeffding, 1965). It has
been documented in the past that the performance of fre-
quency tests canbe impaired in the presence of sparse data;
this is one situation we did not test here (Agresti, 2013).

Note that the reason for choosing the ANOFA test is not
transparent in this section. It is therefore worth recapitu-
lating it: The reason to use this test is its aptitude to perform
complementary tests that cannot be done with a χ2 test,
such as main effects, interaction analyses, simple effects,
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Figure 6 Specificity of an ANOFA test examined by the Type I rejection rate of a null interaction effect when there is a
main effect in the population as a function of the total sample size N and as a function of the number of levels in the
first classification factor (color) and the number of levels in the second classification factor (panels). The top row is done
without correction factor; the bottom rowwithWilliams (1976) correction factor. The red dashed line at .05 is the decision
threshold used.

contrasts, etc., by performing an additive decomposition of
the total test statistic. To our knowledge, no other test can
be decomposed in any of these ways.

The interested reader will find in Laurencelle (2022)
a thorough study of the comparative performances of the
G and chi-square statistics for analyzing frequency tables:
The G variable stands out as being more precise and dis-
criminating, due to its finer (logarithmic) scale, giving it
more granularity.

Discussion

We presented a general test to analyze frequencies, the
ANOFA. Some aspects of this test have been documented
in the past; others, such as the analyses of interactions,
have never been examined whereas analysis of orthogo-
nal contrasts was only considered in Black and Laurencelle
(1987). We found the ANOFA to be very flexible, allowing

a range of analyses from higher-order interactions to sim-
ple effects and contrasts to be easily performed and intu-
itively interpreted. Also, its ability to support power plan-
ning also speak in favor of ANOFA. One fundamental asset
of ANOFA is its logic, the same as that of ANOVA: anyone ac-
quaintedwithANOVAwill transfer toANOFAwithoutmuch
difficulty.

The most critical characteristic of ANOFA is that the to-
tal G statistics can be decomposed additively. This char-
acteristic implies that the decompositions are done with-
out loss of information. None of the alternative analyses
has this important characteristic. The Pearson Chi-square
test, using a division by the expected frequency for its cal-
culation, is a non-linear test statistic so that looking for
useful decompositions is utopian (Shaffer, 1973a, 1973b;
Sharpe, 2015). Similarly, GLM-based approaches violate
the assumption of homogeneity of variances as discussed
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Figure 7 Power of an ANOFA and a χ2 tests for effect size w increasing from 0.1 to 0.3 (panels) as a function of the total
sample size N , and the number of of levels in the first classification factor (colors). ANOFA shown with full lines and
circle symbols; χ2 tests shown with dashed lines and + symbols. Only the results with the Williams (1976) correction are
presented. The red dashed line at .05 is the decision threshold used.

in Gart et al. (1985). Informal simulations show that er-
ror variance can increase five-fold with population pro-
portion moving away from .50. Heterogeneity of variances
implies reduced statistical power (Petscher & Schatschnei-
der, 2011). The ANOFA has no "variance" parameter and is
therefore immune to this limitation. As demonstrated by
Hoeffding (1965), aG statistic results in more powerful sta-
tistical test. By assembling all these characteristics in a uni-
fied framework (G statistics, additive decomposition), we
obtain the ANOFA.

One reason for its attractiveness is that ANOFA analyses
effects. These effects are main effects, interaction effects,
or any other desired effects defined by contrasts. This is
in stark contrast with alternative approaches. For exam-
ple, GLM is a regression method and is focused on param-
eters. Consider a 5 × 5 design. There are three possible
effects to consider: two main effects and one interaction
effect. However, a GLM analysis of this dataset returns 25
parameters, all relative to a baseline condition chosen ar-
bitrarily. Browsing through such a list of parameter esti-
mates, it is very unlikely that the effects will reveal easily.
Consequently, various, more parsimonious, models must
be tested but this involves trials and errors or stepwise test-
ing which are known to be very sensitive to the specifics of
the data (e.g. Flom & Cassell, 2007).

One possible reason that the G statistics has not been
popularized previously may have to do with the log trans-
form. In the booming days of statistical methods (1925 to
1950), logarithms were cumbersome to compute, necessi-
tating conversion tables. Nowadays, with the generalized

use of computers, that reason is no longer relevant, so that
the consensual a priori preference for the chi-square test
should dwindle. When theG statistic is coupledwith proce-
dures which aim at detecting effects, we obtain the ANOFA
framework described herein. Another reason that this did
not occur earlier may be the strong impetus that was given
to the Pearson’s chi-square test in these early days so that
nowadays not a single statistics textbook could be found
that does not extensively promote the older test.

ANOFA has limitations. It is based on the assumption
that there is a single sample of participants who are then
classified according to one or more classification factors.
Hence, ANOFA cannot be used to compare two distinct sam-
ples. That would be the equivalent, in the ANOVA nomen-
clature, of a mixed design where the participants are as-
signed to groups prior to be classified. ANOFA, in a sense,
is only for a “one (global) sample design”. Also, ANOFA
does not support cluster randomized sampling. In cluster
randomized sampling, the participants are not selected en-
tirely are random; instead, chunks of participants are taken
from groups, and it is the groups that are selected at ran-
dom. See Cousineau and Laurencelle (2016) for the proper
handling of clustered (continuous) variables in ANOVA. For
similar reasons, ANOFA does not handle "repeated mea-
sures" data tables, those where each data source is mea-
sured more than once.

Using the present framework, frequencies are just a
regular dependent variable that can be analyzed in the
same way that continuous variables are, with the same vo-
cabulary, and the same emphasis on effects. They have a
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universally-knownmeasure of effect size and plotswith de-
cent error bars are at our fingertips. As the French saying
goes, "on serait fou de s’en passer".
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Appendix: ANOFA Formulas

This technical appendix provides the relevant equations for four designs: a one-way ANOFA, a two-way ANOFA, a three-
way ANOFA, and a four-way ANOFA. In the two- and three-way designs, main effects and interaction effects equations are
also provided, but other decompositions can be performed, such as interaction decomposition (as was done in the first
illustration), simple effects (as we showed in the first two illustrations), orthogonal contrasts (as was done in the second
illustration), polynomial analysis, etc.

In what follows, indices i, j, k, . . . identify a level of a factor whereas uppercase roman letters A,B,C, . . . represent
the names of these factors; in italics, they represent the number of levels of these factors. Variables ni, nij , nijk , etc.
represent the observed cell frequencies in a single-factor design, a two-factor design (a table), a three-factor design (a
table with multiple layers), etc.; finally, ei, eij , eijk , etc., are the expected cell frequencies in these same designs. The
variables n•, n••, n•••, etc., denote the total observed frequencies in these designs (it is often noted in shortN ) whereas
ni• et nj• are the marginal frequencies in a two-factor design. In the case of a 3-factor design, ni••, n•j• etc. are the
first-order marginal frequencies, and nij•, ni•k , etc. are the second-order marginal frequencies.

Design with a single factor

In a design with a single factor, there is a single test statistic,GA, which is also the total test statistic,GTotal. It is obtained
with

GA = −2

A∑
i=1

ni (log(e•)− log(ni))

in which the expected frequency under the null hypothesis is given by e• = n•/A. This formula simplifies to GA =

2
∑A

i=1 nilog(ni) − 2 n• log(n•/A) in the present design. This statistic follows asymptotically a chi-square distribution
with A− 1 degrees of freedom (df ).

Contrasts can be tested as long as they are orthogonal. For each degree of freedom, there can be a contrast.
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Designs with two factors

In a two-factor design, the total test statistic can be decomposed into twomain effect statistics A and B, and an interaction
statistic A× B, with

GTotal =− 2

A∑
i=1

B∑
j=1

nij (log(e••)− log(nij))

GA =− 2

A∑
i=1

ni• (log(ei•)− log(ni•))

GB =− 2

B∑
j=1

n•j (log(e•j)− log(n•j))

GA×B =− 2

A∑
i=1

B∑
j=1

nij (log(eij)− log(nij))

in which the expected frequencies are given by e•• = n••/(A × B), ei• = n••/A, e•j = n••/B et eij = ni• × n•j/n••.
As some readers may have noticed, the structure of this last formula is also found in the chi-square test on contingency
tables. These expected cell counts, as shown in Mood et al. (1974), are maximizing the likelihood of the relevant factors.

We demonstrate that the total test statistic equals the sum of the elements, that isGTotal = GA+GB+GA×B. Dividing
the components by 2 everywhere simplifies the demonstration.

(GA+GB +GA×B)/2

=

A∑
i=1

ni•(log ni• − log ei•) +

B∑
j=1

n•j(log n•j − log e•j)

+

A∑
i=1

B∑
j=1

nij(log nij − log eij)

=

A∑
i=1

ni• log ni• − n•• log n•• + n•• logA

+

B∑
j=1

n•j log n•j − n•• log n•• + n•• logB

+

A∑
i=1

B∑
j=1

log nij −
A∑
i=1

nij log ni• −
B∑

j=1

nij log n•j

=

A∑
i=1

B∑
j=1

nij log nij − n•• log n••/(AB)

=

A∑
i=1

B∑
j=1

nij(log nij − log e••) = GTotal/2

The df are summarized in this diagram:

Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Degrees of freedom (df)

GTotal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A×B − 1
GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A− 1
GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B − 1
GA×B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(B − 1)
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If simple effects are desired (say, along factor A on the levels of factor B), then for each B-factor level, the ANOFA test
statistic is given by:

GA|B=j = −2

A∑
i=1

nij

(
log(ei|B=j)− log(nij)

)
in which ei|B=j = ni•/B. As can be demonstrated,GA|B=1 + · · ·+GA|B=B = GA +GA×B and consequently,GTotal =
GA|B=1 + · · ·+GA|B=B +GB which is analogous to the usual decomposition in a regular ANOVA.

Designs with three factors

With three factors, the omnibus ANOFA decomposes the total test statistic

GTotal = −2

A∑
i=1

B∑
j=1

C∑
k=1

nijk (log(e•••)− log(nijk))

into three main effects A, B, C. Three first-order interaction (A × B, A × C, B × C) and one second-order interaction (A ×
B× C). The three main effects statistics are

GA =− 2

A∑
i=1

ni•• (log(ei••)− log(ni••))

GB =− 2

B∑
j=1

n•j• (log(e•j•)− log(n•j•))

GC =− 2

C∑
k=1

n••k (log(e••k)− log(n••k))

in which the overall cell frequency is e••• = n•••/(A×B × C), and the first-order marginal cell frequencies are ei•• =
n•••/A, e•j• = n•••/B, and e••k = n•••/C across factors A, B, and C respectively. The first-order interactions are given
by

GA×B =− 2

A∑
i=1

B∑
j=1

nij• (log(eij•)− log(nij•))

GA×C =− 2

A∑
i=1

C∑
k=1

ni•k (log(ei•k)− log(ni•k))

GB×C =− 2

B∑
j=1

C∑
k=1

n•jk (log(e•jk)− log(n•jk))

in which eij• = ni•• × n•j•/n•••, ei•k = ni•• × n••k/n••• and e•jk = n•j• × n••k/n••• are the second-order ex-
pected marginal cell frequencies across the pairs of factors A× B, A× C and B× C respectively. Finally, the second-order
interaction is given by

GA×B×C = −2

A∑
i=1

B∑
j=1

C∑
k=1

nijk (log(eijk)− log(nijk))

in which
eijk = n••• ×

nij•ni•kn•jk

ni••n•j•n••k

is the second-order expected marginal cell frequencies.
The df for the various terms of the omnibus test are:
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Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Degrees of freedom (df)

GTotal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A×B × C − 1
GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A− 1
GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B − 1
GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C − 1
GA×B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(B − 1)
GA×C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(C − 1)
GB×C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B − 1)(C − 1)
GA×B×C . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(B − 1)(C − 1)

.

As before, it is straightforward to demonstrate thatGTotal = GA +GB +GC +GA×B +GA×C +GB×C +GA×B×C.
Finally, analogously to ANOVA, we can decompose any of the global test statistics into simple effects, as desired.

Design with four factors

The ANOFA is extensible at will. Here we provide the equations for 4 factors. The four factors, noted with subscripts i,
j, k and l have A, B, C and D levels respectively. The observed frequencies in the cells are noted with nijkl. The omnibus
ANOFA decomposes the total test statistic

GTotal = −2

A∑
i=1

B∑
j=1

C∑
k=1

D∑
l=1

nijk (log(e••••)− log(nijkl))

into four main effects

GA =− 2

A∑
i=1

ni••• (log(ei•••)− log(ni•••))

GB =− 2

B∑
j=1

n•j•• (log(e•j••)− log(n•j••))

GC =− 2

C∑
k=1

n••k• (log(e••k•)− log(n••k•))

GD =− 2

D∑
l=1

n•••l (log(e•••l)− log(n•••l))

in which the overall expected cell frequency is e•••• = n••••/(A × B × C × D), and the first-order marginal cell
frequencies are ei••• = n••••/A, e•j•• = n••••/B, e••k• = n••••/C and e•••l = n••••/D across factors A, B, C and D
respectively. The total test statistic also includes six first-order (also called 2-way) interaction terms which are given by

GA×B =− 2

A∑
i=1

B∑
j=1

nij•• (log(eij••)− log(nij••))

GA×C =− 2

A∑
i=1

C∑
k=1

ni•k• (log(ei•k•)− log(ni•k•))

GA×D =− 2

A∑
i=1

D∑
l=1

ni••l (log(ei••l)− log(ni••l))

TheQuantitativeMethods forPsychology 1912

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.2.p173


¦ 2023 Vol. 19 no. 2

GB×C =− 2

B∑
j=1

C∑
k=1

n•jk• (log(e•jk•)− log(n•jk•))

GB×D =− 2

B∑
j=1

D∑
l=1

n•j•l (log(e•j•l)− log(n•j•l))

GC×D =− 2

C∑
k=1

D∑
l=1

n••kl (log(e••kl)− log(n••kl))

in which eij•• = ni••• × n•j••/n••••, ei•k• = ni••• × n••k•/n••••, ei••l = ni••• × n•••l/n••••, e•jk• = n•j•• ×
n••k•/n•••• e•j•l = n•j•• × n•••l/n•••• , and e••kl = n••k• × n•••l/n•••• are the second-order expected marginal cell
frequencies across the pairs of factors A× B, A× C, A× D, B× C, B× D, and C× D respectively. It also includes the four
second-order (also called 3-way) interaction terms given by

GA×B×C = −2

A∑
i=1

B∑
j=1

C∑
k=1

nijk• (log(eijk•)− log(nijk•))

GA×B×D = −2

A∑
i=1

B∑
j=1

D∑
l=1

nij•l (log(eij•l)− log(nij•l))

GA×C×D = −2

A∑
i=1

C∑
k=1

D∑
l=1

ni•kl (log(ei•kl)− log(ni•kl))

GB×C×D = −2

B∑
j=1

C∑
k=1

D∑
l=1

n•jkl (log(e•jkl)− log(n•jkl))

in which
eijk• = n•••• ×

nij••ni•k•ni•k•

ni•••n•j••n••k•
,

eij•l = n•••• ×
nij••ni••ln•j•l

ni•••n•j••n•••l
,

ei•kl = n•••• ×
ni•k•ni••ln••kl

ni•••n••k•n•••l
,

and
e•jkl = n•••• ×

n•jk•n•j•ln••kl

n•j••n••k•n•••l

are the second-order expected marginal cell frequencies. Finally, it includes the third-order interaction (also called the
4-way interaction) given by

GA×B×C×D = −2

A∑
i=1

B∑
j=1

C∑
k=1

D∑
l=1

nijkl (log(eijkl)− log(nijkl))

in which
eijkl =

1

n•••
× ni•••n•j••n••k•n•••lnijk•nij•lni•kln•jkl

nij••ni•k•ni••ln•jk•n•j•ln••kl

is the third-order expected marginal cell frequencies.
The df for the various terms of the omnibus test are:
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Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Degrees of freedom (df)

GTotal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A×B × C ×D − 1
GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A− 1
GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B − 1
GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C − 1
GD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D − 1
GA×B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(B − 1)
GA×C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(C − 1)
GA×D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(D − 1)
GB×C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B − 1)(C − 1)
GB×D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B − 1)(D − 1)
GC×D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C − 1)(D − 1)
GA×B×C . . . . . . . . . . . . . . . . . . . . . . . . . . . (A− 1)(B − 1)(C − 1)
GA×B×D . . . . . . . . . . . . . . . . . . . . . . . . . . .(A− 1)(B − 1)(D − 1)
GA×C×D . . . . . . . . . . . . . . . . . . . . . . . . . . .(A− 1)(C − 1)(D − 1)
GB×C×D . . . . . . . . . . . . . . . . . . . . . . . . . . .(B − 1)(C − 1)(D − 1)
GA×B×C×D . . . . . . . . . . . . . . . . (A− 1)(B − 1)(C − 1)(D − 1)

As before, it is straightforward to demonstrate that GTotal = GA + GB + GC + GD + GA×B + GA×C + GA×D +
GB×C +GB×D +GC×D +GA×B×C +GA×B×D +GA×C×D +GA×B×C×D These terms can be decomposed into simple
effects, as desired.
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